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What is quantum physics?

• Framework for the construction of (physical) theories, in particular at 
microscopic levels.  
• Example of such a theory: quantum electrodynamics, which describes the 

interaction of atoms and light 
• Quantum physics is expressed mathematically in the language of operators on 

finite dimensional Hilbert spaces. So the language is linear algebra.
• Four postulates,  connecting physics concepts such as state of a system, 

measurement with mathematical concepts
• Since the 1980s, researchers have used quantum physics as a framework for a 

new kind of information science



Quantum physics:   timeline (1)
1900 Planck’s work on black body radiation; energy is quantized
1924-27 Heisenberg, Schrödinger, Born and others formulate the 
principles of quantum physics (or quantum mechanics)
1933 Einstein, Podolsky and Rosen paper criticizing this work

1933 Niels Bohr’s reply



Quantum physics: timeline (2)
1932 Von Neumann Mathematische Grundlagen der Quantenmechanik, 
summarising his papers from 1927 to that date.  
1964 Bell‘s inequality, 1969 CHSH inequality: non-locality 

1982- Alain Aspect and others confirm entanglement experimentally
2015 Loophole free experiments, Henson et al., Giustina et al.



Theory of (quantum) computation:   timeline
1936 Turing: a theoretical machine that can simulate all computations 

1982 R. Feynman: suggests to build computers based on quantum 
mechanics

1985 D. Deutsch: challenges polynomial time Church-Turing thesis

1994 P. Shor:  quantum algorithms  for factoring  and discrete logarithm

1995 Shor, Steane independently: quantum error correction, leads to 
threshold theorem (Aharonov and Ben-Or)

1995 quantum circuits,  Solovay-Kitaev theorem

1997 Bernstein-Vazirani: universal quantum Turing machine

2013 Aaronson, Arkhipov: boson sampling as a way to show “quantum 
supremacy”. 

2016 Bremner, Montanaro, Sheperd: random circuit sampling, IQP



Structure of Nielsen and Chuang’s 2000 book (2010 second edition)



Hilbert space

• Finite-dimensional vector space A over the complex numbers ℂ
• Vectors are denoted  |#⟩,  |%⟩	etc
• Inner product # %
• linear in the second, antilinear in the first component
• Value 0 means orthogonal; value 1 means equal (for unit vectors)
• Length of a vector |#⟩ is # # ; Cauchy-Schwartz inequality
• Operators are linear maps between Hilbert spaces; given by matrices
• Hermitian  operator:  equals the conjugate transpose
• Unitary  operator: the inverse equals the conjugate transpose



States and their time evolution
Postulate 1: A physical system is represented by an n-dimensional Hilbert 
space A. The state of the system is a unit vector in A, written |"⟩
• For instance, to represent  a single qubit we let   n=2. 
• The vectors |0⟩	 and |1⟩	form a basis of the Hilbert space. 
• A qubit is a vector a|0⟩ + )	|1⟩	where a,b are complex numbers and 
|*|+ + |)|+ = 1.		
• When measured,  |*|+ is  the probability to get 0, and |)|+	the 

probability to get 1.

Postulate 2 describes the time evolution of a closed physical system via 
some form of Schrödinger’s equation.



Composite systems
• The tensor product  !⨂# consists of linear combinations of vectors 

|%⟩ = |%(⟩⨂|%)⟩
• Inner product is defined by looking at components. 
• The operation ⨂	 is bilinear.

Postulate 4: If two systems are represented by Hilbert spaces A, B, 
then the composite system is represented by the tensor product  !⨂#.

• A system of  two qubits is represented by  Hilbert space  ℂ,⨂ℂ,, which has 
dimension 4. 
• For bits x,y write -./⟩ = |.⟩⨂|/⟩	. 
• The state is a unit vector  a|00⟩ + 3	|01⟩ + 5|10⟩ + 6	|11⟩.	



No-cloning theorem
Informally,  no quantum machine   can copy an unknown state.
Formally, there is no unitary operator U on !⨂# and state |%⟩ in B  such that 
U(|'⟩⨂|%⟩)= |'⟩⨂|'⟩ for each state |'⟩ in A. 

Proof. Assume otherwise. Then 
( ' = |(⟩⨂|%⟩	 	|'⟩⨂|%⟩

because % % = 1.
We can apply  U to |(⟩⨂|%⟩ and |'⟩⨂|%⟩ without changing the value of the inner product. 
This  yields

( ' =	 |(⟩⨂|(⟩	 	|'⟩⨂|'⟩ =	 ( ' ( '
So	either	 φ ψ =	0	(orthogonal)		or	 φ ψ =1	(equal).



