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Martin-Löf’s randomness notion (1966)
I A Martin-Löf test is a uniformly recursively enumerable

sequence 〈Um〉m∈N of open sets in the space {0, 1}N of infinite

bit sequences such that λUm ≤ 2−m for each m. Here λ is the

uniform (product) measure giving both 0 and 1 the same

probability.

I A bit sequence Z is Martin-Löf random if Z passes each

ML-test, in the sense that Z is only in finitely many of the Um.
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Example of a ML-test.

(We picture open sets as

unions of intervals via

binary representations.)
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Characterization of ML-randomness

via the initial segment complexity

Let K(x) be the length of a shortest prefix free description of a

binary string z. Given Z ∈ {0, 1}N and n ∈ N, let Z � n denote the

initial segment Z(0) . . . Z(n− 1).

Schnorr’s Theorem informally says that

Z is ML-random ⇐⇒ each initial segment of Z is incompressible.

Theorem (Schnorr 1973)

Z is ML-random ⇐⇒ there is b ∈ N such that ∀nK(Z � n) ≥ n− b.

Levin (1973) proved the analogous theorem for monotone string

complexity.
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Generalise to measures?

A probability measure µ on {0, 1}N can be seen as a statistical

superposition of infinite bit sequences.

How do we define algorithmic randomness for such superpositions?
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Plan

I We plan to study algorithmically defined randomness properties

of probability measures µ on Cantor space {0, 1}N.

I This should generalise the case of infinite bit sequences, which

correspond to Dirac measures.

I We define initial segment complexity for measures.

I We relate the growth of initial segment complexity to

randomness properties.
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Randomness for infinite sequences of qubits
I Nies and Scholz, J. Math. Physics, 2019, introduced

ML-randomness for infinite “sequences” of quantum bits;

I these sequences are states ρ on a C∗-algebra M∞ from physics

called the “CAR algebra”.

I They can be viewed as coherent sequences of density matrices

Dn ∈M2n . Here M2n is the algebra of 2n × 2n matrices over C.

Coherence means that the partial trace of Dn+1, wrt last

qubit, is Dn.

I Dn = ρ� n is the n-th initial segment.

I Probability measures can be seen as states where all the

matrices are diagonal.

I Our definition of randomness for measures is a special case of

theirs by recent work of Bhojraj.
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Martin-Löf absolutely continuous measures
Recall that a measure µ is continuous if it has no atoms, and

absolutely continuous if µ(N ) = 0 for each λ-null set N .

Definition (Main)

A measure µ on {0, 1}N is called Martin-Löf absolutely continuous

(ML-a.c., for short) if

infm µ(Gm) = 0 for each Martin-Löf-test 〈Gm〉.

Fact

I The uniform measure λ is ML-a.c..

I Let µ =
∑

k ckδZk
be a positive sum of Dirac measures.

Then µ is ML-a.c. ⇐⇒ all Zk are Martin-Löf-random.

I In particular δZ is ML-a.c. for each ML-random Z.
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Definition (Recall)

A measure µ on Cantor space is called Martin-Löf absolutely continuous

(ML-a.c., for short) if infm µ(Gm) = 0 for each Martin-Löf-test 〈Gm〉.

I It suffices to consider descending Martin-Löf-tests, because we

can replace 〈Gm〉 by the Martin-Löf-test Ĝm =
⋃
k>mGk.

I So we can change the passing condition to limmGm = 0.

Since there is a universal ML-test, µ being ML-a.c. simply means

that

µ(non-MLR) = 0.
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Solovay tests
The following test notions appears to be more general than

ML-tests, but it in fact isn’t.

I A Solovay test is a sequence 〈Sn〉 of uniformly Σ0
1 sets such

that
∑

k λSk <∞. (Before, we required λSk ≤ 2−k.)

I A measure µ passes such a test if limk µ(Sk) = 0.

Proposition

A measure µ is ML-a.c. ⇐⇒ µ passes each Solovay test.

Proof:

I by the known equivalence for bit sequences, the set

lim supk Sk = {Z : ∃∞k [Z ∈ Sk]} only consists of non-MLR

sequences.

I So µ(lim supk Sk) = 0.

I Using Fatou’s Lemma, lim supk µ(Sk) ≤ µ(lim supk Sk).
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Descriptive complexity of initial segments for

measures

x will denote a (finite) bit string.

I Let C(µ� n) =
∑
|x|=nC(x)µ[x] be the µ-average of all the

C(x) over all strings x of length n.

I In a similar way we define K(µ� n).

Fact

Let λ denote the uniform measure. We have C(λ� n) ≥ n− 1.

Pf.: C(λ� n) =
∑n+d

r=0

∑
x:|x|=n∧C(x)≥r 2−n ≥∑n

r=0[
∑
|x|=n 2−n−

∑
|x|=n,C(x)<r) 2−n] ≥ n+1−

∑
r≤n 2−n+r ≥ n−1.
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Both implications of Schnorr’s theorem fail
We say that µ has complex initial segments if K(µ� n) ≥+ n. The

analog of Levin-Schnorr fails for measures in both directions.

Proposition

There is a ML-a.c. measure µ such that for each θ ∈ (0, 1),

K(µ� n) ≤+ n− nθ. (≤+ means up to a constant.)

We falsify the converse implication of L-S by the following.

Theorem

There are a ML random bit sequence X and a non-ML random Y

such that, for all n, K(X � n) +K(Y � n) ≥+ 2n.

