20 years of K-triviality

André Nies

Newton Institute, Cambridge, UK June 7, 2022

1 / 32

2002-2012

- In June 2012, I gave a talk at Chicheley Hall entitled "10 Years of Triviality", in connection with the Turing year.
- By "triviality" I meant K-triviality, a property of sets of natural numbers introduced in 1975 by Chaitin and Solovay.
- ▶ Intuitively, this property says that the set is

"far from random",

in the sense that the prefix free descriptive complexity of the initial segments grows as slowly as possible.

2012-2022

This talk provides background, and then traces the developments on K-trivial sets from 2012 to the present.

Describe Five further characterisations of *K*-triviality.

- Cover In particular, the covering problem was solved in the affirmative: for c.e. sets, K-trivial is the same as being below an incomplete ML-random.
- Ideals A dense hierarchy of Turing ideals in the K-trivials was found and its relationship to cost functions studied.
- \leq_{ML} ML-reducibility promises a better understanding of the internal structure of the K-trivials. There is an ML-complete K-trivial.

Measures K-trivial and C-trivial measures.

Descriptive string complexity K

A partial computable function from binary strings to binary strings, called machine, is **prefix-free** if its domain is an antichain under the prefix relation of strings.

There is a universal prefix-free machine \mathbb{U} : for every prefix-free machine M,

 $M(\sigma) = y$ implies $\mathbb{U}(\tau) = y$ for some τ with $|\tau| \le |\sigma| + d_M$,

and the constant d_M only depends on M.

The prefix-free Kolmogorov complexity of a string y is the length of a shortest \mathbb{U} -description of y:

$$K(y) = \min\{|\sigma| \colon \mathbb{U}(\sigma) = y\}$$

2 / 32

Martin-Löf randomness (1966)

Sets are viewed as points in Cantor space $\{0, 1\}^{\mathbb{N}}$. Let λ denote the uniform (product) measure on $\{0, 1\}^{\mathbb{N}}$.

- ► A ML-test is a uniformly Σ_1^0 sequence $(G_m)_{m \in \mathbb{N}}$ of open sets in $\{0,1\}^{\mathbb{N}}$ such that $\lambda G_m \leq 2^{-m}$ for each m.
- ▶ A set Z is ML-random if Z passes each ML-test, in the sense that Z is not in all of the G_m .

There is a universal ML-test (S_r) : a set Z is ML-random iff it passes (S_r) . MLR denotes the class of ML-random sets.

Weak 2-randomness is defined by passing tests of a more general kind: replace the condition $\lambda G_m \leq 2^{-m}$ by $\lim_m \lambda G_m = 0$.

5 / 32

Some properties of the K-trivials

K-trivials (1975)

The Schnorr-Levin theorem states that

 $Z \in 2^{\mathbb{N}}$ is ML-random if and only if $K(Z \upharpoonright n) \geq^+ n$.

In the other extreme:

Definition (Chaitin, 1975)

 $A \in 2^{\mathbb{N}}$ is K-trivial if $K(A \upharpoonright n) \leq^+ K(n)$ for each n.

- computable \Rightarrow K-trivial $\Rightarrow \Delta_2^0$ (Chaitin)
- Solovay, '75: there is a noncomputable K-trivial set.

Downey, Hirschfeldt, N., Stephan, 2003 If A and B are K-trivial, then $A \oplus B$ is K-trivial.

6 / 32

Some researchers who have worked on K-triviality from 2002 on

- B Laurent Bienvenu
- D Rod Downey
- G Noam Greenberg
- H Denis Hirschfeldt
- K Antonin Kučera
- ${\rm M}\,$ Joseph Miller
- ${\bf N}\,$ André Nies
- ${f S}$ Frank Stephan
- T Dan Turetsky

17 characterisations of the K-trivials

The characterisations are according to four paradigms:

- ▶ highly compressible initial segments (definition and one more)
- \blacktriangleright weak as an oracle (13)
- \blacktriangleright computed by many (2)
- ▶ has computable approximation with few changes (1).

