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2002-2012

I In June 2012, I gave a talk at Chicheley Hall entitled “10

Years of Triviality”, in connection with the Turing year.

I By “triviality” I meant K-triviality, a property of sets of

natural numbers introduced in 1975 by Chaitin and Solovay.

I Intuitively, this property says that the set is

“far from random”,

in the sense that the prefix free descriptive complexity of the

initial segments grows as slowly as possible.
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2012-2022
This talk provides background, and then traces the developments

on K-trivial sets from 2012 to the present.

Describe Five further characterisations of K-triviality.

Cover In particular, the covering problem was solved in the

a�rmative: for c.e. sets, K-trivial is the same as being

below an incomplete ML-random.

Ideals A dense hierarchy of Turing ideals in the K-trivials was

found and its relationship to cost functions studied.

ML ML-reducibility promises a better understanding of the

internal structure of the K-trivials.

There is an ML-complete K-trivial.

Measures K-trivial and C-trivial measures.
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Descriptive string complexity K

A partial computable function from binary strings to binary

strings, called machine, is prefix-free if its domain is an antichain

under the prefix relation of strings.

There is a universal prefix-free machine U: for every prefix-free

machine M ,

M(�) = y implies U(⌧) = y for some ⌧ with |⌧ |  |�|+ dM ,

and the constant dM only depends on M .

The prefix-free Kolmogorov complexity of a string y is the length of

a shortest U-description of y:

K(y) = min{|�| : U(�) = y}.
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Martin-Löf randomness (1966)

Sets are viewed as points in Cantor space {0, 1}N.
Let � denote the uniform (product) measure on {0, 1}N.
I A ML-test is a uniformly ⌃0

1 sequence (Gm)m2N of open sets in

{0, 1}N such that �Gm  2�m for each m.

I A set Z is ML-random if Z passes each ML-test, in the sense

that Z is not in all of the Gm.

There is a universal ML-test (Sr): a set Z is ML-random i↵ it

passes (Sr). MLR denotes the class of ML-random sets.

Weak 2-randomness is defined by passing tests of a more general

kind: replace the condition �Gm  2�m by limm �Gm = 0.
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K-trivials (1975)

The Schnorr-Levin theorem states that

Z 2 2N is ML-random if and only if K(Z � n) �+
n.

In the other extreme:

Definition (Chaitin, 1975)

A 2 2N is K-trivial if K(A� n) +
K(n) for each n.

I computable ) K-trivial ) �0
2 (Chaitin)

I Solovay, ‘75: there is a noncomputable K-trivial set.

Downey, Hirschfeldt, N., Stephan, 2003

If A and B are K-trivial, then A� B is K-trivial.
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Some properties of the K-trivials

�

K-trivial sets

�

B
A

K-trivial sets

I Ideal in the �0
2 Turing degrees

(Chaitin ‘75, DHNS ‘03, N. ‘05)

I K-trivs are all superlow:

A0 tt ;0 (N. ‘05)

I there is no largest K-triv: for

every low c.e. set B, there is a

K-trivial set A 6T B (N., ‘02)

I there is a low2 c.e. set C above

all of them (Barmpalias and N.,

2011)

I there is a low1 set R above all of

them (Kučera and Slaman)
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Some researchers who have worked on K-triviality

from 2002 on

B Laurent Bienvenu

D Rod Downey

G Noam Greenberg

H Denis Hirschfeldt

K Antonin Kučera

M Joseph Miller

N André Nies

S Frank Stephan

T Dan Turetsky
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17 characterisations of the K-trivials

The characterisations are according to four paradigms:

I highly compressible initial segments (definition and one more)

I weak as an oracle (13)

I computed by many (2)

I has computable approximation with few changes (1).
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C1: Low for K, C2: low for ML-randomness

Theorem (N.-Hirschfeldt; N 03)

The following are equivalent for A 2 2N:

1. A is K-trivial.

2. K
A =+

K (A is low for K).

