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A topological group is called profinite if it is

compact

totally disconnected.

Equivalently, it is an inverse limit of finite groups with the discrete

topology.

How much can first-order logic express about a profinite group?

Answer: A lot.

Each topologically f.g. profinite group is given by its first-order

theory within the class of profinite groups (Jarden/Lubotzky)

Many a profinite group can be determined by a single sentence

within its class.
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First–order language for groups

I The basic formulas are the equations

s(x1, . . . , xk) = t(x1, . . . , xk),

where s and t are group terms.

One builds more complex formulas using the symbols

¬,∧,∨,→,∃x,∀x, adhering to the usual syntactical rules.

I A (first-order) sentence is a formula which has only bound

variables.

3 / 39



First-order logic and groups

Let [x, y] denote the commutator x−1y−1xy.

The first-order sentence ∀x∀y [x, y] = 1 expresses that the

group is abelian.

The following first-order sentence expressed that every

commutator is a product of three squares:

∀u∀v∃r∃s∃t [u, v] = rrsstt.

We can express that a group is torsion free using infinitely

many sentences.

By the compactness theorem we can not express that a group

is periodic. (We can’t quantify over natural number

exponents.)
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Main Definition

A profinite group G is called finitely axiomatisable (FA) if there is

a first-order sentence φ in the language of groups such that for each

profinite group H,

H |= φ⇐⇒ H ∼= G,

In this case, the algebraic structure of such G determines the

topological structure.
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Unitriangular groups

There are no “obvious” examples of FA profinite groups.

Let p be a prime. Zp denotes the ring of p-adic integers.

The following profinite group was the first to be shown FA

(Scanlon and N., on Logic Blog 2017):

UT3(Zp) =
{1 a c

0 1 b

0 0 1

 : a, b, c ∈ Zp}
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Quasi-finitely axiomatizable groups

The idea to enhance the power of first order logic by also

prescribing a reference class has been around for at least 20 years.

I introduced this in the context of finitely generated discrete groups.
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Quasi-finitely axiomatizable groups

Definition (N., Int. J. Algebra Computation 2003)

An infinite f.g. group G is called quasi-finitely axiomatizable (QFA)

if there is a first–order sentence φ such that for each f.g. group H,

H |= φ ⇐⇒ H ∼= G.

The “axiom” φ determines G among the f.g. groups.

Being QFA has since been studied for groups of many kinds:
nilpotent (Oger and Sabbagh, 2006), metabelian (Khelif, 2007),

particular types of permutation groups (Morozov and N., 2005),

polycyclic (Lasserre, 2013),

higher rank arithmetic groups such as SL3(Z) (Avni, Meir,

Lubotzky, 2019 and its forthcoming sequel paper).
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Two examples of QFA groups

For groups G,A,R one writes G = AoR (split extension) if

AR = G, A / G, and A ∩R = {1}.

We give examples of QFA groups that are split extensions AoR,

where A is abelian, and R = 〈d〉 infinite cyclic. Let Cn denote the

cyclic group of size n.

Theorem (N, 2005)

For each m ≥ 2, the following group is QFA:

Hm = 〈a, d | d−1ad = am〉 = Z[ 1
m

] o Z.

For each prime p, the restricted wreath product Cp o Z is QFA.

(This group is not finitely presented.)
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Structure of these groups

I Hm is a split extension of A = Z[1/m] = {zm−i : z ∈ Z, i ∈ N}
by 〈d〉, where the action of d is given by u 7→ um.

I By its definition, Cp o Z is a split extension Ao C, where

A = {f | Z→ Cp : f has finite support}

C = 〈d〉 with d of infinite order

d acts on A by “shifting”: (d−1fd)(z) = f(z − 1)
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Proof that these groups are QFA

Each group has the form G = Ao C. The group A will be given as the

set of elements satisfying a first-order formula.

One writes a conjunction ψ(d) of first-order properties of an element d

in a group G so that the sentence ∃dψ(d) implies that G is QFA.

Let C be the centralizer of d, namely C = {x : [x, d] = 1}. In the

following, u, v denote elements of A and x, y elements of C.

The commutators form a subgroup (so G′ is definable)

A and C are abelian, and G = Ao C

The conjugation action of C − {1} on A− {1} has no fixed

points. That is, c−1ac 6= a for each a ∈ A− {1}, c ∈ C − {1}.
|C : C2| = 2
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To specify Hm = Z[ 1
m ] o Z one uses the f.o. definition

A = {g : gm−1 ∈ G′}, and requires in addition that

∀u [d−1ud = um];

The map u 7→ uq is 1-1, for a fixed prime q not dividing m;

x−1ux 6= u−1 for u 6= 1;

|A : Aq| = q.

