
Topological isomorphism for classes of

closed subgroups of S∞

André Nies
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The setting

I S∞ is the topological group of permutations of N.

I C is a Borel class of closed subgroups of S∞.

We study the complexity of the isomorphism problem for C:

Given groups G,H in C,
how hard is it to determine whether G ∼= H?

All isomorphisms of groups will be topological isomorphisms.
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Two antipodal classes

We focus on two classes:

I Oligomorphic:

for each k, the action on Nk has only finitely many orbits

These are the automorphism groups of ω-categorical structures

with domain N.

I Profinite: each orbit of the action on N is finite.

These are up to isomorphism the Galois groups of Galois

extensions of countable fields.
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A Borel superclass

A closed subgroup G of S∞ is Roelcke precompact if each open

subgroup U of G is large in the sense that there is finite set F ⊆ G

such that UFU = G.

Roelcke precompact

Oligomorphic

19

Profinite

em
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First result (Kechris, N., Tent)

GI

∼=Roelcke precompact

≤B

OO

∼=Oligomorphic

≤B

55

∼=Profinite

≤B

hh

Isomorphism of Roelcke precompact groups is Borel below GI.

Graph isomorphism (GI) is complete for S∞ orbit equivalence relations.

Result independently by Rosendal and Zielinski, JSL 2018
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Second result (N., Schlicht, Tent)

GI

E∞ ∼=Roelcke precompact

≤B

OO

∼=Oligomorphic

≤B

55

≤B

OO

∼=Profinite

≤B

hh

Isomorphism of oligomorphic groups is Borel below E∞.

E∞ denotes a complete countable equivalence relation.

To be countable means: Borel with each class countable.
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Third result (Kechris, N., Tent)

GI

E∞ ∼=Roelcke precompact

≤B

OO

∼=Oligomorphic

≤B

55

≤B

OO

∼=Profinite

≤B

hh

GI

≤B

OO

Graph isomorphism is Borel below isomorphism of profinite groups.

Since E∞ is Borel but GI is not, ∼=Profinite >B
∼=Oligomorphic.
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The Borel space of closed subgroups of S∞
For a 1-1 map σ : {0, . . . , n− 1} → N let

Nσ = {α ∈ S∞ : σ ≺ α}

The closed subgroups of S∞ can be seen as points in a standard

Borel space. To define the Borel sets, we start with sets of the form

{G ≤c S∞ : G ∩Nσ 6= ∅},

where G ≤c S∞ means that G is a closed subgroup of S∞.

The Borel sets are generated from these basic sets by

complementation and countable union.

Example: for every α ∈ S∞, the set
⋂
k{H : H ∩Nα �k 6= ∅} is Borel. It

expresses that a closed subgroup of S∞ contains α.
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Complexity of the isomorphism relation

for Roelcke precompact groups
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Roelcke precompactness

A closed subgroup G of S∞ is called Roelcke precompact if

for each open subgroup U of G

there is a finite set F ⊆ G such that UFU = G.

This condition is Borel because it suffices to check it for the basic open

subgroups Un = {ρ ∈ G : ∀i < n [ρ(i) = i]}; further, we can pick F from

a countable dense set predetermined from G in a Borel way.

FACT. G Roelcke precompact ⇒
G has only countably many open subgroups.

PROOF. Each open subgroup U contains a basic open subgroup Un.

Un has finitely many double cosets, and U is the union of some of them.

In fact, from G we can in a Borel way determine a listing A0, A1, . . ..

without repetition of all open cosets.
10 / 40



Theorem (Kechris, N, Tent, JSL, in press)

Isomorphism of Roelcke precompact groups is Borel reducible to

graph isomorphism.

This was independently and via different methods proved by Rosendal

and Zielinski (JSL, 2018).

Proof.

I Let M(G) be the structure with domain the open cosets. Via

the listing A0, A1, . . . above, we can identify its domain with ω.

I The ternary predicate R(A,B,C) holds in M(G) if AB ⊆ C.

I The main work is to show that for Roelcke precompact

G,H ≤c S∞,

G ∼= H ⇐⇒M(G) ∼=M(H).
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Complexity of the isomorphism relation for

oligomorphic subgroups of S∞
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Oligomorphic groups

I A closed subgroup G of S∞ is called oligomorphic if for each k,

the action of G on Nk has only finitely many orbits.

I For instance, Aut(R) and Aut(Q, <) are oligomorphic.

I This is the exact opposite of profinite, where each orbit is

finite.

I Intuitively, oligomorphic groups are big, profinite groups are

small.

I Unlike for profinite groups, G being oligomorphic depends on

the way G is embedded into S∞.
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Oligomorphic groups as automorphism groups

Fact

G ≤c S∞ is oligomorphic ⇐⇒ G is the automorphism group of an

ω-categorical structure S with domain N.

Proof.

