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Abstract: Countably infinite groups such as Z,Q, and SLn(Q) are

computable in the sense that they have an isomorphic copy with domain

the natural numbers and the group operations computable function.

(Such a definition works for any countable structure in a finite signature,

not only for groups.) For f.g. groups, computability in this sense is

equivalent to having a decidable word problem.

A topological group G is usually uncountable. One can attempt to

define computability of G via a computable structure of approximations

to the elements of G. We introduce two definitions of computability for

t.d.l.c. groups G and show their equivalence. One approach is to view G

as embedded into Sym(N) and use certain finite injections as

approximations. In another approach, one takes the ordered groupoid of

compact open cosets of G as the approximation structure. Common

t.d.l.c. groups such as Aut(Td) and SLn(Qp) turn out to be computable

in our sense.

In the abelian case, we address the question to which extent taking the

Pontryagin dual preserves the computability of a t.d.l.c. group.
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Background on computable structures

(first countable, then uncountable)
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Computable functions on N

A function f : Nk ! N is called computable if there is a Turing

machine that on inputs n1, . . . , nk outputs f(n1, . . . , nk).

Church-Turing thesis: computability in this sense is the same

as being computable by some algorithm.

4 / 27



Computable structures

A structure S is given by a nonempty domain D with relations and

functions defined on it.

If D = N and these functions and relations are computable, we say

that S is a computable structure.

More generally, we say that a structure S is computable if it has a

computable “copy” with domain N.

Example

Groups such as Z and Q, and even SLn(Q),

are computable in this sense.

A finitely generated group is computable ()
its word problem is decidable.
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How to define computability for uncountable

structures?

Broadly speaking, one uses a computable, countable “structure” of

approximations to elements.

(R,+,⇥) is computable as the completion of (Q,+,⇥) w.r.t.
the Euclidean metric.

The structure (Qp,+,⇥) is also computable, as the completion

of (Q,+,⇥) w.r.t. the p-adic metric.

A profinite group G is computable if G = lim �(Ai, i) for a

computable diagram (Ai, i)i2N of finite groups and

epimorphisms  i.

(La Roche 1981, Smith 1981)
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A computable presentation of Sym(N)
For strings �i, i = 0, 1 with natural number entries, of the same length

N  1, �0 � �1 denotes the string of length 2N which alternates

between �0 and �1. E.g. �0 = (1, 3),�1 = (4, 0), yields (1, 4, 3, 0).

The approximation structure for Sym(N) is the computable tree

TreeSym(N) = {� � ⌧ :
�, ⌧ are 1-1 ^ �(⌧(k)) = k ^ ⌧(�(i)) = i whenever defined}.

The paths of TreeSym(N) can be viewed as the permutations of

N, paired with their inverses:

[TreeSym(N)] = {f � f

�1 : f 2 Sym(N)}.
For any functions f0, f1, g0, g1 on N,

(f0 � f1)�1 = f1 � f0.

(f0 � f1) · (g0 � g1) = f0 � g0 � g1 � f1).
These operations of Sym(N) are given by computable functions

on TreeSym(N), such as �0 � �1 7! �1 � �0 for the inverse. 7 / 27

Totally disconnected locally compact groups
Van Dantzig’s theorem from the 1930s says that each tdlc

group has a compact open subgroup.

One can use this to show that each tdlc group is topologically

isomorphic to a closed subgroup of the symmetric group

Sym(N).

Examples of tdlc groups:

G = (Qp,+), the p-adic numbers for a prime p.

G = Aut(Td) for d � 3. An undirected tree is a connected

graph with no cycles. Aut(Td) is the group of automorphism

of the undirected tree Td where each vertex has degree d

(Tits, 1970). Each proper open subgroup of G is compact.

Each compact subgroup of G is contained in the stabilizer of a

vertex, or in the stabilizer of an edge.
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Plan

We introduce two definitions of computability for tdlc groups G

and show that they are equivalent. Recall that in the uncountable

setting, to define computability one needs a computable countable

approximation structure.

The first definition is by viewing G as a closed subgroup of

Sym(N) and use a tree of finite injections as the

approximation structure. This is natural if G is given as a

group of automorphisms, e.g. Aut(Td).

The second definition is via the ordered groupoid of compact

open cosets of G as an approximation structure. This is

natural e.g. for Qp, and SLn(Qp).
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Definition 1 of computable tdlc groups:

via closed subgroups of Sym(N)
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Computably locally compact subtrees of N⇤
N⇤ denotes the tree of strings with natural number entries.

Let T ✓ N⇤ be a computable subtree without dead ends.

Let [T ] be the set of paths. Note that

[T ] is compact () each level of T is finite.