The information that G is f.g. yields that A, when viewed as a

torsion-free module over the principal entire ring Z[1/m], is finitely

generated; hence A is a free module. By the properties above, its rank is

1, and so we know its structure.

To specify Cp o Z,

one uses the f.o. definition A = {g : gp = 1},

requires that |A : G′| = p and

no element in C − {1} has order < p. 12 / 39



QFA for nilpotent groups

Theorem (Oger and Sabbagh, 2006)

Let G be an infinite, f.g. nilpotent group.

G is QFA ⇐⇒ Z(G)/(Z(G) ∩G′) is finite.

The condition says that the centre Z(G) is almost contained

in the derived subgroup G′. It fails for infinite abelian G.

The condition holds for G = UT3(Z) because

Z(G) = G′ =

 1 0 Z
0 1 0

0 0 1


The first proof (N., 2003) that this group is QFA worked via

an interpretation of arithmetic in UT3(Z) due to Mal’cev.

The implication ⇒ holds for all f.g. groups, using ultrapowers.
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A QFA criterion for polycyclic groups

Clement Lasserre has extended the Oger/Sabbagh criterion from

f.g. nilpotent to a larger class. A group G is called polycyclic if it

has a subnormal series with cyclic quotients.

Theorem (Lasserre, 2013)

Let G be a polycyclic group. Then G is QFA ⇐⇒

Z(H)/(Z(H) ∩H ′) is finite for each subgroup H of finite index.
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Finite groups

I For a finite group G, there is always a trivial first order

description αG, obtained from the whole group operation table.

I But αG is unreasonably long.

I Is there a “short” first-order description?

I While it would be interesting to design a very short f.o.

description of the monster, this question is best interpreted

asymptotically, in natural classes of finite groups.
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Short first-order descriptions of finite groups

Definition
Let r : N+ → R. A class C of finite groups is r-compressible if for

any G ∈ C, there exists a first-order sentence ψG in the language of

groups such that |ψG| = O(r(|G|)), and for each group H,

H |= ψG ⇐⇒ H ∼= G.

Theorem (N. and Tent, Israel J. Math, 2017)

The class of finite simple groups is log-compressible.

The class of finite groups is log3-compressible.

Both results are near optimal. This is proved by counting the number of

nonisomorphic groups of each size in the class. For the second case, one

uses the Higman result that the number of groups of order pm is at least

p
2
27
m2(m−6).
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Profinite groups

Definition, examples
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A countably based compact (Hausdorff) topological group G is

called profinite if one of the following equivalent conditions holds.

(a) G is totally disconnected (i.e., the closed and open sets form a

basis of the topology.)

(b) G is the inverse limit of a system 〈Gn〉n∈N of finite groups

carrying the discrete topology, with surjective homomorphisms

pn : Gn+1 → Gn.

The correspondence is not effective; the natural algorithmic version

of (b) is stronger than the one of (a) by Melnikov, TAMS, 2019.
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Recall: a countably based compact (Hausdorff) topological group G

is called profinite if one of the following equivalent conditions holds.

(a) G is totally disconnected (i.e., the closed and open sets form a

basis of the topology.)

(b) G is the inverse limit of a system 〈Gn〉n∈N of finite groups

carrying the discrete topology, with surjective homomorphisms

pn : Gn+1 → Gn.

Proof idea for (a)→(b):

open subgroups of a compact group have finite index, and

G = lim←−N open, normal
G/N .

This inverse limit can be concretely defined as a closed subgroup of∏
N G/N , consisting of those f such that f(Ng) = Mg

whenever N ≤M . From this one can make a linear diagram.
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Examples based on the p-adic integers

(Zp,+) is the additive group of p-adic integers for a prime p.

Addition works via carries but for infinite digit sequences.

Zp is in fact a ring: multiplication works with the usual

algorithm extended to infinite sequences.

This ring is profinite: Zp = lim←−nCpn as rings, with the maps

Cpn+1 → Cpn given by x 7→ (x mod pn).

This implies that matrix groups such as UTn(Zp) and

SLn(Zp), n ≥ 2 are profinite:

SLn(Zp) = lim←−
n

SLn(Cpn).
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Krull’s Galois theory
An extension of fields K/k is Galois if it is algebraic, normal, and

separable. Its Galois group Gal(K/k) consist of the automorphisms

of K that fix k pointwise.

It has a natural topology that makes it profinite (Krull, 1928):

Suppose we have K =
⋃
i∈N Li, Li ≤ Li+1 and the |Li/k| are

normal finite extensions.

