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Martin-Lof’s randomness notion (1966)

» A Martin-Lof test is a uniformly recursively enumerable
sequence (U,,)men of open sets in the space {0, 1}V of infinite
bit sequences such that AU,, < 27 for each m. Here A is the
uniform (product) measure giving both 0 and 1 the same
probability.

» A bit sequence Z is Martin-Lof random if Z passes each
ML-test, in the sense that Z is only in finitely many of the U,,.

0 1

0 Example of a ML-test.

(We picture open sets as

unions of intervals via
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binary representations.)
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Characterization of ML-randomness
via the initial segment complexity

Let K(z) be the length of a shortest prefix free description of a
binary string z. Given Z € {0,1}" and n € N, let Z | n denote the
initial segment Z(0)...Z(n —1).

Schnorr’s Theorem informally says that
Z is ML-random <= each initial segment of Z is incompressible.

Theorem (Schnorr 1973)
Z is ML-random <= there is b € N such that V¥n K(Z | n) > n—b.

Levin (1973) proved the analogous theorem for monotone string
complexity.
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GGeneralise to measures?

A probability measure p on {0, 1} can be seen as a statistical
superposition of infinite bit sequences.

How do we define algorithmic randomness for such superpositions?
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Plan

» We plan to study algorithmically defined randomness properties
of probability measures p on Cantor space {0, 1}

» This should generalise the case of infinite bit sequences, which
correspond to Dirac measures.

» We define initial segment complexity for measures.

» We relate the growth of initial segment complexity to
randomness properties.

5 /20



Randomness for infinite sequences of qubits

» Nies and Scholz, J. Math. Physics, 2019, introduced
ML-randomness for infinite “sequences” of quantum bits;

» these sequences are states p on a C*-algebra M., from physics
called the “CAR algebra”.

» They can be viewed as coherent sequences of density matrices
D,, € Myn. Here My is the algebra of 2™ x 2™ matrices over C.
Coherence means that the partial trace of D,, 1, wrt last
qubit, is D,,.

» D, = p| nis the n-th initial segment.

» Probability measures can be seen as states where all the
matrices are diagonal.

» Our definition of randomness for measures is a special case of
theirs by recent work of Bhojraj.
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Martin-Lof absolutely continuous measures

Recall that a measure y is continuous if it has no atoms, and
absolutely continuous if u(N') = 0 for each A-null set N.
Definition (Main)

A measure g on {0, 1} is called Martin-Lof absolutely continuous
(ML-a.c., for short) if

inf,, u(Gp,) = 0 for each Martin-Lof-test (G,,).

Fact

» The uniform measure \ is ML-a.c..

» Let u= ), cxdz be a positive sum of Dirac measures.
Then p is ML-a.c. <= all Z; are Martin-Lof-random.

» In particular 05 is ML-a.c. for each ML-random Z.
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Definition (Recall)
A measure p on Cantor space is called Martin-Lof absolutely continuous
(ML-a.c., for short) if inf,, p1(G,,) = 0 for each Martin-Lof-test (Gp,).

» [t suffices to consider descending Martin-Lof-tests, because we
can replace (Gy,) by the Martin-Lof-test Gy, = Uy~ G-

» So we can change the passing condition to lim,, G,, = 0.

Since there is a universal ML-test, 1 being ML-a.c. simply means
that

p(non-MLR) = 0.

8 /20



Solovay tests
The following test notions appears to be more general than
ML-tests, but it in fact isn’t.
» A Solovay test is a sequence (S,) of uniformly %! sets such
that >, ASy < co. (Before, we required ASj, < 27".)

» A measure p passes such a test if limy pu(Sg) = 0.

Proposition
A measure p is ML-a.c. <= u passes each Solovay test.

Proof:

» by the known equivalence for bit sequences, the set
limsupy, Sy, = {Z: 3°k[Z € Sk]} only consists of non-MLR
sequences.

» So p(limsupy, Sk) = 0.
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Descriptive complexity of initial segments for

measures

x will denote a (finite) bit string.

> Let C(ul n) = =, C(x)u[z] be the p-average of all the
C(z) over all strings x of length n.

» In a similar way we define K (u| n).

Fact
Let A denote the uniform measure. We have C'(A [ n) > n — 1.

n+d -n
Pf: C(A[n)= Zrio Zx:\:p\:n/\C(x)ZT 27" =
Z?::O [Zm:n 2_n_2\x|:n,0(m)<7") 2‘”] > n—l_l_zT'Sn 9—n+tr >n—1.
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Both implications of Schnorr’s theorem fail

We say that p has complex initial segments if K(u| n) >* n. The
analog of Levin-Schnorr fails for measures in both directions.

Proposition

There is a ML-a.c. measure p such that for each 6 € (0, 1),
K(uln) <t n—n’ (<F means up to a constant.)

We falsify the converse implication of L-S by the following.

Theorem

There are a ML random bit sequence X and a non-ML random Y
such that, for all n, K(X [ n)+ K(Y [ n) >* 2n.