For � 2 T let [�]T = {X 2 [T ] : � � X}, the paths extending �.

Definition (Computably locally compact trees)

We say that [T ] is computably locally compact (CLC) if [T ] is

locally compact, and

{� 2 T : [�]T is compact} is decidable.

there is a computable function h(�, i) such that if [�]T is

compact and ⇢ 2 T extends �, then ⇢(i) < h(�, i) for each

i < |⇢|. That is, [�]T is compact in an e↵ective way.
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Computable tdlc groups (Def. 1)
Recall that Sym(N) is viewed as the set of paths of

T = TreeSym(N) = {� � ⌧ :

�, ⌧ are 1-1 ^ �(⌧(k)) = k ^ ⌧(�(i)) = i whenever defined}.

For ⌘ 2 T , let [⌘]T be the set of paths on T extending ⌘.

Definition

A closed subgroup G of Sym(N) is computable if its corresponding

tree, namely TG = {⌘ 2 T : [⌘]T \G 6= ;} is computable.

Definition (Definition 1 of computably tdlc groups)

In case G is tdlc, we say that G computably tdlc if G is

computable, and the tree TG is computably locally compact.

Recall that G c Sym(N) is locally compact i↵ G has finite

suborbits. Definition 1 is a computable version of this.
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Note that the closed subgroups of Sym(N) are just the automorphism

groups G of structures M with domain N. To say that G is computable

means that one can decide whether a finite injection on M can be

extended to an automorphism. E.g., G = Aut(Q, <) is computable

because one can decide whether the injection preserves the ordering.

Example (of computably tdlc groups)

Let d � 3. The tdlc group G = Aut(Td) is computably tdlc.

We can decide whether a finite injection ↵ on Td can be

extended to an automorphism by checking whether it

preserves distances. Each ⌘ 2 TreeSym(N) corresponds to such

an injection. So we can decide whether [⌘]TG = [⌘]Tree \G 6= ;.
[⌘]TG is compact for every nonempty such string ⌘.

If ⌘ maps x to y, then it maps a ball Bn(x) in Td to Bn(y).

This yields a computable bound h(⌘, i) as required. So TG is

computably locally compact.
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Computable functions on computable tdlc groups

Definition

A function s : G! N is computable if there is an oracle Turing

machine that using a path X 2 [TG] on its “oracle tape” (and the

empty string as input) halts with output s(X).

Intuitively, the machine can use as much of its oracle X as it likes,

but it has to eventually come up with a value s(X), using only that

finite part of X.

We can e.g. study whether the scale function on a computable tdlc

group G is computable in this sense. This is the function sending

an element g to the scale of conjugation by g.

If a function s : G! N is computable then s is continuous.

Willis (1994) has shown that the scale function is continous.
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Definition of computable tdlc groups 2:

via approximation groupoids
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Approximation groupoids

Groupoid: small category where each morphism has an inverse.

Equivalently, usual group axioms but the group operation is partial.

Let G be tdlc. Define a groupoid W(G) that is also a lower

semilattice. Domain: the open compact cosets of G, and ;.

A,B,C denote such cosets. U, V,W denote compact open subgroups.

A : U ! V means that A is a right coset of U and a left coset of V .

If A : U ! V and B : V ! W then A · B : U ! W .

(W(G), ·) is a groupoid. E.g., if A : U ! V then A

�1 : V ! U .

(W(G),✓, ;) is a lower semilattice with least element ;, since
the intersection of two cosets is empty, or again a coset.

W(G) satisfies the axioms of “inductive groupoids”;

see e.g. Lawson’s 1998 book Inverse semigroups. 16 / 27



Provenance of approximation groupoids

The notion of approximation groupoids goes back to an idea of

Tent, that appeared in a paper with Kechris and Tent in J.

Symb. Logic 2018.

The idea was further elaborated in a paper with Tent and

Schlicht on the complexity of the isomorphism problem for

oligomorphic groups that has just appeared in J. Math. Logic

2021. There we introduced the term “coarse group”.

Such structures are not groupoids, rather they have a ternary

relation saying that AB ✓ C, where A,B,C are cosets.

We will see (e.g. Slide 22) that for the applications to

computable structure theory we have in mind, it is necessary

to have the groupoid and lower semilattice structure explicitly.
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Computable tdlc groups (Def. 2)

Recall that the approximation groupoid of a tdlc group G is the

countable structure (W(G), ·,✓,\, ;) on the compact open cosets

together with ;.
A groupoid is called computable if the relation

{hx, yi : x · y is defined} is computable, and the operations are

computable.