⇐: this follows from the Ryll-Nardzewski Theorem.

⇒: G = Aut(S) where S is the structure with a k-ary relation

symbol for each orbit of G on Nk.
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Conjugacy of oligomorphic groups

The conjugacy relation for oligomorphic groups is smooth.

To see this,

I Given a closed subgroup G of S∞, let VG be the corresponding

orbit equivalence structure: for each k > 0 introduce a 2k-ary

relation that holds for two k-tuples of distinct elements if they

are in the same orbit of Nk.

I VG is ω-categorical.

I One checks that for oligomorphic groups G,H

G and H are conjugate in S∞ ⇐⇒ VG ∼= VH .

I Isomorphism of ω-categorical structures M , N for the same

language is smooth because M ∼= N ⇐⇒ Th(M) = Th(N).
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Bi-interpretability

Structures A,B are bi-interpretable if there are first-order

interpretations Γ,∆ such that

I A ∼= Γ(B), B ∼= ∆(A)

I some isomorphism γ : A ∼= Â = Γ(∆(A)) is definable in A, and

similarly for B ∼= ∆(Γ(B)).

(Note that Â consists of equivalence classes of tuples from A.)

Coquand1 showed that for ω-categorical A,B we have

Aut(A) ∼= Aut(B)⇐⇒ A and B are bi-interpretable.

1see Ahlbrandt/Ziegler 1986, or Evans’ 2013 Hausdorff Institute notes
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The space of theories

I Theories in a countable language can be seen as infinite

bit sequences with an entry for each sentence whether it’s in or

out. Hence the set of theories inherits a topology from {0, 1}N.

I The complete theories form a closed set.

I To be ω-categorical is a Π0
3 property of theories, because by

Ryll-Nardzewski this property is equivalent to saying that for

each n, the Boolean algebra of formulas with at most n free

variables modulo T -equivalence is finite.
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Bi-interpretability of structures via their theories

We can express bi-interpretability of ω-categorical structures A,B

in terms of their theories:

I A ∼= Γ(B) means that Th(B) says

“the structure interpreted in B via Γ satisfies Th(A)”

I similar for B ∼= ∆(A)

I also express that some γ : A ∼= Γ(∆(A)) is defined by a

particular first order formula.
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Bi-interpretability of ω-categorical theories
Theorem (N., Schlicht and Tent)

There is a Σ0
2 relation which coincides with bi-interpretability on

the Π0
3 set of ω-categorical theories.

Given ω-categorical theories S, T . We have an initial block of existential

quantifiers fixing the dimensions of the interpretations and asserting the

existence of the definable isomorphism γ.

I The rest is easy if the signature if finite

I In general, we have to express that a certain tree computed from

S, T is infinite. The tree is matching types of S and types of T in a

way consistent with γ being an isomorphism.

I The branching of the tree is bounded depending on S, T , because

the dimensions are fixed, and for each arity there are only so many

types. So it is Π0
1 in S, T to say that the tree is infinite. 19 / 40



Bi-interpretability of ω-categorical theories

Corollary

Bi-interpretability on the set of ω-categorical theories is

Borel bi-reducible with a Σ0
2-equivalence relation on a Polish space.

Proof of Corollary.

I There is a finer Polish topology with the same Borel sets in

which the set of ω-categorical theories is closed.

I Then the Σ0
2 relation above yields a Σ0

2 description of

bi-interpretability on this closed set.
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Oligomorphic groups “are” countable models

Theorem

Isomorphism of oligomorphic groups is Borel bi-reducible with the

orbit equivalence relation of a Borel action S∞ y B; where

I B is an invariant Borel set of models with domain N for the

language with one ternary relation symbol,

I the action of S∞ is the natural one.
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A Borel equivalence relation on a Polish space is called countable if

every equivalence class is countable.

Corollary

Isomorphism of oligomorphic groups is Borel reducible to a

countable Borel equivalence relation.

Proof.

I Above we proved that isomorphism of oligomorphic groups is Borel

reducible to a Σ0
2 equivalence relation on a Polish space.

I So the isomorphism relation on B in the foregoing Theorem is

Borel reducible to a Σ0
2 equivalence relation.

I By Hjorth and Kechris (1995; Theorem 3.8): If an S∞ orbit

equivalence relation is Borel reducible to a Σ0
2 equivalence relation,

then it is reducible to a countable equivalence relation.
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Theorem (to discuss)

Isomorphism of oligomorphic groups is Borel bi-reducible with the orbit

equivalence relation of the natural action of S∞ on an isomorphism

invariant Borel set B of models.

For Roelcke precompact G, we defined a structure M(G) with domain

consisting of the cosets of open subgroups. We can in a Borel way find a

bijection of these cosets with N. We showed

G ∼= H ⇐⇒M(G) ∼=M(H).