3. MLRA = MLR (A is low for ML-randomness).

1 ) 2 uses the golden run method (N 03). The same method

shows many of the properties of the K-trivials shown earlier.
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C3: basis for ML-rd., C4: �0
2\ low for ⌦

Theorem (C3: HNS 06)

A 2 2N is K-trivial () A T Z for some Z 2 MLRA.

“)” K-triviality coincides with lowness for ML-randomness.

By the Kučera-Gacs Theorem each set that is low for

ML-randomness is a basis for randomness.

“(” for this we introduced the “hungry sets construction”.

I ⌦ =
P

{2�|�| : U(⌧) halts} is Chaitin’s halting probability,

which is ML-random and Turing complete.

I Call A ✓ N low for ⌦ if Chaitin’s ⌦ is ML-random in A.

Corollary (C4: HNS 06)

A is K-trivial () A is �0
2 and low for ⌦.

11 / 32

C5-C7: Characterisations as classes Low(C,D)

For randomness notions C ✓ D, one says that A is Low(C,D) if

C ✓ DA. That is, A shrinks D by so little that is still contains C.
Let

W2R ✓ MLR ✓ CR

denote the classes of weakly 2 randoms, ML-randoms, and

computably randoms, respectively.

Theorem (C5-C7: N 03; N. 09; DN Weber and Yu, 06)

Let C ✓ D be randomness notions among W2R,MLR,CR.
Each of the classes Low(C,D) coincides with K-triviality, except

that Low(CR,CR) = computable.
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C8,C9: relativizing the di↵erence left-c.e. reals
Recall that a real ↵ is left-c.e. if ↵ = sups qs for a computable

sequence hqsis2N of rationals.

We say that a real ↵ is di↵erence left-c.e. if ↵ = � � � for left-c.e.

reals ↵, �. (These reals form a real closed field.)

Theorem (C8: DHMN 05, also see N. Book 5.5.14)

A is K-trivial () ⌦A is left-c.e. ()
each prefix free machine relative to A

has a di↵erence left-c.e. halting probability.

Corollary (C9: J. Miller)

A is K-trivial () each real that is di↵erence left-c.e. relative

to A, is di↵erence left-c.e.
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C10: via Martin-Löf noncuppability

A 2 �0
2 is ML-noncuppable if A� Z �T ;0 implies Z �T ;0 for

each ML-random Z. Otherwise, A is ML-cuppable.

Fact: If A 2 �0
2 is not K-trivial then A is not a base for

ML-randomness, so Z := ⌦A 6�T A, so A is ML-cuppable.

Theorem (C10: Day and Miller, 2012)

A is K-trivial () A is ML-noncuppable

We say that a real z is a positive density point if ⇢(E | z) > 0 for

every e↵ectively closed E 3 z. Day and Miller used the following

characterisation of the incomplete ML-random reals via density.

Theorem (BHMN, 11)

For a Martin-Löf random real z,

z 6�T ;0 () z is a positive density point.
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C11: via Martin-Löf covering
Proposition (HNS 06)

If c.e. set A is below a Turing incomplete ML-random Z,

then Z is ML-random in A, so A is K-trivial.

Theorem (C11: BGKNT 16 & Day, Miller 15)

Let A be a c.e. set. Then A is K-trivial ()
A is computable from some Turing incomplete ML-random.

I BGKNT 16 introduced Oberwolfach (OW) randomness, a slight

strengthening of ML-randomness. They showed that each

ML-random, non OW-random Z computes each K-trivial.

I Day and Miller provided such a set Z which is �0
2.

I So, there is a single incomplete �0
2 ML-random above all the

K-trivials!
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Definition

A cost function is a computable function c : N2 ! R�0 satisfying:

c(x, s) � c(x+ 1, s) and c(x, s)  c(x, s+ 1);

c(x) = lims c(x, s) < 1 ;

limx c(x) = 0 (the limit condition).

Definition

Let hAsi be a computable approximation of a �0
2 set A.

Let c be a cost function. The total cost c(hAsi) is
X

s

c(x, s)[[x is least s.t. As(x) 6= As�1(x)]].