Definition (Definition 2 of computably tdlc groups)

Let G be a tdlc group. We say that G is computably tdlc if

its approximation groupoid W(G) has a computable copy s. t.

the function sending a pair of subgroups U, V 2W(G) to

|U : U \ V | is computable.
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Q
p

is computable in this sense
Show that G = (Qp,+) is computable tdlc in the sense of

Definition 2.

The open proper subgroups are of the form Ur = p

rZp for

some r 2 Z. Note Qp/Ur
⇠= Cp1 .

So each compact open coset has the form Cr,a, where

r 2 Z, a 2 Cp1 . Thus Ur = Cr,0.

Cr,a · Cs,b = Cr,a+b if r = s, and undefined else.

Cr,a ✓ Cs,b i↵ r � s and p

r�s
b = a.

Cr,a \ Cs,b = ; unless one is contained in the other.

For r  s, we have |Ur : Us| = p

s�r.

An approximation groupoid is a bit like a diagram describing a

profinite group, but goes not only to closer approximations of

elements (backwards), but also to less close ones (forward).
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Equivalence of the two definitions
Theorem

G is computably tdlc in the sense of closed subgroups of Sym(N)
() G is computably tdlc in the sense of approximation groupoids.

Proof, “)”: Suppose G c Sym(N). Recall that
TG = {⌘ 2 TreeSym(N) : [⌘]T \G 6= ;} is the tree for G.

Each compact open subset of G is of the form KD =
S

⌘2D[⌘]TG for

finite D. Can decide whether KD is compact. Encode such D by

natural numbers; use as inputs. Can decide whether KD ✓ KE .

There are computable functions M, I such that

KM(D,E) = KD · KE and KI(D) = (KD)�1 for compact sets.

Hence we can decide whether KD is a subgroup (namely

KM(D,D) = KD), and whether it is a coset (namely KM(D,I(D)) is a

subgroup).

In such a way we obtain a computable copy of W(G) such that the

index function U, V 7! |U : U \ V | on subgroups is computable.
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Theorem (recall)

G is computably tdlc in the sense of closed subgroups of Sym(N)
() G is computably tdlc in the sense of approximation groupoids.

Proof, “(”:

Recall W(G) is the computable approximation groupoid. Let eG
denote the group of permutations p that preserve the ✓-relation on

W(G), and p(A) ·B = p(A ·B) whenever A ·B is defined.

First we verify that � : G ⇠= eG where �(g) is the left translation

action of g, i.e. A 7! gA for A 2W(G).

Then we show that eG is computably tdlc as a closed subgroup of

Sym(N). E.g., we have to decide whether a finite injection

↵ = (�� ⌧) can be extended to some p 2 eG. Suppose � sends Ai to

Bi and ⌧ sends Ai to Ci, where i < n and the Ai, Bi, Ci are cosets.

Then ↵ can be extended i↵
T

i<nBiA
�1
i \AiC

�1
i 6= ; in W(G),

which is decidable. 21 / 27

Computable tdlc abelian groups
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Conditions for computability in the abelian case
By van Dantzig, if G is abelian tdlc, there is a compact open K  G and

L = G/K is discrete. So the sequence 0! K ! G! L! 0 is exact;

G is a topological extension of L by K.

Theorem (Lupini, Melnikov and N.)

Let G be abelian tdlc group. The following are equivalent.

(1) G is computable tdlc

(2) G ⇠= lim �(Ai,�i) for a computable diagram (Ai,�i) where

the Ai are abelian discrete groups,

�i : Ai ! Ai�1 (i > 0) are epimorphisms with finite kernels

from i can compute a bound for the elements in the kernel.

(3) There are a computable profinite group K and a computable

discrete group L such that G is an extension of L by K via a

computable co-cycle c : L⇥ L! K.
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Pontryagin-van Kampen duality

Let G be an abelian locally compact group. The dual b
G is the

group of characters of G, with the compact open topology.

Pontryagin-van Kampen theorem: the natural embedding G! bbG
mapping g 2 G to ��.�(g) 2 bbG is a topological isomorphism. E.g the

dual of Z is the unit circle, whose dual is Z again.

G

b
G

compact discrete

compact connected discrete torsion free

compact totally disconnected discrete torsion

0! K ! G! L! 0 0 b
K  b

G b
L 0

The duals of tdlc groups are thus the extensions of torsion discrete

groups by profinite groups.
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In what sense does duality hold computably?

Theorem (Lupini, Melnikov and N., 2021)

Suppose G is an abelian tdlc group.

If G is computable then b
G is computably metrized Polish.

That is, bG is the completion of a dense computable subgroup D with a

computable metric. E.g. G = Z, bG the unit circle, D the rational unit

circle.

If G is an extension of a torsion discrete group by a profinite group

(i.e., b
G is tdlc as well), then

G is computable () b
G is computable.
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