Corollary

The measure µ = 1
2
(δX + δY ) has complex initial segments but is

not ML-a.c.
11 / 20



Strong Chaitin randomness for measures

Recall that a measure µ on Cantor space is called Martin-Löf absolutely

continuous if infm µ(Gm) = 0 for each Martin-Löf-test 〈Gm〉.

Z ∈ {0, 1}N is called strongly Chaitin random if there is d ∈ N such

that K(Z � n) ≥ n+K(n)− d for infinitely many n.

This is equivalent to ML-randomness relative to the halting

problem by Miller (2010).

Theorem

Suppose that for some r, we have K(µ� n) ≥ n+K(n)− r for

infinitely many n. Then µ is ML-a.c.

Similar under the hypothesis C(µ� n) ≥ n− r for infinitely many n.
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The uniform measure on the space of measures
I The “uniform” probability measure P on the space M({0, 1}N)

of probability measures on Cantor space has been studied by

Mauldin and Monticino (1995).
I Idea: if µ[x] has been determined for a string x, choose

µ[x0] ≤ µ[x] uniformly at random.
I The algorithmic theory has been developed in Culver’s PhD

thesis (Notre Dame, 2015). µ is ML-random wrt P ⇒ µ is

continuous.

Proposition

µ is Martin-Löf-random wrt to P ⇒ µ is ML-a.c.

I λ(G) =
∫
µ(G)dP(µ) for each open G.

I Use this to show: if 〈Gm〉 is a Martin-Löf-test such that

infm µ(Gm) > 0, then µ is not Martin-Löf-random w.r.t. P. 13 / 20



K-triviality for measures

Definition

A measure µ is called K-trivial if ∃b∀nK(µ� n) ≤ K(n) + b.

For Dirac measures δA this means that A is K-trivial in the usual

sense.

Theorem

Suppose µ is K-trivial. Then µ is concentrated on its atoms.

Use that ∀c ∃d ∀n

∃≤d strings x of length n with K(x) ≤ K(n) + c.
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Ergodic measures

I T denotes the shift operator on {0, 1}N. A measure ρ is

shift-invariant if ρ(A) = ρ(T−1(A)) for each Borel A.

I A shift-invariant measure ρ is ergodic if every ρ-integrable

function f with f ◦ T = f is constant ρ-a.s.

I For ergodic ρ, the entropy H(ρ) is defined as limnHn(ρ),

where

Hn(ρ) = − 1

n

∑
|w|=n

ρ[w] log ρ[w].

I H(λ) = 1 and this is the maximum possible entropy,
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SMB Theorem (1950s)

For n ≥ 0, for Z ∈ {0, 1}N let hρn(Z) = − 1
n

log ρ[Z � n].

This is the weighted log-likelihood random variable.

Note that Hn(ρ) = Eρh
ρ
n where Eρ denotes the expectation w.r.t. ρ.

Theorem (Shannon-McMillan-Breiman theorem)

Let ρ be an ergodic measure.

For ρ-a.e. Z ∈ {0, 1}N we have limn h
ρ
n(Z) = H(ρ) := limnHn(ρ).

Algorithmic version:

If ρ is computable, then the conclusion holds for ρ-ML-random Z

by results of Hochman (2009, implicit) and Hoyrup (2012).
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Recall: for n ≥ 0, for Z ∈ {0, 1}N let hρn(Z) = − 1
n log ρ[Z � n].

We say that a measure µ is ML-a.c. relative ρ if µ(Gm)→ 0 for

each ρ-ML test 〈Gm〉.

Proposition (Effective SMB theorem for measures)

Let ρ be a computable ergodic measure. Suppose that there is D

such that hρn ≤ D for each n. If µ is ML-a.c. w.r.t. ρ then

limnEµh
ρ
n = H(ρ), where Eµh

ρ
n =

∑
|x|=n h

ρ
n(x)µ([x]).

Example (Boundedness condition is necessary)

Let pk = 2−k
4
/c where c is chosen so that

∑
k≥1 pk = 1. Let ρ be

the measure associated with the corresponding binary renewal

process: ρ(10k1 ≺ Z | Z0 = 1) = pk for each k ≥ 1.

Then there is a computable measure µ� ρ such that Eµh
ρ
n →∞.
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A measure version of Brudno’s Theorem

The weighted asymptotic initial segment complexity of a ML-a.c.

measure relative to ρ obeys some positive lower bound.

Proposition

Let ρ be a computable ergodic measure, and suppose µ is a

Martin-Löf a.c. measure with respect to ρ. Then

lim
n

1

n
K(µ� n) = lim

n

1

n
C(µ� n) = H(ρ).

Recall that we obtained a ML-a.c. measure µ such that

K(µ� n) ≤+ n− nθ for any θ ∈ (0, 1). Since H(λ) = 1, we now see

that we cannot subtract, say, n/4 instead of nθ.
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Summary and open questions
µ is a.c.

!!

∀nC(µ� n) ≥+ n

��

µ is MLR w.r.t.P

zz

∃∞nC(µ� n) ≥+ n

��
µ is ML-a.c.

��
limn

1
n
C(µ� n) = 1

Culver: µ MLR w.r.t. P ⇒ µ is orthogonal to λ, and hence not a.c. The

middle column of the diagram is strict, via examples that are Dirac

measures.

Future research: improve the diagonal arrows in the diagram.

Study the case of randomness relative to a general ergodic computable ρ.
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