9 / 32

C3: basis for ML-rd., C4: $\Delta_2^0 \cap$ low for Ω

Theorem (C3: HNS 06)

 $A \in 2^{\mathbb{N}}$ is K-trivial $\iff A \leq_T Z$ for some $Z \in \mathsf{MLR}^A$.

- " \Rightarrow " K-triviality coincides with lowness for ML-randomness. By the Kučera-Gacs Theorem each set that is low for ML-randomness is a basis for randomness.
- " \Leftarrow " for this we introduced the "hungry sets construction".
- $\Omega = \sum \{2^{-|\sigma|}: \mathbb{U}(\tau) \text{ halts} \}$ is Chaitin's halting probability, which is ML-random and Turing complete.
- ► Call $A \subseteq \mathbb{N}$ low for Ω if Chaitin's Ω is ML-random in A.

Corollary (C4: HNS 06)

A is K-trivial $\iff A$ is Δ_2^0 and low for Ω .

C1: Low for K, C2: low for ML-randomness

Theorem (N.-Hirschfeldt; N 03)

The following are equivalent for A ∈ 2^N:
1. A is K-trivial.
2. K^A =⁺ K (A is low for K).
3. MLR^A = MLR (A is low for ML-randomness).

 $1 \Rightarrow 2$ uses the golden run method (N 03). The same method shows many of the properties of the K-trivials shown earlier.

10 / 32

C5-C7: Characterisations as classes $Low(\mathcal{C}, \mathcal{D})$

For randomness notions $\mathcal{C} \subseteq \mathcal{D}$, one says that A is $\text{Low}(\mathcal{C}, \mathcal{D})$ if $\mathcal{C} \subseteq \mathcal{D}^A$. That is, A shrinks \mathcal{D} by so little that is still contains \mathcal{C} . Let

$\mathsf{W2R}\subseteq\mathsf{MLR}\subseteq\mathsf{CR}$

denote the classes of weakly 2 randoms, ML-randoms, and computably randoms, respectively.

Theorem (C5-C7: N 03; N. 09; DN Weber and Yu, 06) Let $C \subseteq D$ be randomness notions among W2R, MLR, CR. Each of the classes Low(C, D) coincides with *K*-triviality, except that Low(CR, CR) =computable.

C8,C9: relativizing the difference left-c.e. reals

Recall that a real α is left-c.e. if $\alpha = \sup_s q_s$ for a computable sequence $\langle q_s \rangle_{s \in \mathbb{N}}$ of rationals.

We say that a real α is difference left-c.e. if $\alpha = \beta - \gamma$ for left-c.e. reals α, β . (These reals form a real closed field.)

Theorem (C8: DHMN 05, also see N. Book 5.5.14)

A is K-trivial $\iff \Omega^A$ is left-c.e. \iff

each prefix free machine relative to A has a difference left-c.e. halting probability.

Corollary (C9: J. Miller)

A is K-trivial \iff each real that is difference left-c.e. relative to A, is difference left-c.e.

13 / 32

C11: via Martin-Löf covering

Proposition (HNS 06)

If c.e. set A is below a Turing incomplete ML-random Z, then Z is ML-random in A, so A is K-trivial.

Theorem (C11: BGKNT 16 & Day, Miller 15)

Let A be a c.e. set. Then A is K-trivial \iff

A is computable from some Turing incomplete ML-random.

- BGKNT 16 introduced Oberwolfach (OW) randomness, a slight strengthening of ML-randomness. They showed that each ML-random, non OW-random Z computes each K-trivial.
- Day and Miller provided such a set Z which is Δ_2^0 .
- So, there is a single incomplete Δ_2^0 ML-random above all the *K*-trivials!

C10: via Martin-Löf noncuppability

 $A \in \Delta_2^0$ is ML-noncuppable if $A \oplus Z \ge_T \emptyset'$ implies $Z \ge_T \emptyset'$ for each ML-random Z. Otherwise, A is ML-cuppable.

Fact: If $A \in \Delta_2^0$ is not *K*-trivial then *A* is not a base for ML-randomness, so $Z := \Omega^A \geq_T A$, so *A* is ML-cuppable.

