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Set theory

Cardinal characteristics (of the continuum) are natural

cardinals that measure the deviation from CH.

Many are based on binary relations. E.g. b is the unbounding

number: the least size of a class of functions on ω that is not

dominated by a single function.

Others are based on cardinals of subclasses of [ω]ω (the infinite

subsets of ω) viewed up to almost equality.

One of them is called the almost disjointness number,

denoted a.

This is the least size of a maximal almost disjoint family of

subsets of ω.

Almost disjoint means that any two distinct sets in the family

have finite intersection.
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ZFC relations, and inequalities

In this area of set theory, one tries to obtain ZFC relations between

cardinal characteristics. Recall:

b is the unbounding number: the least size of a class of

functions on ω that is not dominated by a single function.

a is the least size of a maximal almost disjoint family of

subsets of ω.

Fact

b ≤ a.

(See e.g. Logic Blog ‘19 for a proof of this well known fact.)

In the opposite direction, using (iterated) forcing one tries to

separate cardinal characteristics.
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Ultrafilter, tower, and independence number

Further cardinal characteristics based on properties of subsets of

[ω]ω under almost inclusion ⊆∗:
the ultrafilter number u is the least size of a set with upward

closure a free ultrafilter on ω,

the tower number t is the least size of a linearly ordered subset

of [ω]ω that can’t be extended by putting a new element below

all given elements,

the independence number i is the least size of a maximal

independent set in the Boolean algebra P(ω)/ =∗.
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Diagram of ZFC relations (Soukup, 2018)

r and s are the unreaping and splitting numbers, respectively. Their

analogs in computability have been studied e.g. Brendle et al, ‘14.

e is the escaping number due to Brendle and Shelah. Its analog in

computability theory has been studied by Valverde and Tveite (2017).
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Collections of computable subsets of ω

Our basic objects will be collections of infinite computable sets

in the context of almost inclusion.

Such a collection C is encoded by a set F such that

C = CF = {F [n] : n ∈ N}.

Definition

F [n] denotes the column {x : 〈x, n〉 ∈ F} of a set F ⊆ ω.

We will usually denote this by Fn.
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Analogous mass problems in computability

A mass problem is a set of functions f : N→ N.

We view properties of such encoded collections of computable

sets as mass problems. They consist of the characteristic

functions of the encoding sets F .

One can compare their complexities via Muchnik

reducibility ≤w and the stronger, uniform Medvedev

reducibility ≤s:

C ≤s D if ∃Φ∀X ∈ D[ΦX ∈ C].

ZFC relations of cardinal charactertistics correspond to

Muchnik/ Medvedev reductions of their analogs?

7 / 32



The mass problems A and T

of maxinally almost disjoint sets

and maximal towers

8 / 32



The mass problem A of MAD sets

We will often identify a set F ⊆ N and the collection

CF = {Fn : n ∈ N} of computable sets described by F .

We say that F ⊆ N is a almost disjoint, AD in brief, if

each Fn is infinite, computable, and Fn ∩ Fk =∗ ∅ for n 6= k.

Definition (Analog of almost disjointness number)

The mass problem A is the class of sets F such that CF is

maximal almost disjoint (MAD) for the computable sets.

Namely, CF is AD, and for each infinite computable set R,

there is n such that R ∩ Fn is infinite.
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No MAD set F is computable

Proposition

No MAD set F is computable.

Suppose F is almost disjoint and computable.

Let r−1 = 0, and rn be the least number r > rn−1 such that

r ∈ Fn −
⋃
i<n Fi.

Then the computable set R = {r0, r1, . . .} shows that F is not

maximally almost disjoint.
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The mass problem T of maximal towers

We say that G ⊆ N is a tower (or CG

is a tower) if Gn is computable for each

n, and

Gn+1 ⊆∗ Gn and Gn −Gn+1 is infinite.

Definition (Analog of tower number t)

The mass problem T is the class of sets G such that CG is a

tower that is maximal in the computable sets.

Namely, for each infinite computable set R there is n such that

R−Gn is infinite.
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A and T are Medvedev equivalent

A ≤s T : Define a Turing functional Diff by letting

Diff(G) = the set F such that Fn = Gn −Gn+1 for each n.

If G is a maximal tower then F = Diff(G) is MAD. For, if R is

infinite computable then R−Gn is infinite for some n, and hence

R ∩ Fi is infinite for some i < n.

T ≤s A: Define a Turing functional Cp by

Cp(F ) = the set G such that Gn = N−
⋃
i<n

Fn for each n.

If F is AD then G is a tower, and if F is MAD then G is a

maximal tower.
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Non-low oracles uniformly compute a set in T
Theorem

T (the mass problem of maximal towers) ≤s NonLow.