A �0
2 set A obeys a cost function c if there is some computable

approximation hAsi of A for which the total cost c(hAsi) is finite.

Write A |= c for this. FACT: There is a c.e., noncomputable A |= c.
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C12: Dynamic characterisation
Summarize: a �0

2 set obeys c if it can be computably

approximated obeying the “speed limit” given by c.

Let c⌦(x, s) = ⌦s � ⌦x (where h⌦sis2N is an increasing computable

approximation of ⌦).

Theorem (C12: N., Calculus of cost functions, 2017)

Let A 2 �0
2. Then A is K-trivial () A obeys c⌦.

I Older result (N 09): A is K-trivial () A obeys the

“standard cost function” cK where cK(x, s) =
P

i<x 2
�Ks(i).

I These results directly apply the definition of K-triviality,

rather than some previously known equivalent notion.
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C13: Solovay functions
Recall that A ✓ N is K-trivial if K(A� n) +

K(n) for each n.

Can one replace the K on the right side by a computable function?

We say that a computable function f is a Solovay function if

8nK(n) +
f(n) and 91

nK(n) =+
f(n).

Solovay showed their existence. E.g. let f(hx, �, t) = |�| if
U(�) = x in exactly t steps, and else some coarse upper bound of

K(x) such as 2 log |x|. In fact there is a nondecreasing Solovay

function.

Theorem (C13: Bienvenu and Downey, 2009)

(a) A is K-trivial ()
K(A� n) +

f(n) for each Solovay function f .

(b) There is a single Solovay function f that does it.
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C14, C15: Variations on low for ⌦

Theorem (C14: Greenberg, Miller, Monin, and Turetsky, 2018,

together with Stephan and Yu)

A is K-trivial ()
for all Y such that ⌦ is Y -random, ⌦ is Y � A-random.

The implication ) was proved by Stephan and Yu, unpublished.

GMMT obtained the converse.

Theorem (C15: GMMT, 2018)

A is K-trivial ()
for all Y such that ⌦ is Y -random, Y is LR-equivalent to Y � A.

The implication ( is clear via Y = ;. The hard part is to show

K-trivials have this property.
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C16, C17: changing the bits at the positions in A

preserves randomness

Theorem (C16, C17: Kuyper and Miller, 2017)

A is K-trivial () Y4A is ML-random for each ML-random Y

() Y4A is weakly 2-random for each

weakly 2-random Y .

In both cases, it was know that K-triviality implies the condition,

because K-triviality implies lowness for the randomness notion.

The surprising fact was that this seemingly weak aspect of lowness

is su�cient for K-triviality.
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Internal structure of the K-trivials
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ML-reducibility
I It appears that Turing reducibility is too fine to understand

the structure of the K-trivials.
I A coarser “reducibility” is suggested by Kucera’s early results,

and the solution to the covering problem from 2014.

Recall that MLR denotes the class of Martin-Löf random sets.

Definition

For K-trivial sets A,B, we write B �ML A if

8Z 2 MLR [Z �T B ) Z �T A].

I.e., any ML-random computing B also computes A.

Each K-trivial A is ML-equivalent to a c.e. K-trivial D �T A

(GMNT 22). So one only needs to consider the c.e. K-trivials.
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Structure of the K-trivials w.r.t. ML

I The least degree consists of the computable sets. This follows

from the low basis theorem with upper cone avoiding.

I There is a ML-complete K-trivial set, called a “smart”

K-trivial (BGKNT ’16).

I There is a dense hierarchy of principal ideals Bq, q 2 (0, 1)Q.

E.g., B0.5 consists of the sets that are computed by both

“halves” of a ML-random Z, namely Zeven and Zodd (GMN 19).

I Some further interesting subclasses of the K-trivials are

downward closed under ML: e.g., the strongly jump traceables,

which conincide with the sets below all the !-c.a. ML-randoms

(by HGN ’12, along with GMNT 22).
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Degree theory for ML on the K-trivials

Recall: B �ML A if 8Z 2 MLR [Z �T B ) Z �T A].

