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A hierarchy of randomness notions

Formal randomness notions for an infinite bit sequence Z ∈ {0, 1}N can

be introduced via algorithmic tests.

I Martin-Löf (1966) defined algorithmic tests as uniformly Σ0
1

sequences 〈Gm〉m∈N, where Gm ⊆ {0, 1}N and λGm ≤ 2−m;

Z is Martin-Löf-random if Z 6∈
⋂
Gm for each such test.

I Schnorr (1971) used a more restrictive notions of tests: he required

that the measure λGm be computable uniformly in m. This yields

the weaker notion of Schnorr randomness.

I He also introduced computable randomness of Z: no computable

betting strategy succeeds when betting along Z.

Martin-Löf rd. ⇒ computably random ⇒ Schnorr random
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I Martin-Löf (1966) defined algorithmic tests as uniformly Σ0
1

sequences 〈Gm〉m∈N, where Gm ⊆ {0, 1}N and λGm ≤ 2−m;
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Algorithmic tests in the resource–bounded setting

A martingale M is a function from {0, 1}∗ to {q ∈ Q : q > 0} satisfying

M(x) =
M(x0) +M(x1)

2
for all x ∈ {0, 1}∗.

M succeeds on a bit sequence Z if lim supnM(Z � n) =∞.

I A martingale M is polynomial time computable if on input x one

can determine the rational M(x) in polynomial time.

I Here a positive rational number q is represented by the pair 〈k, n〉
of natural numbers (written in binary) such that q = k/n in lowest

terms.

I Similarly, define when a martingale is polynomial space computable.
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Polynomial time and poly space randomness

I Z ∈ {0, 1}N is polynomial time random if no polynomial time

computable martingale succeeds on Z.

I This was briefly defined by Schnorr (1971). Lutz (1990) studied resource

bounded martingales. Ambos-Spies and Mayordomo looked at the

associated randomness notions (for sets of strings, rather than bit

sequences). Polynomial randomness was studied in more explicit form in

Yongge Wang’s 1996 thesis (Uni Heidelberg)a.

I In a similar way one defines polynomial space randomness.

aSee the 1996 survey ”Resource bounded measure and randomness” by

Ambos-Spies and Mayordomo for background and references.
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Existence result

From now on we identify a bit sequence Z ∈ {0, 1}N with a subset of

{0}∗ (a tally language):

Z ∈ {0, 1}N is seen as {0k : Z(k) = 1}.

In this way we can apply the notions of complexity theory to Z.

Fact

Polytime randoms exist in all superpolynomial time classes.

E.g, there is one in DTIME(nlogn).
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Base invariance of polynomial time randomness

I Polynomial time martingales and polytime randomness in base

b > 2 are defined similar to the above.

I Polynomial time randomness can be seen as a property of real

numbers, rather than of sequences of digits for a fixed base:

Theorem (Figueira, N 2013) For a real number r ∈ [0, 1],

I let Z be the binary expansion of r

I let Y be the expansion of r in base b.

Z is polynomial time random ⇐⇒ Y is polynomial time random.

A similar result was previously known for computable randomness. In both

cases, one uses a characterization of the randomness notion for reals via

differentiability of certain effectively computable functions.
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Permutations with polynomially

unbounded inverse

Proposition. Let S be a polynomial time computable permutation of

{0}∗ such that for each polynomial p, there are infinitely many n with

p(S(n)) ≤ n.

There is a polynomial time random Z ⊆ {0}∗ (computable in time 2O(n))

such that Z ◦ S is not polynomial time random.

It is not hard to see that a permutation S as in the Proposition exists.

Hence one should only look for closure under polynomial time

computable permutation S such that S−1 is polynomially bounded.
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Part 1: If P= PSPACE then closure holds
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Closure of polynomial space randomness 1

Based on the arguments in Buhrman, Melkebeek, Regan, Sivakumar and

Strauss (2000), we show that polynomial space randomness is closed

under polynomial time computable permutations S with polynomially

bounded inverse.

So if P = PSPACE, this closure property applies to polynomial time

randomness as well.

I Let g(n) be a polynomial bound for S−1.

I Suppose that a polynomial space martingale B succeeds on Z ◦ S.

We may assume that B has the savings property:

if σ � τ then B(τ) ≥ B(σ)− 2.
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Closure of polynomial space randomness 2

The “savings – gale” B ∈ PSPACE succeeds on Z ◦ S.

We define a martingale D ∈ PSPACE that succeeds on Z.

For bit strings α,w such that |α| = g(|w|), we write α ∼S w if α = w ◦ S
whenever both sides are defined, namely

k < |α| ∧ S(k) < |w| ⇒ α(k) = w(S(k)).

There are 2g(|w|)−|w| many α’s of length g(|w|) such that α ∼S w. To

define D(w) we take their average:

D(w) = 2|w|−g(|w|)
∑

B(α) [[|α| = g(|w|) ∧ α ∼S w]]
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Part 2: If BPP is large then closure fails
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The class BPP

I BPP is short for “bounded-error probabilistic polynomial time”.

I BPP contains the languages for which there is a polynomial time

algorithm that uses random bits and obtains the answer with error

probability < 1/2− ε, for some fixed ε.

I By repeating runs independently, we can ensure that the error

probability on inputs of length n is at most 2−q(n) for a given

polynomial q.

Example of a problem in BPP that is not known to be in P: polynomial

identity testing. Polynomials are given as arithmetical circuits, and we

have to test whether they are equal.