We will define an “inverse” operation G of the operation M on a Borel

set B of models. For oligomorphic G and M ∈ B we will have

G(M(G)) ∼= G and M(G(M)) ∼= M

This suffices because it implies the converse reduction

G(M) ∼= G(N)⇐⇒M ∼= N .
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Axiomatizing the range of the mapM

I We actually define the map G on an invariant co-analytic set

D of L-structures that contains range(M).

I Then range(M) ⊆ B ⊆ D for an invariant Borel set B.

I Since M(G(M)) ∼= M for each M ∈ B, actually B equals the

closure of range(M) under isomorphism.

I We will observe a number of properties, called axioms, of all

the structures of the form M(G). They can be expressed in

Π1
1 form.

I D is the set of structures satisfying all the axioms.
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Definable relations inM(G)

Recall that our language L only has one ternary relation
R(A,B,C) (which is interpreted by AB ⊆ C for cosets A,B,C).

I The property of A to be a subgroup is definable in M(G) by the

formula AA ⊆ A. That a subgroup A is contained in a subgroup B

is definable by the formula AB ⊆ B.

I A is a left coset of a subgroup U if and only if U is the maximum

subgroup with AU ⊆ A; similarly for A being a right coset of U .

I A ⊆ B ⇐⇒ AU ⊆ B in case A is a left coset of U .

The first few axioms posit for a general L-structure M that the

formulas behave reasonably. E.g., ⊆ is transitive. We use terms

like “subgroup”, “left coset of” to refer to elements satisfying them.
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The filter group F(M)
Given a structure M , denote by F(M) the set of filters (for ⊆)

that contain a left and a right coset of each subgroup. (These

cosets are unique because axioms require that distinct left cosets

are disjoint etc.) We use letters x, y, z for filters.

A ∈ x means intuitively that A is an open neighbourhood of the

group element x.

With this intuition in mind we define an operation on F(M):

x · y = {C ∈M | ∃A ∈ x∃B ∈ y AB ⊆ C}.

For A a right coset of V and B a left coset of V , let A∗ = B if

AB ⊆ V . Let x−1 = {A∗ : A ∈ x}.
The filter of subgroups is the identity 1.
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The filter group F(M)

We can express by Π1
1 axioms that these operations behave as a

group: associativity, and ∀x [x · x−1 = 1].

The sets {x : U ∈ x}, where U ∈M is a subgroup, are declared a

basis of neighbourhoods for the identity. Positing the right axioms,

we ensure that F(M) is a Polish group.

Further, for each subgroup V ∈M , there is an action

F(M) y LC(V ) given by

x · A = B iff ∃S ∈ x [SA ⊆ B],

where LC(V ) denotes the set of left cosets of V .
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A faithful subgroup

I For oligomorphic G, there is an open subgroup V such that

the action Gy LC(V ) is oligomorphic:

e.g. let V = G{n1,...,nk} where the ni represent the k many

1-orbits. Call such a V a faithful subgroup.

I As a further axiom for an abstract L-structure M , we require

the existence of such V , and that the embedding of F(M) into

S∞ is topological (these axioms are Π1
1 but not first-order).

I Then F(M) is oligomorphic and hence Roelcke precompact.
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Showing that the coset structure of F(M) is

isomorphic to M

Mainly, we have to show that each open subgroup U of F(M) has

the form U = {x : U ∈ x} for some subgroup U in M .

I By definition of the topology, U contains a basic open

subgroup Ŵ = {x : W ∈ x}, for some subgroup W ∈M .

I Since F(M) is Roelcke precompact, U is a finite union of

double cosets of Ŵ .

I We require as an axiom for M that each such finite union that

is closed under the group operations corresponds to an actual

subgroup in M .
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Turning F(M) into closed subgroup G(M) of S∞
I By Π1

1 uniformization (Addison/Kondo), from M ∈ B we can

in a Borel way determine a faithful subgroup V .
I Let A0, A1, . . . list LC(V ) in the natural order.
I Then the action F(M) y LC(V ) yields a topological

embedding of F(M) into S∞.
I Its range is the desired closed subgroup G(M).

By the arguments above we have for each oligomorphic G and each

M ∈ B

G(M(G)) ∼= G and M(G(M)) ∼= M .

Theorem (Finished)

Isomorphism of oligomorphic groups is Borel bi-reducible with the orbit

equivalence relation of the natural action of S∞ on a Borel set B of

models.
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Complexity of the isomorphism relation between

profinite subgroups of S∞
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Definition

A topological group G is called profinite if one of the following

equivalent conditions holds.

(a) G is compact, and the clopen sets form a basis for the

topology (i.e., G is totally disconnected).

(b) G is the inverse limit of a system of finite groups carrying the

discrete topology.