Corollary

The measure pu = %(5 x + dy) has complex initial segments but is
not ML-a.c.
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Strong Chaitin randomness for measures

Recall that a measure p on Cantor space is called Martin-Lof absolutely
continuous if inf,, u(Gp,) = 0 for each Martin-Lof-test (G,,).

Z € {0,1}" is called strongly Chaitin random if there is d € N such
that K(Z [ n) > n+ K(n) — d for infinitely many n.

This is equivalent to ML-randomness relative to the halting
problem by Miller (2010).

Theorem

Suppose that for some r, we have K(u| n) > n+ K(n) — r for
infinitely many n. Then p is ML-a.c.

Similar under the hypothesis C(x [ n) > n — r for infinitely many n.
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The uniform measure on the space of measures

» The “uniform” probability measure P on the space M ({0, 1})
of probability measures on Cantor space has been studied by
Mauldin and Monticino (1995).

» Idea: if p[z| has been determined for a string x, choose
p[z0] < px] uniformly at random.

» The algorithmic theory has been developed in Culver’s PhD
thesis (Notre Dame, 2015). p is ML-random wrt P = p is
continuous.

Proposition
w is Martin-Lof-random wrt to P = p is ML-a.c.

= [u(G ) for each open G.

» Use this to show: if (G),) is a Martin-Lof-test such that
inf,, 1(Gy,) > 0, then p is not Martin-Lof-random w.r.t. P. 5, 5



K-triviality for measures

Definition
A measure p is called K-trivial if 3bVn K(u|[ n) < K(n) + b.

For Dirac measures 04 this means that A is K-trivial in the usual
sense.

Theorem

Suppose p is K-trivial. Then g is concentrated on its atoms.

Use that Ve dd Vn

354 strings x of length n with K (z) < K(n) + c.
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Ergodic measures

» T denotes the shift operator on {0, 1}". A measure p is
shift-invariant if p(A) = p(T~*(A)) for each Borel A.

» A shift-invariant measure p is ergodic if every p-integrable
function f with foT = f is constant p-a.s.

» For ergodic p, the entropy H(p) is defined as lim,, H,,(p),
where

> plw)log plw].

lw|=n

S|

Hn(p) = -

» H(A) =1 and this is the maximum possible entropy,
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SMB Theorem (1950s)

For n > 0, for Z € {0,1}N let h2(Z) = —1log p[Z | n).

This is the weighted log-likelihood random variable.
Note that H,(p) = E,h? where E, denotes the expectation w.r.t. p.

Theorem (Shannon-McMillan-Breiman theorem)

Let p be an ergodic measure.
For p-a.e. Z € {0,1} we have lim,, h2(Z) = H(p) := lim,, H,(p).

Algorithmic version:
If p is computable, then the conclusion holds for p-ML-random Z
by results of Hochman (2009, implicit) and Hoyrup (2012).
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Recall: for n > 0, for Z € {0, 1} let i (Z) = —Llogp[Z ] n).

—n

We say that a measure p is ML-a.c. relative p if u(G,,) — 0 for
each p-ML test (G,,).

Proposition (Effective SMB theorem for measures)

Let p be a computable ergodic measure. Suppose that there is D
such that h? < D for each n. If p is ML-a.c. w.r.t. p then
lim, E,ht, = H(p), where B g = Y, bt («)pu([a]).

Example (Boundedness condition is necessary)

Let p = 27" /c where ¢ is chosen so that >, ., pr = 1. Let p be
the measure associated with the correspondiné binary renewal
process: p(10%1 < Z | Zy = 1) = py, for each k > 1.

Then there is a computable measure ;1 < p such that E,h? — oo.
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A measure version of Brudno’s Theorem

The weighted asymptotic initial segment complexity of a ML-a.c.
measure relative to p obeys some positive lower bound.

Proposition

Let p be a computable ergodic measure, and suppose p is a
Martin-Lof a.c. measure with respect to p. Then

.1 .1
lim ~K(p[n) =lim —C(uln) = H(p).

Recall that we obtained a ML-a.c. measure ;1 such that
K(p] n) <t n—n’ for any 0 € (0,1). Since H()\) = 1, we now see
that we cannot subtract, say, n/4 instead of n’.
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Summary and open questions
J4 s a.c. VnC(uln) >t n wis MLR w.r.t. P

*nC(puln)>"n

i is ML-a.c.

lim, 1C(pln) =1
Culver: ¢ MLR w.r.t. P = p is orthogonal to A, and hence not a.c. The
middle column of the diagram is strict, via examples that are Dirac

measures.
Future research: improve the diagonal arrows in the diagram.

Study the case of randomness relative to a general ergodic computable p.
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» Martin-Lof random quantum states, with Volkher Scholz,
J.Math Physics 2019, arxiv.org/abs/1709.08422

» Paper 55 on your USB, updated on arxiv.org/abs/1902.07871
» Logic Blogs 2017, 2020 accessible from my home page
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