20 years of K-triviality

André Nies
Newton Institute, Cambridge, UK
June 7, 2022

2012-2022

This talk provides background, and then traces the developments on K-trivial sets from 2012 to the present.

Describe Five further characterisations of K-triviality.
Cover In particular, the covering problem was solved in the affirmative: for c.e. sets, K-trivial is the same as being below an incomplete ML-random.

Ideals A dense hierarchy of Turing ideals in the K-trivials was found and its relationship to cost functions studied.
$\leq_{M L}$ ML-reducibility promises a better understanding of the internal structure of the K-trivials.
There is an ML-complete K-trivial.
Measures K-trivial and C-trivial measures.

- In June 2012, I gave a talk at Chicheley Hall entitled "10 Years of Triviality", in connection with the Turing year.
- By "triviality" I meant K-triviality, a property of sets of natural numbers introduced in 1975 by Chaitin and Solovay.
- Intuitively, this property says that the set is
"far from random",
in the sense that the prefix free descriptive complexity of the initial segments grows as slowly as possible.

Descriptive string complexity K

A partial computable function from binary strings to binary strings, called machine, is prefix-free if its domain is an antichain under the prefix relation of strings.

There is a universal prefix-free machine \mathbb{U} : for every prefix-free machine M,

$$
M(\sigma)=y \text { implies } \mathbb{U}(\tau)=y \text { for some } \tau \text { with }|\tau| \leq|\sigma|+d_{M}
$$

and the constant d_{M} only depends on M.
The prefix-free Kolmogorov complexity of a string y is the length of a shortest \mathbb{U}-description of y :

$$
K(y)=\min \{|\sigma|: \mathbb{U}(\sigma)=y\}
$$

Martin-Löf randomness (1966)

Sets are viewed as points in Cantor space $\{0,1\}^{\mathbb{N}}$.
Let λ denote the uniform (product) measure on $\{0,1\}^{\mathbb{N}}$.

- A ML-test is a uniformly Σ_{1}^{0} sequence $\left(G_{m}\right)_{m \in \mathbb{N}}$ of open sets in $\{0,1\}^{\mathbb{N}}$ such that $\lambda G_{m} \leq 2^{-m}$ for each m.
- A set Z is ML-random if Z passes each ML-test, in the sense that Z is not in all of the G_{m}.
There is a universal ML-test $\left(S_{r}\right)$: a set Z is ML-random iff it passes $\left(S_{r}\right)$. MLR denotes the class of ML-random sets.

Weak 2 -randomness is defined by passing tests of a more general kind: replace the condition $\lambda G_{m} \leq 2^{-m}$ by $\lim _{m} \lambda G_{m}=0$.

Some properties of the K-trivials

K-trivial sets

K-trivials (1975)

The Schnorr-Levin theorem states that

$$
Z \in 2^{\mathbb{N}} \text { is ML-random if and only if } K(Z \upharpoonright n) \geq^{+} n .
$$

In the other extreme:

Definition (Chaitin, 1975)

$A \in 2^{\mathbb{N}}$ is K-trivial if $K(A \upharpoonright n) \leq^{+} K(n)$ for each n.

- computable $\Rightarrow K$-trivial $\Rightarrow \Delta_{2}^{0}$ (Chaitin)
- Solovay, ' 75 : there is a noncomputable K-trivial set.

Downey, Hirschfeldt, N., Stephan, 2003

If A and B are K-trivial, then $A \oplus B$ is K-trivial.

Some researchers who have worked on K-triviality from 2002 on

B Laurent Bienvenu
D Rod Downey
G Noam Greenberg
H Denis Hirschfeldt
K Antonin Kučera
M Joseph Miller
N André Nies
S Frank Stephan
T Dan Turetsky

17 characterisations of the K-trivials

The characterisations are according to four paradigms:

- highly compressible initial segments (definition and one more)
- weak as an oracle (13)
- computed by many (2)
- has computable approximation with few changes (1).

C3: basis for ML-rd., C4: $\Delta_{2}^{0} \cap$ low for Ω

Theorem (C3: HNS 06)

$A \in 2^{\mathbb{N}}$ is K-trivial $\Longleftrightarrow A \leq_{T} Z$ for some $Z \in \operatorname{MLR}^{A}$.
" \Rightarrow " K-triviality coincides with lowness for ML-randomness. By the Kučera-Gacs Theorem each set that is low for ML-randomness is a basis for randomness.
" \Leftarrow " for this we introduced the "hungry sets construction".