A basis of neighbourhoods of the identity in Gal(K/k) is given

by the open normal subgroups Gal(K/Li).

Galois correspondence: to an intermediate field F corresponds a

closed subgroup, the pointwise stabiliser of F .

Every separable profinite group is realized as Gal(K/k) for a

countable field k.
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pro-C-groups, pro-C completions

Let C be a class of finite groups with some nice properties (e.g.

closed under isomorphism, taking quotients). A group is called

pro-C if it is an inverse limit of a system of finite groups in C.

The pro-C-completion of a group G is the inverse limit

Ĝ = lim←−
N

G/N,

where N ranges over the normal subgroups such that G/N ∈ C.

If C = finite groups, we have the profinite completion

If C = finite pro-p groups, we have the pro-p completion.

If G is residually C, then the natural map G→ Ĝ is an embedding.
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Finite axiomatizability

within classes of

profinite groups and rings
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Main Definition, again

An infinite, profinite group G is called finitely axiomatisable (FA)

within the profinite groups if there is a first-order sentence φ in the

language of groups such that for each profinite group H,

H |= φ⇐⇒ H ∼= G.

Here ∼= denotes topological isomorphism.

The definition can be adapted to other classes of profinite

structures:

profinite groups with additional constants,

pro-C groups,

profinite rings, etc.
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The ring of p-adic integers is FA in profinite rings

Rings are commutative with 1.

Sabbagh (2005) proved that (Z,+,×) is QFA as a ring.

Proposition (with Scanlon, 2016; see Logic Blog 2017)

Let p be a prime.

The ring (Zp,+,×) of p-adic integers is FA in the profinite rings.
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The ring of p-adic integers is FA in profinite rings
The following argument of Segal is a bit simpler than Scanlon’s.

Let φp be the sentence of Lring expressing for a ring R:

px = 0 =⇒ x = 0

|R/pR| = p

x ∈ Rr pR =⇒ xR = R.

Suppose that R |= φp where R is a profinite ring.

Then (R,+) is a pro-p group, since it is abelian and for each

prime q 6= p we have qR = R.

the other conditions then imply that (R,+) is also procyclic

and torsion-free.

It follows that R ∼= Zp as topological rings.
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UT3(Zp) is FA in the profinite groups

Recall the following unitriangular group over Zp:

UT3(Zp) =
{1 α γ

0 1 β

0 0 1

 : α, β, γ ∈ Zp}.

This is the inverse limit of the finite groups UT3(Cpn), so profinite.

Its centre consists of the matrices of the form
1 0 γ

0 1 0

0 0 1

.

Theorem (N., Scanlon 2016; N., Segal and Tent, 2019)

UT3(Zp) is finitely axiomatizable within the profinite groups.

In fact there is a formula φ(r, s) such that the structure (UT3(Zp), a, b)
is FA via φ, where a, b are the standard generators (defined below).
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(UT3(Zp), a, b) is FA within profinite structures
Proof. The standard generators are a =

1 0 0

0 1 1

0 0 1

, b =
1 1 0

0 1 0

0 0 1

 .
For any ring R, the Mal’cev formula µ(x, y, z; r, s) defines the ring

operation Mr,s on the centre C(UT(R)) ∼= (R,+) when r, s are assigned

to the standard generators a, b.

A sentence α1 expresses of a profinite group G that G is nilpotent

of class 2, and that the centre C = C(G) equals the set of

commutators.

A sentence α2 expresses that pG/C has index p2 in G/C.

C is closed and the profinite ring Zp is FA. So there is a formula

γ(r, s) expressing that (C,+,Mr,s) is isomorphic to Zp. In

addition, γ expresses that [r, s] is the neutral element 1 of this ring.

Let φ(r, s) ≡ α1 ∧ α2 ∧ γ(r, s). Using that UT3(Zp) is free in its

pro−p variety, one shows φ is as required. See Logic Blog ’17.
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FA for pro-p nilpotent groups

Result of Oger/Sabbagh 2006: let G be an infinite, f.g. nilpotent

group. Then

G is QFA ⇐⇒ Z(G)/Z(G) ∩G′ is finite (the O/S condition).

Note we can replace finite by periodic as the two things are

equivalent for f.g. nilpotent groups.

We show that there are uncountably many non-isomorphic

nilpotent of class 2 pro−p groups satisfying the O/S condition,

so not all of them can be FA.

We restrict ourselves to a countable class of groups that have a

finite presentation.
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One special case of our result is:

Theorem (N., Segal and Tent, 2019)

Let G be the pro-p completion of a f.g. nilpotent group.

G is FA in the profinite groups ⇐⇒ Z(G)/Z(G) ∩G′ is periodic.