Measurements on system given by a Hilbert space
Postulate 3
• A measurement is a sequence !",… , !%&' where the  !(’s are projections 

on A (Hermitian, !(!( = !() and ∑!( = 1,.
• The probability that result - occurs when state |/⟩ is measured is 
1 - = / !2 / 	i.e., the inner product of |/⟩ with !2	(|/⟩). 
• After measurement outcome -, the system is in the state '

6 2 !2|/⟩.
Example
In system ℂ8⨂ℂ8 of two qubits, we measure the second qubit by
• !"										|:0⟩ ⟶ |0⟩,  |:1⟩ ⟶ ∅ (zero vector)   : = 0,1
• !'										|:1⟩ ⟶ |1⟩,  |:0⟩ ⟶ ∅ : = 0,1



Entanglement,  mathematically
• We have a composite system !⨂#
• Consider a state |%⟩ ∈ !⨂#, where 
! has basis  |(⟩;	 ( = 0,1, … , 0 − 1 and # has basis  |2⟩; ( = 0,1, … , 3 − 1. 
• The most general form of such |%⟩ is |%⟩ = ∑ 567 |(2⟩.
• |%⟩ is called  separable if	|%⟩ = |%9⟩⨂|%:⟩	 for states 

|%9⟩ = ∑;6|(⟩, |%:⟩ = ∑<7|2⟩.
i.e. 567 = ;6<7.

• Otherwise |%⟩ is called entangled (verschränkt).

Example |%⟩ = =
> |00⟩ + |11⟩ is entangled:

If we have |%⟩ = |%9⟩⨂|%:⟩ then 5@@ ≠ 0, so ;@, <@ ≠ 0. 
5== ≠ 0, so ;=, <= ≠ 0.  Then also 5@= = ;@<= ≠ 0, which is not the case.



Quantum circuits



• Quantum analog of Boolean circuits  
• Unlike Boolean circuits, they are made up of unitary 

operations, and hence reversible
• Can be used to create an entangled pair of qubits 
• Used to  implement the discrete Fourier transform 
• We also allow measurement at the end, or even in between 

(though it’s not a reversible operation)
• The symbol for measurement w.r.t. 

standard basis is 

Quantum circuits



Important unary quantum gates

• Pauli X,Y and Z gates

! = 0 1
1 0 ,  % = 0 −'

' 0 , ( = 1 0
0 −1

• )* – gate + = 1 0
0 ,-

.
/



Hadamard gate
• |0⟩ ⟶ %

& |0⟩ + |1⟩ , |1⟩ ⟶ %
& |0⟩ − |1⟩

• So, * = %
&
1 		1
1 −1 .

• %
& |0⟩ + |1⟩ is written |+⟩

• %
& |0⟩ − |1⟩ is written |−⟩.

The following circuit  produces a random bit, 
i.e. 0 and 1 each with probability 1/2.



Making circuits from gates

Circuits are formed by putting gates together. No cycles, no splitting of 
wires.
Example:



Controlled “Not’’ binary gate 

CNOT acts  as follows for ! = 0,1, & = 0,1

I.e., if  control bit is  |1⟩ then the target bit is flipped.

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

Circuit notation for controlled-not



Creating an EPR state
We can use ! and CNOT gates to create a pair of entangled qubits, the 
EPR state "# |00⟩ + |11⟩ . 

This works  because CNOT turns a linear combination 
)|00⟩ + *|01⟩ + +|10⟩ + ,|11⟩ into )|00⟩ + *|01⟩ + ,|10⟩ + +|11⟩. 
Here, ) = + = "

# , * = , = 0.



Deutsch’s  algorithm (1985)

Problem: 
Given a function !: 0,1 → 0,1 .	Is !
• constant:    ! 0 = !(1)
or 
• balanced:   !(0) ≠ ! 1 ?

In ‘quantum way’, we can solve this with one application of !:



A quantum circuit  determines if f is balanced

Encode ! into unitary operator:			#$%&⟩|)⟩ = %&⟩|)⨁!(&)⟩

The following circuit decides which case we have:



Shor’s algorithm (1994)

Problem: Given a number N that is not prime, 
find a nontrivial factorization N=ab.

Shor’s algorithm does that in  polynomial time on a quantum 
computer. 

This means one needs circuit of  poly(log N) quantum gates. 