- $\Omega=\sum\left\{2^{-|\sigma|}: \mathbb{U}(\tau)\right.$ halts $\}$ is Chaitin's halting probability, which is ML-random and Turing complete.
- Call $A \subseteq \mathbb{N}$ low for Ω if Chaitin's Ω is ML-random in A.

Corollary (C4: HNS 06)

A is K-trivial $\Longleftrightarrow A$ is Δ_{2}^{0} and low for Ω.

C1: Low for $K, \mathrm{C} 2$: low for ML-randomness

Theorem (N.-Hirschfeldt; N 03)

The following are equivalent for $A \in 2^{\mathbb{N}}$:

1. A is K-trivial.
2. $K^{A}={ }^{+} K(A$ is low for $K)$.
3. $\mathrm{MLR}^{A}=\operatorname{MLR}$ (A is low for ML-randomness).
$1 \Rightarrow 2$ uses the golden run method (N 03). The same method shows many of the properties of the K-trivials shown earlier.

C5-C7: Characterisations as classes $\operatorname{Low}(\mathcal{C}, \mathcal{D})$

For randomness notions $\mathcal{C} \subseteq \mathcal{D}$, one says that A is $\operatorname{Low}(\mathcal{C}, \mathcal{D})$ if $\mathcal{C} \subseteq \mathcal{D}^{A}$. That is, A shrinks \mathcal{D} by so little that is still contains \mathcal{C}. Let

$$
\mathrm{W} 2 \mathrm{R} \subseteq \mathrm{MLR} \subseteq \mathrm{CR}
$$

denote the classes of weakly 2 randoms, ML-randoms, and computably randoms, respectively.
Theorem (C5-C7: N 03; N. 09; DN Weber and Yu, 06)
Let $\mathcal{C} \subseteq \mathcal{D}$ be randomness notions among W2R, MLR, CR. Each of the classes $\operatorname{Low}(\mathcal{C}, \mathcal{D})$ coincides with K-triviality, except that $\operatorname{Low}(C R, C R)=$ computable.

C8,C9: relativizing the difference left-c.e. reals Recall that a real α is left-c.e. if $\alpha=\sup _{s} q_{s}$ for a computable sequence $\left\langle q_{s}\right\rangle_{s \in \mathbb{N}}$ of rationals.

We say that a real α is difference left-c.e. if $\alpha=\beta-\gamma$ for left-c.e. reals α, β. (These reals form a real closed field.)

Theorem (C8: DHMN 05, also see N. Book 5.5.14)

A is K-trivial $\Longleftrightarrow \Omega^{A}$ is left-c.e. \Longleftrightarrow
each prefix free machine relative to A
has a difference left-c.e. halting probability.

Corollary (C9: J. Miller)

A is K-trivial \Longleftrightarrow each real that is difference left-c.e. relative to A, is difference left-c.e.

C11: via Martin-Löf covering

Proposition (HNS 06)

If c.e. set A is below a Turing incomplete ML-random Z, then Z is ML-random in A, so A is K-trivial.

Theorem (C11: BGKNT 16 \& Day, Miller 15)

Let A be a c.e. set. Then A is K-trivial \Longleftrightarrow
A is computable from some Turing incomplete ML-random.

- BGKNT 16 introduced Oberwolfach (OW) randomness, a slight strengthening of ML-randomness. They showed that each ML-random, non OW-random Z computes each K-trivial.
- Day and Miller provided such a set Z which is Δ_{2}^{0}.
- So, there is a single incomplete Δ_{2}^{0} ML-random above all the K-trivials!

C10: via Martin-Löf noncuppability

$A \in \Delta_{2}^{0}$ is ML-noncuppable if $A \oplus Z \geq_{T} \emptyset^{\prime}$ implies $Z \geq_{T} \emptyset^{\prime}$ for each ML-random Z. Otherwise, A is ML-cuppable.

Fact: If $A \in \Delta_{2}^{0}$ is not K-trivial then A is not a base for
ML-randomness, so $Z:=\Omega^{A} \not ¥_{T} A$, so A is ML-cuppable.

Theorem (C10: Day and Miller, 2012)

A is K-trivial $\Longleftrightarrow A$ is ML-noncuppable
We say that a real z is a positive density point if $\underline{\rho}(E \mid z)>0$ for every effectively closed $E \ni z$. Day and Miller used the following characterisation of the incomplete ML-random reals via density.