12 / 20



If BPP contains a time class larger than P

then closure fails

Theorem. Assume that DTIME(h) ⊆ BPP for some time constructible

function h that eventually dominates each polynomial, e.g. nlogn.

Then there is a polynomial time random set Z ∈ DTIME(23·n) and a

permutation S with S, S−1 ∈ P such that

Z ◦ S is not polynomial time random.

We may assume that h(n) ≤ nlogn.
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Let M be a martingale in DTIME(h) that bets only on odd positions,

and dominates up to a multiplicative constant all polynomial time

martingales that bet only on odd positions. Let

A = {x ∈ {0, 1}∗ : x has odd length and M(x1) < M(x0)}.

A is computable in time h and hence by assumption in BPP.

Let B ⊆ {0}∗ be a set in DTIME(25·n) so that no martingale in

DTIME(24·n) succeeds along B. Define Z ⊆ N as follows:

Z(2n) = B(n); Z(2n+ 1) = A(Z � 2n+ 1).

Z = B A B A B A B A B A B A B . . .

B(0)A(Z � 1)B(1)A(Z � 3)B(2)A(Z � 5) . . .
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Z is polynomial time random

Z = B A B A B A B A B A B A B . . .

B(0)A(Z � 1)B(1)A(Z � 3)B(2)A(Z � 5) . . .

Assume that a polynomial time martingale L succeeds on Z. We may suppose

L bets only on odd positions (the A’s), or only on even positions (the B’s).

I The case “odd positions” cannot happen: by definition of A, the capital of

the universal M , and hence of L, is bounded along Z.

I In the case “even positions”, we define a martingale

N ∈ DTIME(nh(n) + h(n)) that succeeds on B, contradiction.

I N computes the values of Z at the even positions using that

A ∈ DTIME(h). It doesn’t need to bet on these values; they are only

needed to determine the bets of L at the odd positions.
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A reshuffling Ẑ of Z

Since A ∈ BPP, there is a randomised algorithm R that computes A(x)

on input x ∈ {0, 1}2n+1 with error probability 2−3n−2. This takes time

p(n) for some polynomial p, and hence uses at most p(n) random bits.

Let Ẑ consisting for n = 0, 1, . . . of p(n) bits taken from B, followed by

the bit A(Z � 2n+ 1).

Ẑ = B A B B B A B B B B B B A . . .

p(0) p(1) p(2)

Then Ẑ = Z ◦ S for the right permutation S, and S, S−1 ∈ P.
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The reshuffling Ẑ is not polynomial time random

Ẑ = B A B B B A B B B B B B A . . .

p(0) p(1) p(2)

Recall algorithm R computes A(x) on input x ∈ {0, 1}2n+1 with error

probability 2−3n−2.

Idea: use B as a reservoir of random bits.

The probability that a string y of length p(n) miscomputes A(x) for some x of

length 2n+ 1 is at most 22n+1 · 2−3n−2 = 2−n−1. Whether y miscomputes

some x can be determined in time O(23n).

Starting with 2−n−1 of the initial capital set aside for this purpose, we can bet

on the set of miscomputing y. On each such y we gain EUR 1. If the portion of

B’s of length p(n) is miscomputing y i.o. then the martingale succeeds on the

sequence B.
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Ẑ = B A B B B A B B B B B B A . . .

p(0) p(1) p(2)

Recall algorithm R computes A(x) on input x ∈ {0, 1}2n+1 with error

probability 2−3n−2.

Idea: use B as a reservoir of random bits.

The probability that a string y of length p(n) miscomputes A(x) for some x of

length 2n+ 1 is at most 22n+1 · 2−3n−2 = 2−n−1. Whether y miscomputes

some x can be determined in time O(23n).

Starting with 2−n−1 of the initial capital set aside for this purpose, we can bet

on the set of miscomputing y. On each such y we gain EUR 1. If the portion of

B’s of length p(n) is miscomputing y i.o. then the martingale succeeds on the

sequence B.

17 / 20



The reshuffling Ẑ is not polynomial time random

Ẑ = B A B B B A B B B B B B A . . .

p(0) p(1) p(2)

I The martingale explained above can be computed in time O(24k).

I This uses that p(n+ 1)− p(n) ≤ p(n) for a.e. n. For k = p(n) we

have to average over at most 2k many y’s satisfying a condition that

can be checked in time O(23n). This yields the exponent 4.

Since B is O(24n)-random, almost every such portion of B’s computes

the value of Ẑ at the “A” that comes after correctly.
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The reshuffling Ẑ is not polynomial time random

Ẑ = B A B B B A B B B B B B A . . .

p(0) p(1) p(2)

To repeat, almost every such portion of B’s of length p(n) computes the

value of Ẑ at the “A” that comes after correctly.

We use this to define a polynomial time martingale that succeeds on Ẑ.

To make bet at the position rn of the n-th “A”:

I From Ẑ � rn determine x = Z � 2n+ 1

I let y = the portion of B’s preceding the n-th “A”

I run the algorithm R(x) with random bits y, and bet half of the

capital on the value predicted by R

For almost every n, this martingale gains by a factor 1.5 at rn.
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Question

PP denotes probabilistic polynomial time: w is in the language if the

majority of computations of a polynomial time NTM on input w is

accepting. Clearly PP ⊆ PSPACE.

Is the assumption P = PP sufficient for closure of polynomial time

randomness under permutations S such that S, S−1 ∈ P?
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