Proof. Let x, y, z denote binary strings; we identify x with the number

1x via the binary expansion. Define a Turing functional Φ for the

Medvedev reduction: ΦZ = G, where for each n

Gn = {x : n ≤ s := |x| ∧ Z ′s � n = x� n}.

For each n we have Gn+1 ⊆∗ Gn and Gn −Gn+1 is infinite.

Each Gn is computable since for large enough s the string Z ′s � n
has settled.

If R ⊆∗ Gn for each n, where R is an infinite set, then

Z ′(k) = limx∈R,|x|>k x(k), and hence Z ′ ≤T R′. So if Z ∈ NonLow then

such an R cannot be computable. Hence ΦZ ∈ T .
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C.e. MAD set by a finitary priority construction

Theorem

For each noncomputable c.e. set A, there is c.e. MAD set F ≤T A.

Let V2e = We and V2e+1 = N for each e. Build an auxiliary c.e. set

S ≤T A. Then let F ≤T A be defined by Fe = S2e ∪ S2e+1.

Pn : Ve −
⋃
i<n

Si infinite ⇒ |Se ∩ Ve| ≥ k (n = 〈e, k〉).

At stage s we say that Pn is satisfied if |Se,s ∩ Ve,s| ≥ k.

Construction.

Stage s > 0. For each n < s such that Pn is not satisfied, if there is

x ∈ Ve,s −
⋃
i<n Si,s such that x > max(Se,s−1), x ≥ 2n and

As � x 6= As−1 � x, then put 〈x, e〉 into S (i.e., put x into Se).
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Index guessable oracles
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Indices for columns of a MAD hard to compute
A characteristic index for a set M is an e such that χM = ϕe.

Proposition

Suppose F is maximally almost disjoint. Then ∅′ is not able to

compute, from input n, a characteristic index for Fn.

Proof.

Assume otherwise. Then there is a computable function f such

that ϕlims f(n,s) is the characteristic function of Fn.

Let F̂ be defined as follows. Given n, x , compute the least s > x

such that ϕf(n,s),s(x) ↓. If the value is not 0 put x into F̂n.

Clearly F̂ is computable. Since Fn =∗ F̂n for each n, the set F̂ is

MAD, contradicting the fact obtained above. 16 / 32



Index guessable oracles

Definition

We call an oracle L index guessable if whenever ΦL
e is computable

then ∅′ can compute from e an index for its characteristic function.

In other words, there is a functional Γ a such that

ΦL
e is computable ⇒ Γ(∅′; e) is an index for it, i.e., ΦL

e = ϕΓ(∅′;e).

it’s easy to give a direct proof that index guessability implies

lowness.

The proposition above (Slide 16) implies that no index

guessable set computes a MAD set.

Thus, by the permitting result above (Slide 14), a c.e., index

guessable set is computable.
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Definition (Recall)

We call an oracle L index guessable if whenever F = ΦL
e is

computable then ∅′ can compute from e an index for its

characteristic function.

Proposition

Suppose L is ∆0
2 and 1-generic. Then L is index guessable.

Proof: one notes that

Ce = {τ : (∃p) Φτ
e(p) 6= F (p)}

is not dense along L. Since L is ∆0
2, this can be used to have ∅′

compute an index for F .
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Oracles not computing a MAD

So we have:

1-generic ∆0
2 ⇒ index guessable ⇒ computes no MAD ⇒ low.

∆0
2 ∩ 1-generic is downward closed (Haught)

We only know at present that the last arrow cannot be

reversed.

To see this recall that any noncomputable c.e. set computes a

MAD.
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The mass problem U ,

an analog of the ultrafilter number
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Definition (Analog of the ultrafilter number u)

The mass problem U consists of the sets F such that each Fn is

computable,

Fn+1 ⊆∗ Fn and Fn − Fn+1 is infinite (i.e., F is a tower).

for each computable set R there is n such that

Fn ⊆∗ R or Fn ⊆∗ R.

We say that F (or, more precisely, CF ) is an ultrafilter base (UFB)

within the computable sets.

Fact

U ⊆ T , that is, each UFB is a maximal tower.

So we trivially have T ≤s U via the identity reduction.
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Example of an UFB

Take any r-maximal set C.

By definition of r-maximality, the computable sets R such

that R ∪ C is cofinite form an ultrafilter.

Using this one can obtain an ultrafilter base CF where

F ≤T ∅′′.
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Recall that each nonlow computes a maximal tower. So, by the

following, not each maximal tower computes an ultrafilter base.

Proposition (to be strengthened)

No ultrafilter base F is computably dominated.

Proof.

Let g(n) be the least number > n in
⋂
i<n Fi. Then g ≤T F .