Theorem (BHMN, 11)

For a Martin-Löf random real z,

$$
z \not ¥_{T} \emptyset^{\prime} \Longleftrightarrow z \text { is a positive density point. }
$$

Definition

A cost function is a computable function $\mathbf{c}: \mathbb{N}^{2} \rightarrow \mathbb{R} \geq 0$ satisfying: $\mathbf{c}(x, s) \geq \mathbf{c}(x+1, s)$ and $\mathbf{c}(x, s) \leq \mathbf{c}(x, s+1)$; $\underline{\mathbf{c}}(x)=\lim _{s} \mathbf{c}(x, s)<\infty$;
$\lim _{x} \mathbf{c}(x)=0$ (the limit condition).

Definition

Let $\left\langle A_{s}\right\rangle$ be a computable approximation of a Δ_{2}^{0} set A.
Let \mathbf{c} be a cost function. The total cost $\mathbf{c}\left(\left\langle A_{s}\right\rangle\right)$ is

$$
\sum_{s} \mathbf{c}(x, s) \llbracket x \text { is least s.t. } A_{s}(x) \neq A_{s-1}(x) \rrbracket .
$$

A Δ_{2}^{0} set A obeys a cost function \mathbf{c} if there is some computable approximation $\left\langle A_{s}\right\rangle$ of A for which the total cost $\mathbf{c}\left(\left\langle A_{s}\right\rangle\right)$ is finite.

Write $A \models \mathbf{c}$ for this. FACT: There is a c.e., noncomputable $A \models \mathbf{c}$.

C12: Dynamic characterisation

Summarize: a Δ_{2}^{0} set obeys \mathbf{c} if it can be computably approximated obeying the "speed limit" given by c.

Let $\mathbf{c}_{\Omega}(x, s)=\Omega_{s}-\Omega_{x}$ (where $\left\langle\Omega_{s}\right\rangle_{s \in \mathbb{N}}$ is an increasing computable approximation of Ω).

Theorem (C12: N., Calculus of cost functions, 2017)

Let $A \in \Delta_{2}^{0}$. Then A is K-trivial $\Longleftrightarrow A$ obeys \mathbf{c}_{Ω}.

- Older result (N 09): A is K-trivial $\Longleftrightarrow A$ obeys the "standard cost function" $\mathbf{c}_{\mathcal{K}}$ where $\mathbf{c}_{\mathcal{K}}(x, s)=\sum_{i<x} 2^{-K_{s}(i)}$.
- These results directly apply the definition of K-triviality, rather than some previously known equivalent notion.

C14, C15: Variations on low for Ω

Theorem (C14: Greenberg, Miller, Monin, and Turetsky, 2018, together with Stephan and Yu)
A is K-trivial \Longleftrightarrow
for all Y such that Ω is Y-random, Ω is $Y \oplus A$-random.
The implication \Rightarrow was proved by Stephan and Yu, unpublished. GMMT obtained the converse.

Theorem (C15: GMMT, 2018)

A is K-trivial \Longleftrightarrow

for all Y such that Ω is Y-random, Y is LR-equivalent to $Y \oplus A$.
The implication \Leftarrow is clear via $Y=\emptyset$. The hard part is to show K-trivials have this property.

C13: Solovay functions

Recall that $A \subseteq \mathbb{N}$ is K-trivial if $K(A \upharpoonright n) \leq^{+} K(n)$ for each n.
Can one replace the K on the right side by a computable function?
We say that a computable function f is a Solovay function if $\forall n K(n) \leq^{+} f(n)$ and $\exists^{\infty} n K(n)=^{+} f(n)$.

Solovay showed their existence. E.g. let $f(\langle x, \sigma, t)=|\sigma|$ if $\mathbb{U}(\sigma)=x$ in exactly t steps, and else some coarse upper bound of $K(x)$ such as $2 \log |x|$. In fact there is a nondecreasing Solovay function.

```
Theorem (C13: Bienvenu and Downey, 2009)
```

(a) A is K-trivial \Longleftrightarrow

$$
K(A \upharpoonright n) \leq^{+} f(n) \text { for each Solovay function } f .
$$

(b) There is a single Solovay function f that does it.
$18 / 32$

C16, C17: changing the bits at the positions in A preserves randomness

Theorem (C16, C17: Kuyper and Miller, 2017)

A is K-trivial $\Longleftrightarrow Y \triangle A$ is ML-random for each ML-random Y
$\Longleftrightarrow Y \triangle A$ is weakly 2 -random for each weakly 2-random Y.