It  only finds the answer with high probability.

Shor was ICM speaker in 1998 and got  Nevanlinna Prize for this



Reduction of factoring to period-finding
Let N be  odd, not prime,   not a prime power. E.g. N= 15.
• Choose random ! < # such that gcd(!, %)=1.  E.g. x=7
• Let &	 be a period of !	()*	#.  i.e.  !+ ≡ 1	()*	#. If & is odd, try other 
!.   p=4
• Else !+// + 1 !+// − 1 ≡ !+ − 1 ≡ 0	()*	#. i.e. # divides this 

product. 
• So gcd(!+// + 1,#)  gcd(!+// − 1,#)= # is a factoring.
E.g. 7/ + 1 7/ − 1 ≡ 75 − 1 ≡ 0 mod 15, and the factoring is 5 . 3 = 15

If one of the factors is 1, try another !. One can show that  the chance of !
being useless is ≤ 289, where # has ( prime factors.



Preparing data (1)

Two quantum registers, called IR (input register) and OR.

• Choose an integer q such that N2< q < 2N2 let’s pick 256
• Choose a random integer x such that GCD(x, N) = 1 let’s pick 7

q Input register: must contain enough qubits to represent numbers 
as large as q-1.  Up to 255, so we need 8 qubits 

q Output register: must contain enough qubits to represent 
numbers as large as N-1. Up to 14, so we need 4 qubits



Preparing Data (2)
Load the input register with  an equally weighted superposition of all 
the integers from 0 to q-1.  0 to 255 

Load the output register with  zeros.  

The state of the system at this point is:

IN OUT

1

√256
∑ |a> |0000>
a=0

255

The two registers make 
a composite system.



Exponentiation mod N, and measuring OR

Apply the transformation  x    mod N to each number in IR, storing the 
result of each computation in OR. (Quantum parallelism)

a

Take a measurement on the output register.  This will collapse the 
superposition to represent just one of the possible results of the 
transformation; let’s call this value d.



Shor’s Algorithm – Entanglement and QFT

The  IR and OR  registers are entangled after the modulo operation. 

Thus, measuring the OR will have the effect of partially collapsing the IR into an 
equal superposition of each state between 0 and q-1 that yielded d (the value of 
the collapsed output register.)

If e.g. d=1   we have

IR= (|0> +       |4> +       |8> +       |12> + . . .+ |252> )

Now apply inverse discrete  Fourier transform to the partially collapsed IR. 

This transform   turns each  |a> into 

Measurement of this transform gives |c>  the probability 0 for  non-integer 
values of  4c/ q.  From this distribution we can determine the period p=4. 

1
64

1

√q
∑ |c>  exp(2pi ac / q)
c=0

q-1



Randomness for qubits

This is  not what we study. 
The qubit H|0> is determined, it’s just not accessible  to us.

We want to define randomness for sequences of qubits.

Recall that the  circuit below  produces a random 
classical bit, i.e. 0 and 1 both with probability 1/2.



Finite sequences of qubits

For finite bitstrings (in the classical setting), randomness means 
incompressibility.  The decompressor is a universal Turing machine. 
Length of a shortest description is descriptive (or Kolmogorov) 
complexity of a string.

A string of n qubits is a unit vector in an n-fold tensor power of ℂ".    

1997 Bernstein and Vazirani’s universal quantum Turing machine
2001 -2008 Vitanyi; Berthiaume et al.; Markus Müller’s thesis gave 
various versions of descriptive complexity for qubit strings, based on 
this model. 



Infinite sequences of qubits?

• They have some physical relevance, e.g. spin chains.
• Mathematically they are complicated objects (states in a certain C*-

algebra, which are certain sequences of density matrices). 
• The reason is that  if we ``delete” the second  bit from the entangled 

pair !" |00⟩ + |11⟩ , we get a statistical superposition of |0⟩ and |1⟩,
called a mixed state.
• Nies and Scholz (2018, on arXiv) introduced a quantum version of 

Martin-Löf randomness for such sequences.
• They have obtained a universal test,  law of large numbers, and a weak 

quantum version of Levin-Schnorr theorem (which says roughly: 
random sequence means that all initial segments are incompressible).



Some references
Peter Shor , Quantum computing, ICM proceedings, Documenta
Mathematica, 1998

Chuang and Nielsen, Quantum Computation and 
Quantum Information CUP 2000/2010 

Nies and Scholz, Martin-Löf random quantum states, arXiv preprint, 
2018.