Theorem (C10: Day and Miller, 2012)

 $A ext{ is } K ext{-trivial} \iff A ext{ is ML-noncuppable}$

We say that a real z is a positive density point if $\underline{\rho}(E \mid z) > 0$ for every effectively closed $E \ni z$. Day and Miller used the following characterisation of the incomplete ML-random reals via density.

Theorem (BHMN, 11)

For a Martin-Löf random real z,

 $z \not\geq_T \emptyset' \iff z$ is a positive density point.

14 / 32

Definition

A cost function is a computable function $\mathbf{c} \colon \mathbb{N}^2 \to \mathbb{R}^{\geq 0}$ satisfying: $\mathbf{c}(x,s) \geq \mathbf{c}(x+1,s)$ and $\mathbf{c}(x,s) \leq \mathbf{c}(x,s+1)$; $\underline{\mathbf{c}}(x) = \lim_s \mathbf{c}(x,s) < \infty$; $\lim_x \mathbf{c}(x) = 0$ (the limit condition).

Definition

Let $\langle A_s \rangle$ be a computable approximation of a Δ_2^0 set A. Let **c** be a cost function. The total cost $\mathbf{c}(\langle A_s \rangle)$ is

$$\sum_{s} \mathbf{c}(x,s) \llbracket x \text{ is least s.t. } A_{s}(x) \neq A_{s-1}(x) \rrbracket.$$

A Δ_2^0 set A obeys a cost function **c** if there is some computable approximation $\langle A_s \rangle$ of A for which the total cost $\mathbf{c}(\langle A_s \rangle)$ is finite.

Write $A \models \mathbf{c}$ for this. FACT: There is a c.e., noncomputable $A \models \mathbf{c}$.

C12: Dynamic characterisation

Summarize: a Δ_2^0 set obeys **c** if it can be computably approximated obeying the "speed limit" given by **c**.

Let $\mathbf{c}_{\Omega}(x,s) = \Omega_s - \Omega_x$ (where $\langle \Omega_s \rangle_{s \in \mathbb{N}}$ is an increasing computable approximation of Ω).

Theorem (C12: N., Calculus of cost functions, 2017) Let $A \in \Delta_2^0$. Then A is K-trivial $\iff A$ obeys \mathbf{c}_{Ω} .

- ▶ Older result (N 09): A is K-trivial \iff A obeys the "standard cost function" $\mathbf{c}_{\mathcal{K}}$ where $\mathbf{c}_{\mathcal{K}}(x,s) = \sum_{i \leq x} 2^{-K_s(i)}$.
- These results directly apply the definition of K-triviality, rather than some previously known equivalent notion.

17 / 32

C14, C15: Variations on low for Ω

Theorem (C14: Greenberg, Miller, Monin, and Turetsky, 2018, together with Stephan and Yu)

A is K-trivial \iff

for all Y such that Ω is Y-random, Ω is $Y \oplus A$ -random.

The implication \Rightarrow was proved by Stephan and Yu, unpublished. GMMT obtained the converse.

Theorem (C15: GMMT, 2018)

A is K-trivial \iff

for all Y such that Ω is Y-random, Y is LR-equivalent to $Y \oplus A$.

The implication \Leftarrow is clear via $Y = \emptyset$. The hard part is to show K-trivials have this property.

C13: Solovay functions

Recall that $A \subseteq \mathbb{N}$ is K-trivial if $K(A \upharpoonright n) \leq^+ K(n)$ for each n. Can one replace the K on the right side by a computable function?

We say that a computable function f is a Solovay function if $\forall n K(n) \leq^+ f(n)$ and $\exists^{\infty} n K(n) =^+ f(n)$.

Solovay showed their existence. E.g. let $f(\langle x, \sigma, t \rangle = |\sigma|)$ if $\mathbb{U}(\sigma) = x$ in exactly t steps, and else some coarse upper bound of K(x) such as $2 \log |x|$. In fact there is a nondecreasing Solovay function.

Theorem (C13: Bienvenu and Downey, 2009)

(a) A is K-trivial \iff

 $K(A \upharpoonright n) \leq^+ f(n)$ for each Solovay function f. (b) There is a single Solovay function f that does it.