In both cases, it was know that K-triviality implies the condition, because K-triviality implies lowness for the randomness notion. The surprising fact was that this seemingly weak aspect of lowness is sufficient for K-triviality.

Internal structure of the K-trivials

Structure of the K-trivials w.r.t. $\leq_{M L}$

- The least degree consists of the computable sets. This follows from the low basis theorem with upper cone avoiding.
- There is a ML-complete K-trivial set, called a "smart" K-trivial (BGKNT '16).
- There is a dense hierarchy of principal ideals $\mathcal{B}_{q}, q \in(0,1)_{\mathbb{Q}}$. E.g., $\mathcal{B}_{0.5}$ consists of the sets that are computed by both "halves" of a ML-random Z, namely $Z_{\text {even }}$ and $Z_{\text {odd }}$ (GMN 19).
- Some further interesting subclasses of the K-trivials are downward closed under $\leq_{M L}$: e.g., the strongly jump traceables, which conincide with the sets below all the ω-c.a. ML-randoms (by HGN '12, along with GMNT 22).

ML-reducibility

- It appears that Turing reducibility is too fine to understand the structure of the K-trivials.
- A coarser "reducibility" is suggested by Kucera's early results, and the solution to the covering problem from 2014.
Recall that MLR denotes the class of Martin-Löf random sets.

Definition

For K-trivial sets A, B, we write $B \geq_{M L} A$ if

$$
\forall Z \in \operatorname{MLR}\left[Z \geq_{T} B \Rightarrow Z \geq_{T} A\right]
$$

I.e., any ML-random computing B also computes A.

Each K-trivial A is ML-equivalent to a c.e. K-trivial $D \geq_{T} A$ (GMNT 22). So one only needs to consider the c.e. K-trivials.

Degree theory for $\leq_{M L}$ on the K-trivials

Recall: $B \geq_{M L} A$ if $\forall Z \in \operatorname{MLR}\left[Z \geq_{T} B \Rightarrow Z \geq_{T} A\right]$.

Results from GMNT 22, arxiv 1707.00258

(a) For each noncomputable c.e. K-trivial D there are c.e.

$$
A, B \leq_{T} D \text { such that }\left.A\right|_{M L} B .
$$

(b) There are no minimal pairs.
(c) For each c.e. A there is a c.e. $B>_{T} A$ such that $B \equiv_{M L} A$.
(a) is based on a method of Kučera. (b) and (c) use cost functions.

Cost functions characterising ML-ideals

Definition (Recall)

Let $\left\langle A_{s}\right\rangle$ be a computable approximation of a Δ_{2}^{0} set A.
Let \mathbf{c} be a cost function. The total cost $\mathbf{c}\left(\left\langle A_{s}\right\rangle\right)$ is

$$
\sum_{s} \mathbf{c}(x, s) \llbracket x \text { is least s.t. } A_{s}(x) \neq A_{s-1}(x) \rrbracket .
$$

A Δ_{2}^{0} set A obeys a cost function \mathbf{c} if there is some computable approximation $\left\langle A_{s}\right\rangle$ of A for which the total cost $\mathbf{c}\left(\left\langle A_{s}\right\rangle\right)$ is finite.

Let $\mathbf{c}_{\Omega, 1 / 2}(x, s)=\left(\Omega_{s}-\Omega_{x}\right)^{1 / 2}$.

Theorem (GMN 19)

The following are equivalent:

1. A is computed by both halves of a ML-random.
2. A obeys $\mathbf{c}_{\Omega, 1 / 2}$.

Definition (ML-completeness for a cost function, GMNT 22)

Let $\mathbf{c} \geq \mathbf{c}_{\Omega}$ be a cost function. We say that a K-trivial A is smart for \mathbf{c} if $A \models \mathbf{c}$, and $B \leq_{M L} A$ for each $B \models \mathbf{c}$.

Theorem (GMNT 22, extending BGKNT 16 result for \mathbf{c}_{Ω})

For each cost fcn $\mathbf{c} \geq \mathbf{c}_{\Omega}$ there is a c.e. set A that is smart for \mathbf{c}.
We may assume that $\mathbf{c}(k) \geq 2^{-k}$. Build A. There is a particular Turing functional Γ such that it suffices to show $A=\Gamma^{Y} \Rightarrow Y$ fails some c-test.