Assume that there is a computable function p ≥ g. The conditions

n0 = 1 and nk+1 = p(nk) define a computable sequence.

So the set

E =
⋃
i

[n2i, n2i+1)

is computable.

Clearly Fn 6⊆∗ E and Fn 6⊆∗ E for each n. So F is not an ultrafilter

base.
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Highness and mass problems
Our aim is to show that the degrees of ultrafilter bases coincide

with the high degrees. How do we formulate a version of this for

strong reductions?

Let DomFcn denote the mass problem of functions h that

dominate every computable function, and also satisfy h(s) ≥ s

for all s.

Let Tot = {e : φe is total}. Note that F is high iff Tot ≤T F ′.
The approximations to Tot are the {0, 1}-valued binary

functions f such that lims f(e, s) = Tot(e).

Fact (Martin, morally)

DomFcn is Medvedev equivalent to

the mass problem of approximations to Tot.
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Classifying the complexity of ultrafilter bases

Theorem

The mass problem DomFcn of dominating functions

is Medvedev equivalent to

the mass problem U of ultrafilter bases.

In particular, the degrees of ultrafilter bases are exactly the high

degrees.
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Proof of DomFcn ≤s U
Lemma

There is a uniformly computable sequence P0, P1, . . . of nonempty

Π0
1-classes such that for every e,

if φe is total, then Pe contains a single element, and

if φe is not total, then Pe contains only bi-immune elements.

Given an ultrafilter base F we have

φe is total ⇐⇒ (∃i)(∃n)

[Fi \ [0, n] is a subset of some X ∈ Pe or its complement]

We use this to uniformly compute from F an approximation to Tot

in the sense of the Limit Lemma, and hence a dominating function.

See Thm. 3.6 in the CDMTCS preprint for detail.
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Proof of DomFcn ≥s U
Let 〈ψe〉e∈N be an effective listing of the {0, 1} valued partial

computable functions defined on an initial segment of N. Let

Ve,k = {x : ψe(x) = k}.

Let T = {0, 1, 2}<∞. For α ∈ T we enumerate in an increasing

fashion a (possibly finite) c.e. set Sα. Enumeration is uniform in α.

Let S∅,s = [0, s). If we have defined (at stage s) the set

Sα = {r0 < . . . < rk}, let S̃α contain the numbers of the form r2i.

Let Sα2 = S̃α.

Let Sαk = S̃α ∩ Ve,k for k = 0, 1, e = |α|.
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Proof of DomFcn ≥s U continued

Define a uniform list of Turing functionals Γe so that the sequence

〈Γhe (t)〉t∈N is nondecreasing, for each e and each oracle function h

such that h(s) ≥ s for each s. We will let Fe = {Γhe (t) : t ∈ N}.

Definition of Γe. Given an oracle function h, we will write as for

Γhe (s). Let a0 = 0. Suppose s > 0 and as−1 has been defined.

Let α ∈ T be the leftmost string of length e such that there is an

x ∈ Sα,h(s) with x > as−1. Choose x least for α and let as = x. If

there is no such α let as = as−1.

Verification. Suppose h is a dominating function. Then for each e

we have Fe =∗ Sα, where α is the leftmost string of length e such

that Sα is infinite.
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Co-c.e. ultrafilter bases

Recall so far we only produced a ∆0
3 ultrafilter base.

However, a modification of the construction above, along with a

technique from a 2001 paper on r-maximal sets by Lempp, N. and

Solomon, yields the following.

Theorem

There is a co-c.e. ultrafilter base.
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Maximally independent families in computability
Given a sequence 〈Fn〉n∈N, for each binary string σ we write

Fσ =
⋂

σ(i)=1

Fi ∩
⋂

σ(i)=0

F i.

We call (a set F encoding) such a sequence independent if each set Fσ is

infinite.

Definition

The mass problem I is the class of sets F such that 〈Fn〉n∈N is a

family that is maximally independent, namely, it is independent,

and for each computable set R, there is σ such that Fσ ⊆∗ R or

Fσ ⊆∗ R.

Theorem

I is Medvedev equivalent to DomFcn, and hence to U .
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Boolean algebras other than the computable sets

There is a ∆0
2-ultrafilter base for the Boolean algebra of the

K-trivial sets.

Modifying the argument above, such an ultrafilter base is

necessarily high.

To prove the theorem, we recall the fact by Kučera and Slaman (2009)

that there is a ∆0
2-function h that dominates all functions that are

partial computable in some K-trivial set. We use this to modify the

construction in proof above that DomFcn ≥s U .

Modifying a proof of Jockusch and Stephan (nonhigh cohesive set,

1993) yields:

An oracle C computes an ultrafilter base for the primitive recursive

sets iff C ′ is of PA degree relative to ∅′.
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