UT3(Zp) is the pro−p completion of UT3(Z) and satisfies the O/S

condition, so we re-obtain the previous result in an algebraic way.
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Rings and groups that are not FA

Proposition (T. Scanlon, see Logic Blog 2017)

Let S be a set of primes and let RS denote the profinite ring∏
p∈S Zp. If S is infinite then RS is not FA in the profinite rings.

The proof uses the Feferman-Vaught theorem from model theory,

which determines the validity of sentences in a direct product from

the validity of related sentences in the components.

Proposition

The group UT3(RS) is FA among profinite groups if and only if S

is finite.
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Theorem (Chevalley groups over Zp that are FA)

Let p be an odd prime. Suppose p does not divide n. The groups

SLn(Zp) and PSLn(Zp) are FA within the profinite groups.

The proof works by considering the first congruence subgroup

G = SL1
n(Zp), that is, the kernel of the natural map

SLn(Zp)→ SLn(Cp).

In G we look at definable closed root subgroups U, V . They are

nilpotent and pro-p, and hence can be described among all

profinite groups.

Using this provide sentences that ensure a profinite group

sufficiently similar to G is pro-p.

In this way, we reduce the problem to the finite axiomatizability of

compact p-adic-analytic groups within the pro−p groups.
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Finite rank, and p-adic analytic groups

The dimension of a profinite group is the minimal number of

topological generators.

The (Prüfer) rank of a profinite group is the supremum of the

dimensions of all closed subgroups.

Lazard (1965) considered Lie groups over Qp, called p-adic analytic

groups. He realized that they have an open pro-p subgroup H of

finite rank.

His main theorem characterizes them as the groups with an open

“uniformly powerful” pro-p subgroup, a particularly nice finite rank

group. (This is the subsequent terminology of Lubotzky and Segal.)

33 / 39



Finite rank pro-p groups and FA
Exponentiation x→ xλ in a pro-p group is given by xλ = limn x

λ�n.

Let Lp be the uncountable language extending Lgroup which has a

symbol fλ for each λ ∈ Zp, interpreted as x→ xλ.

Theorem (NST, 19)

(a) Each finite rank pro-p group G is finitely axiomatizable using

the language Lp, within the pro-p groups. (I.e., we need finitely

many exponentials in the language to determine G.)

(b) If G is strictly finitely presented, then an axiom determining G

can be chosen in the basic language Lgroup.

Here G is called strictly finitely presented if it is the pro-p completion of

a f.p. group. For instance, Zp is strictly finitely presented as the pro-p

completion of Z. So Zp is FA within the pro-p groups. (This contrasts

with the fact that (Z,+) is not QFA.)
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Finitely generated pro−p groups of infinite rank

Examples:

Fn,p, namely the pro-p completion of the free group Fn, for

n ≥ 2

Cp̂oZp, namely the pro-p completion of Cp o Z

An ad-hoc argument establishes an analog of the result (N., 2003)

that Cp o Z is QFA :

Theorem (NST 19, Prop 4.5)

Cp̂oZp is FA within the profinite groups.

The abstract free groups Fn are not QFA. It is unknown at present

whether Fn,p is FA.

35 / 39



Separating classes of groups by their theories

The main object of study in the “QFA paper” [N., 2003] was in fact

the first-order separation of isomorphism invariant classes of groups

C ⊂ D. Can one distinguish such classes using first-order logic?

Definition. We say that C and D are first-order separable if some

sentence holds in all groups in C but fails in some group in D.

This is interesting when the classes are not axiomatizable.

One way to separate the classes is to find an FA witness:

a group in D − C that is FA within D.
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First-order separations

Theorem
(a) The finite rank pro-p groups are f.o. separable from the

(topologically) finitely generated pro-p groups.

(b) The f.g. profinite groups are f.o. separable from the class of all

profinite groups. The same holds within the pro-p groups.

Proof. (a) a witness (i.e., FA in the larger class, and not element of

the smaller) is the above mentioned pro-p completion of Cp o Z.

(b) a witness is the affine group Af1(R), where R is the profinite

ring Fp[[t]]. This is the group of matrices over R of the form
(
1 a

0 b

)
where b ∈ R∗ (a unit). Equivalently, it is RoR∗ with R∗ acting on

(R,+) by multiplication.
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Some open questions

I Extend the O/S criterion in order to characterise being FA for

the profinite analog of polycyclic groups: the solvable groups of

finite rank.

I FA for profinite free groups of finite dimension.

I Which t.d.l.c. groups are FA in their class?

UT3(Qp), p 6= 2, is a first example. How about Aut(Td)?

I Which p-adic analytic groups are FA in this class?
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