We assume all topological groups are separable. In this case, we

have a further equivalent condition

(c) G is isomorphic to a closed subgroup of S∞ with all orbits

finite.
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Topologically finitely generated profinite groups

The isomorphism relation Ef.g. between finitely generated profinite

groups G is Borel bi-reducible with idR.

There are uncountably many non-isomorphic such G. So by Silver’s

theorem it suffices to show Ef.g. ≤B idR.

I A finitely generated profinite group G is determined by its

isomorphism types of finite quotients.

I Let q(G) be the set of these isomorphism types, written in

some fixed way as an infinite bit sequence. This map is Borel

because from G one can “determine” its finite quotients2.

I Then G ∼= H ⇐⇒ q(G) = q(H). So Ef.g. is smooth.

2e.g. Fried/Jarden, Field arithmetic, 16.10.7
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Complexity of isomorphism for Abelian profinite

groups

Pontryagin duality associates to each abelian locally compact

group G the group G∗ of continuous homomorphisms from G into

the circle T, with the compact-open topology.

Pontryagin duality theorem: G ∼= (G∗)∗ via the application map

g 7→ λφ. φ(g), for each locally compact abelian group G.
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Countable abelian torsion versus abelian profinite

A special case of this states that (discrete) countable abelian

torsion groups A correspond to abelian profinite groups. We have

A ∼= B iff A∗ ∼= B∗. The functor ∗ and its inverse are Borel.

So isomorphism between countable abelian torsion groups is

Borel equivalent to continuous isomorphism between

abelian profinite groups.

Isomorphism between abelian countable torsion groups is neither

smooth, nor above graph isomorphism (H. Friedman and Stanley,

1989).
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Graph isomorphism ≤B isom. of profinite groups

A group G is nilpotent-2 if it satisfies the law [[x, y], z] = 1.

Let N p
2 denote the variety of nilpotent-2 groups of exponent p.

Theorem

Let p ≥ 3 be prime. Graph isomorphism can be Borel reduced to

isomorphism between profinite groups in N p
2 .

Proof: A result of Alan Mekler (1981) implies the theorem for

countable abstract groups. We adapt his construction to the

profinite setting.

A symmetric and irreflexive countable graph is called nice if it has no

triangles, no squares, and for each pair of distinct vertices x, y, there is

a vertex z joined to x and not to y.

Easy fact: Graph isomorphism ≤B nice graph isomorphism.
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Mekler’s construction

isomorphism of nice graphs ≤B
isomorphism of countable groups in N p

2 .

I Let F be the free N p
2 group on free generators x0, x1, . . ..

I For r 6= s we write xr,s = [xr, xs].

I Given a graph with domain N and edge relation A, let

G(A) = F/〈xr,s : rAs〉normal closure.

I The centre of G(A) is abelian of exponent p with a basis

consisting of the xr,s such that ¬rAs.

Show that A can be reconstructed from G(A). Therefore:

Let A,B be a nice graphs. Then A ∼= B iff G(A) ∼= G(B).
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Topological version of Mekler’s construction
I Elements of G(A) = F/〈xr,s : rAs〉 have unique normal form∏

〈r,s〉∈L x
βrs
r,s

∏
i∈D x

αi
i , 0 < αi, βrs < p,

where L is a finite set of non-edges, D a finite set of vertices.

I Let Rn be the normal subgroup of G(A) generated by the xi,

i ≥ n. Let G(A) be the completion of G(A) w.r.t. the Rn, i.e.,

G(A) = lim←−nG(A)/Rn.

I Each G(A)/Rn is finite, so this is a profinite group.

I Elements of G(A) have a normal form
∏
〈r,s〉∈L x

βrs
r,s

∏
i∈D x

αi
i ,

where L and D are now allowed to be infinite.

One verifies that A can be reconstructed from G(A):

Let A,B be a nice graphs. Then A ∼= B iff G(A) ∼= G(B).

A→ G(A) is Borel. So GI ≤B isomorphism of profinite N p
2 groups.
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A fake reduction from ∼=Profinite to ∼=Oligomorphic

I Evans and Hewitt (1990): every profinite group is a

topological quotient of an oligomorphic group.

I Given oligomorphic G, let D(G) be the intersection of all open

subgroups with finite index. Note that D(G) is closed and

invariant.

I They show that up to isomorphism, G/D(G) ranges through

all separable profinite groups P .

However, from profinite P ≤c S∞, we cannot Borel determine

oligomorphic GP such that GP/D(GP ) ∼= P in such a way that

P ∼= Q implies GP
∼= GQ. In their construction, one can see how

GP depends on the way P is presented as a subgroup of S∞.
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Some open problems
I How complex is isomorphism of arbitrary closed subgroups of

S∞? Is it ≤B-complete for analytic equivalence relations?
I What is a lower bound for the complexity of isomorphism for

oligomorphic groups?
I How about if the signature of a corresponding ω-categorical

structure can be made finite?
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