Results from GMNT 22, arxiv 1707.00258

(a) For each noncomputable c.e. K-trivial D there are c.e.

A,B T D such that A |ML B.

(b) There are no minimal pairs.

(c) For each c.e. A there is a c.e. B >T A such that B ⌘ML A.

(a) is based on a method of Kučera. (b) and (c) use cost functions.
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Cost functions characterising ML-ideals

Definition (Recall)

Let hAsi be a computable approximation of a �0
2 set A.

Let c be a cost function. The total cost c(hAsi) isP
s c(x, s)[[x is least s.t. As(x) 6= As�1(x)]].

A �0
2 set A obeys a cost function c if there is some computable

approximation hAsi of A for which the total cost c(hAsi) is finite.

Let c⌦,1/2(x, s) = (⌦s � ⌦x)1/2.

Theorem (GMN 19)

The following are equivalent:

1. A is computed by both halves of a ML-random.

2. A obeys c⌦,1/2.
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Cost functions and computing from randoms

Definition

Let c be a cost function. Recall c(n) = lims c(n, s).

A c-test is a sequence (Un) of uniformly ⌃0
1 subsets of {0, 1}N

satisfying �(Un) = O(c(n)).

Important yet easy fact

Suppose that Z is ML-random but is captured by a c-test.

Suppose that A obeys c. Then A T Z.
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Definition (ML-completeness for a cost function, GMNT 22)

Let c � c⌦ be a cost function. We say that a K-trivial A is

smart for c if A |= c, and B ML A for each B |= c.

Theorem (GMNT 22, extending BGKNT 16 result for c⌦)

For each cost fcn c � c⌦ there is a c.e. set A that is smart for c.

We may assume that c(k) � 2�k. Build A. There is a particular Turing

functional � such that it su�ces to show A = �Y ) Y fails some c-test.

I During the construction, let

Gk,s = {Y : �Y
t � 2k+1 � At for some k  t  s}.

I Error set Es contains those Y such that �Y
s is to the left of As.

I Ensure �Gk,s  c(k, s) + �(Es � Ek). If this threatens to fail put

the next x 2 [2k, 2k+1) into A. Then hGki is the required c-test.
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ML-completeness for a cost function

Definition (recall)

Let c � c⌦ be a cost function. We say that a K-trivial A is smart

for c if A is ML-complete among the sets that obey c.

Theorem (GMNT 22)

For each K-trivial A there is a cost function cA � c⌦ such that A

is smart for cA.

This shows that there are no ML-minimal pairs:

if K-trivials A,B are noncomputable, there is a noncomputable c.e.

D such that D |= cA + cB. Then D ML A,B.
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Smartness for c⌦ and half-bases

Recall:

Theorem (BGKNT 16)

Not every K-trivial is a half-base.

Proof (di↵erent from the original one).

I ⌦even and ⌦odd are low;

I If Y 2 MLR is captured by a c⌦-test, then it is superhigh.

I So a smart K-trivial is not a half-base.
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Descriptive complexity for measures

µ will denote a probability measure on Cantor space.

I Let C(µ� n) = P
|x|=n C(x)µ[x] be the µ-average of all the

C(x) over all strings x of length n.

I In a similar way we define K(µ� n).

E.g. C(�� n � n� 1, and K(�� n �+
n+K(n).

Theorem (NS 21)

Each K-trivial [C-trivial] measure is concentrated on its atoms.
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Questions

I Is being a smart K-trival an arithmetical property?

Can a smart K-trivial be cappable?

Can it obey a cost function stronger than c⌦?

I Is ML an arithmetical relation?

Are the ML-degrees of the K-trivials dense?

I Is there an incomplete !-c.a. ML-random above all the

K-trivials?

I Is every C-trivial measure K-trivial?
(The answer is yes in case K(C(n) | n,K(n)) is bounded.

I.e., there are finitely many options to compute C(n) from n and

K(n), with one successful.)
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