18 / 32

C16, C17: changing the bits at the positions in A preserves randomness

Theorem (C16, C17: Kuyper and Miller, 2017) $A ext{ is } K ext{-trivial} \iff Y riangle A ext{ is ML-random for each ML-random } Y \label{eq: formula} \iff Y riangle A ext{ is weakly 2-random for each} \ ext{ weakly 2-random } Y.$

In both cases, it was know that K-triviality implies the condition, because K-triviality implies lowness for the randomness notion. The surprising fact was that this seemingly weak aspect of lowness is sufficient for K-triviality.

Internal structure of the K-trivials

21 / 32

Structure of the K-trivials w.r.t. \leq_{ML}

- ▶ The least degree consists of the computable sets. This follows from the low basis theorem with upper cone avoiding.
- ► There is a ML-complete K-trivial set, called a "smart" K-trivial (BGKNT '16).
- ▶ There is a dense hierarchy of principal ideals \mathcal{B}_q , $q \in (0, 1)_{\mathbb{Q}}$. E.g., $\mathcal{B}_{0.5}$ consists of the sets that are computed by both "halves" of a ML-random Z, namely Z_{even} and Z_{odd} (GMN 19).
- ► Some further interesting subclasses of the *K*-trivials are downward closed under \leq_{ML} : e.g., the strongly jump traceables, which conincide with the sets below all the ω -c.a. ML-randoms (by HGN '12, along with GMNT 22).

ML-reducibility

- ▶ It appears that Turing reducibility is too fine to understand the structure of the *K*-trivials.
- ▶ A coarser "reducibility" is suggested by Kucera's early results, and the solution to the covering problem from 2014.

Recall that MLR denotes the class of Martin-Löf random sets.

Definition

For K-trivial sets A, B, we write $B \ge_{ML} A$ if

 $\forall Z \in \mathsf{MLR} \ [Z \ge_T B \Rightarrow Z \ge_T A].$

I.e., any ML-random computing B also computes A.

Each K-trivial A is ML-equivalent to a c.e. K-trivial $D \ge_T A$ (GMNT 22). So one only needs to consider the c.e. K-trivials.

Degree theory for \leq_{ML} on the K-trivials

Recall: $B \ge_{ML} A$ if $\forall Z \in \mathsf{MLR} [Z \ge_T B \Rightarrow Z \ge_T A]$.

Results from GMNT 22, arxiv 1707.00258

- (a) For each noncomputable c.e. K-trivial D there are c.e. $A, B \leq_T D$ such that $A \mid_{ML} B$.
- (b) There are no minimal pairs.
- (c) For each c.e. A there is a c.e. $B >_T A$ such that $B \equiv_{ML} A$.
- (a) is based on a method of Kučera. (b) and (c) use cost functions.

Cost functions characterising ML-ideals

Definition (Recall)

Let $\langle A_s \rangle$ be a computable approximation of a Δ_2^0 set A. Let **c** be a cost function. The total cost $\mathbf{c}(\langle A_s \rangle)$ is $\sum_s \mathbf{c}(x,s) \llbracket x \text{ is least s.t. } A_s(x) \neq A_{s-1}(x) \rrbracket$. A Δ_2^0 set A obeys a cost function **c** if there is some computable approximation $\langle A_s \rangle$ of A for which the total cost $\mathbf{c}(\langle A_s \rangle)$ is finite.

Let $\mathbf{c}_{\Omega,1/2}(x,s) = (\Omega_s - \Omega_x)^{1/2}$.

Theorem (GMN 19)

The following are equivalent:

1. A is computed by both halves of a ML-random.

2. A obeys $\mathbf{c}_{\Omega,1/2}$.

25 / 32

Definition (ML-completeness for a cost function, GMNT 22) Let $\mathbf{c} \geq \mathbf{c}_{\Omega}$ be a cost function. We say that a K-trivial A is smart for \mathbf{c} if $A \models \mathbf{c}$, and $B \leq_{ML} A$ for each $B \models \mathbf{c}$.

Theorem (GMNT 22, extending BGKNT 16 result for \mathbf{c}_{Ω}) For each cost fcn $\mathbf{c} \geq \mathbf{c}_{\Omega}$ there is a c.e. set A that is smart for **c**.