- During the construction, let $\mathcal{G}_{k, s}=\left\{Y: \Gamma_{t}^{Y} 2^{k+1} \prec A_{t}\right.$ for some $\left.k \leq t \leq s\right\}$.
- Error set \mathcal{E}_{s} contains those Y such that Γ_{s}^{Y} is to the left of A_{s}.
- Ensure $\lambda \mathcal{G}_{k, s} \leq \mathbf{c}(k, s)+\lambda\left(\mathcal{E}_{s}-\mathcal{E}_{k}\right)$. If this threatens to fail put the next $x \in\left[2^{k}, 2^{k+1}\right)$ into A. Then $\left\langle\mathcal{G}_{k}\right\rangle$ is the required \mathbf{c}-test.

Cost functions and computing from randoms

Definition

Let \mathbf{c} be a cost function. Recall $\underline{\mathbf{c}}(n)=\lim _{s} c(n, s)$.
A c-test is a sequence $\left(U_{n}\right)$ of uniformly Σ_{1}^{0} subsets of $\{0,1\}^{\mathbb{N}}$ satisfying $\lambda\left(U_{n}\right)=O(\underline{\mathbf{c}}(n))$.

Important yet easy fact

Suppose that Z is ML-random but is captured by a c-test.
Suppose that A obeys c. Then $A \leq_{T} Z$.

ML-completeness for a cost function

Definition (recall)

Let $\mathbf{c} \geq \mathbf{c}_{\Omega}$ be a cost function. We say that a K-trivial A is smart for \mathbf{c} if A is ML-complete among the sets that obey \mathbf{c}.

Theorem (GMNT 22)

For each K-trivial A there is a cost function $\mathbf{c}_{A} \geq \mathbf{c}_{\Omega}$ such that A is smart for \mathbf{c}_{A}.

This shows that there are no ML-minimal pairs:
if K-trivials A, B are noncomputable, there is a noncomputable c.e.
D such that $D \models \mathbf{c}_{A}+\mathbf{c}_{B}$. Then $D \leq_{M L} A, B$.

Smartness for \mathbf{c}_{Ω} and half-bases

Recall:

Theorem (BGKNT 16)

Not every K-trivial is a half-base.

Proof (different from the original one).

- $\Omega_{\text {even }}$ and $\Omega_{\text {odd }}$ are low;
- If $Y \in$ MLR is captured by a \mathbf{c}_{Ω}-test, then it is superhigh.
- So a smart K-trivial is not a half-base.

Questions

- Is being a smart K-trival an arithmetical property?

Can a smart K-trivial be cappable?
Can it obey a cost function stronger than \mathbf{c}_{Ω} ?

- Is $\leq_{\text {ML }}$ an arithmetical relation?

Are the ML-degrees of the K-trivials dense?

- Is there an incomplete ω-c.a. ML-random above all the K-trivials?
- Is every C-trivial measure K-trivial?
(The answer is yes in case $K(C(n) \mid n, K(n))$ is bounded.
I.e., there are finitely many options to compute $C(n)$ from n and $K(n)$, with one successful.)

Descriptive complexity for measures

μ will denote a probability measure on Cantor space.

- Let $C(\mu \upharpoonright n)=\sum_{|x|=n} C(x) \mu[x]$ be the μ-average of all the $C(x)$ over all strings x of length n.
- In a similar way we define $K(\mu \upharpoonright n)$.
E.g. $C\left(\lambda \upharpoonright n \geq n-1\right.$, and $K\left(\lambda \upharpoonright n \geq^{+} n+K(n)\right.$.

Theorem (NS 21)

Each K-trivial [C-trivial] measure is concentrated on its atoms.

Some references

- Bienvenu, Greenberg, Kučera, Nies, Turetsky: Coherent randomness tests and computing the K-trivial sets, JEMS 2016
- Greenberg, J. Miller, Nies: Computing from projections of random points, JML 2019
- Greenberg, J. Miller, Nies, Turetsky: Martin-Löf reducibility and cost functions. IJM to appear. arxiv 1707.00258
- Nies, A. and Stephan, F. Randomness and initial segment complexity for probability measures. TCS, 2021, arxiv 1902.07871