We may assume that $\mathbf{c}(k) \geq 2^{-k}$. Build A. There is a particular Turing functional Γ such that it suffices to show $A = \Gamma^Y \Rightarrow Y$ fails some **c**-test.

- During the construction, let $\mathcal{G}_{k,s} = \{Y \colon \Gamma_t^Y \upharpoonright 2^{k+1} \prec A_t \text{ for some } k \leq t \leq s\}.$
- Error set \mathcal{E}_s contains those Y such that Γ_s^Y is to the left of A_s .
- Ensure $\lambda \mathcal{G}_{k,s} \leq \mathbf{c}(k,s) + \lambda(\mathcal{E}_s \mathcal{E}_k)$. If this threatens to fail put the next $x \in [2^k, 2^{k+1})$ into A. Then $\langle \mathcal{G}_k \rangle$ is the required **c**-test.

Cost functions and computing from randoms

Definition

Let **c** be a cost function. Recall $\underline{\mathbf{c}}(n) = \lim_{s} c(n, s)$. A **c-test** is a sequence (U_n) of uniformly Σ_1^0 subsets of $\{0, 1\}^{\mathbb{N}}$ satisfying $\lambda(U_n) = O(\underline{\mathbf{c}}(n))$.

Important yet easy fact

Suppose that Z is ML-random but is captured by a **c**-test. Suppose that A obeys **c**. Then $A \leq_T Z$.

26 / 32

ML-completeness for a cost function

Definition (recall)

Let $\mathbf{c} \geq \mathbf{c}_{\Omega}$ be a cost function. We say that a *K*-trivial *A* is smart for **c** if *A* is ML-complete among the sets that obey **c**.

Theorem (GMNT 22)

For each K-trivial A there is a cost function $\mathbf{c}_A \geq \mathbf{c}_{\Omega}$ such that A is smart for \mathbf{c}_A .

This shows that there are no ML-minimal pairs: if K-trivials A, B are noncomputable, there is a noncomputable c.e. D such that $D \models \mathbf{c}_A + \mathbf{c}_B$. Then $D \leq_{ML} A, B$.

Smartness for \mathbf{c}_{Ω} and half-bases

Recall:

Theorem (BGKNT 16)

Not every K-trivial is a half-base.

Proof (different from the original one).

- $\blacktriangleright \Omega_{even}$ and Ω_{odd} are low;
- ▶ If $Y \in \mathsf{MLR}$ is captured by a \mathbf{c}_{Ω} -test, then it is superhigh.
- ▶ So a smart K-trivial is not a half-base.

Descriptive complexity for measures

 μ will denote a probability measure on Cantor space.

- Let $C(\mu \upharpoonright n) = \sum_{|x|=n} C(x)\mu[x]$ be the μ -average of all the C(x) over all strings x of length n.
- ▶ In a similar way we define $K(\mu \upharpoonright n)$.

E.g. $C(\lambda \upharpoonright n \ge n-1)$, and $K(\lambda \upharpoonright n \ge^+ n + K(n))$.

Theorem (NS 21)

Each K-trivial [C-trivial] measure is concentrated on its atoms.

29 / 32

Questions

- Is being a smart K-trival an arithmetical property? Can a smart K-trivial be cappable? Can it obey a cost function stronger than c_Ω?
- ► Is ≤_{ML} an arithmetical relation? Are the ML-degrees of the K-trivials dense?
- ► Is there an incomplete ω -c.a. ML-random above all the *K*-trivials?
- Is every C-trivial measure K-trivial? (The answer is yes in case K(C(n) | n, K(n)) is bounded.
 I.e., there are finitely many options to compute C(n) from n and K(n), with one successful.)

30 / 32

Some references

- Bienvenu, Greenberg, Kučera, Nies, Turetsky: Coherent randomness tests and computing the K-trivial sets, JEMS 2016
- Greenberg, J. Miller, Nies: Computing from projections of random points, JML 2019
- Greenberg, J. Miller, Nies, Turetsky: Martin-Löf reducibility and cost functions. IJM to appear. arxiv 1707.00258
- Nies, A. and Stephan, F. Randomness and initial segment complexity for probability measures. TCS, 2021, arxiv 1902.07871