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Plan

Brief introduction to randomness
and its connection to other fields

Anti-randomness (or K-triviality) coincides with
being close to computable

Absolute and relative complexity within the class of K-trivials

» defined via subclasses,
» defined via the new “ML-reducibility”,

respectively.
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Martin-Lof randomness

Our central algorithmic randomness notion is the one of
Martin-Lof. It has many equivalent definitions. Here is one.

7 is Martin-Lof random <=
for every computable sequence (0;);cy of binary strings with
> 27171l < 00, there are only finitely many i such that o; is
an initial segment of Z.

Note that lim; 2719/l = 0, so this means that we cannot “Vitali

cover” Z, viewed as a real number, with the collection of dyadic
intervals corresponding to (o;);en-
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Definition via MIL-tests

Sets are viewed as points in Cantor space {0, 1}.

Let A denote the uniform (product) measure on {0, 1}".

» A ML-test is a uniformly computably enumerable sequence
(G)men of open sets in {0, 1} such that A\G,, < 2~™ for each
m.

» A set Z is ML-random if Z passes each ML-test, in the sense
that Z is not in all of the G,,.

There is a universal ML-test (S5,): a set Z is ML-random iff it
passes (S;).
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Characterise ML-randomness via differentiability

Theorem (Demuth 1975/Brattka, Miller, Nies 2011)

Let r € [0,1]. Then
r 1s ML-random <=
f'(r) exists, for each function f of bounded variation such
that f(q) is a computable real, uniformly in each rational q.

» The implication “=" is an effective version of the classical

theorem.

» The implication “<” has no classical counterpart. To prove it,
one builds a computable function f of bounded variation that is
only differentiable at ML-random reals.
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Density
Let A denote uniform (Lebesgue) measure.
Definition
Let £ be a measurable subset of [0, 1]. The (lower) density of E at

areal z is

.. . AMJNE)
El2) = lminf 2212
p(E]2) e [J]

where J ranges over intervals.
This gauges how much, at least, of F is in intervals that zoom in

on z.

p(E | z) is the limit over intervals containing z. Clearly
p(E|2)=1p(E|2)=1.
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Lebesgue’s Density Theorem

Theorem (Lebesgue Density Theorem, 1910)

Let E C [0,1] be measurable. Then for almost every z € [0,1]:
if z € E, then p(E | z) = 1.

It is sufficient to prove it for closed E, because closed sets
approximate E from inside.
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Martin-Lof randomness and density

Does Martin-Lof randomness ensure that an effectively closed
E C[0,1] with z € E has density one at z?

Answer: NO!

Example

» Let F # (), E C [0, 1] be an effectively closed set containing
only Martin-Lof randoms.

» E.g., £ =10,1]\ S; where (S,),en is a universal ML-test.
» Let z = min(F).
» Then p(E | z) = 0 even though 2 is ML-random.

(This uses that every ML-random is Borel normal.)
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Density randomness

A ML-random real z is density random if the conclusion of
Lebesgue’s theorem holds for each effectively closed E containing z.
» Cantor space version (and dyadic density) is equivalent

» This notion is equivalent to left-r.e. martingale convergence,
and differentiability of “interval-r.e.” functions (Madison
group 2012; Myabe, Nies and Zhang BSL 2016)

» Day and Miller (2015) built a ML-random z 27 (/' which is
not density random. So Turing incompleteness of a
ML-random real is not sufficient for density randomness.

» [.o.w. density random properly implies “difference random”
(which is equivalent to positive density).
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Anti-random, or K-trivial sets
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Definition of K-triviality

K (x) is the prefix-free complexity of string x.
Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some b € N,
Vn [K(Al,) < K(0™) + b,

namely, all its initial segments have minimal K-complexity.
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Some properties of the K-trivials

K-trivial sets
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Far from random = close to computable

» An oracle A C N is low for Martin-Lof randomness if every
random set is already random with oracle A.
» That is, A cannot “derandomize” any random set.

» This means that A is very close to computable.

The following says that far from random = close to computable.

Theorem (N., 2005)
Let A CN. Then

A is K-trivial <= A is low for Martin-Léf randomness.

13 / 28



Lowness for K

A is called low for K (Muchnik, 1998) if enhancing the
computational power of the universal function U by an oracle A
does not decrease K (y):

Vy [K(y) < K4(y) + O(1)].

» The straightforward implications Low for ML Ktrivial

are
low for K = low for ML and harder o
low for K = K-trivial. easy e
» In N (2005) the converse \e/asy
implications are shown. Low for K
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A more recent equivalence for K-trivial c.e. sets

Theorem (BGKNT 16 + Day, Miller 16)
Let A CN be c.e.

A is K-trivial <= A <t Z for some ML-random set Z *r .

Proof idea:
» If 7 is ML-random and fails the conclusion of the Lebesgue
density theorem, then Z computes all the K-trivials.

» By Day and Miller’s theorem there is such a Z that is Turing
incomplete (and even AY).

So in fact a single ML-random Z < (' suffices to Turing-cover all the
K-trivials.
This also yields a new proof of K-trivial = low for K.
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Dynamic characterisation of the K-trivials
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Definition of cost functions

Definition

A cost function is a computable function
c:NxN—={zreQ: x>0}

We say that ¢ is monotonic if ¢(z, s) is nonincreasing in x, and

nondecreasing in s.

When building a computable approximation of a A set A, we view
c(x, s) as the cost of changing A(z) at stage s.

17 / 28



Obeying a cost function

We want to make the total cost of changes, taken over all z, finite.

Definition

The computable approximation (A;)sen obeys a cost function c¢ if
00> oz, s)[r <s A wxisleast s.t. Asq(x) # As(2)].

For a A9 set A, we write A = ¢ (A obeys c) if some computable
approximation of A obeys c.
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Basic existence theorem

We say that a cost function c satisfies the limit condition if

lim, sup, ¢(z,s) = 0.

Theorem (Kucera, Terwijn 1999; D, H,N,S 2003; ...)

If a cost function c satisfies the limit condition, then some promptly
simple set A obeys c.

Theorem (N. to appear in this version)
A is K-trivial <= A obeys the cost function co(z,s) = Qs — Q.

Here €2 is Chaitin’s number. One can in fact take any left-c.e.
ML-random real.
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Subideals of the K-trivials

Even though K-trivials are very close to computable, a lot of
structure has emerged inside that class.

Title of a talk of R. Feynman: “There’s lots of space down there”
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Below both halves of a ML-random

The “halves” of a set Z C N are

Zo={n:2ne€ Z}and Z; = {n: 2n+1 € Z}.

Theorem (Greenberg, Miller, N., submitted)
The following are equivalent for a AY set A.
» A is Turing below both halves of a ML-random set
» A is Turing below both halves of
» A obeys the cost function c(x,s) = /Qy — Q.
Obeying a cost function is closed under @. So the first and third

condition together show that the sets of this kind form a Turing
ideal.
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Below p out of ¢ columns of a ML-random
The g-columns of a set Z C N are Z, = {n: gn+p € Z} for p < q.

Theorem (Greenberg, Miller, N., ibd.)

The following are equivalent for a A set A.

» A is Turing below the disjoint sum of every p out of ¢ columns
of a ML-random set Z

» Same for Z =)
» A obeys the cost function c(x,s) = (2, — Q,)P/9.

Again, sets of this kind form an ideal. Call it B3,,,. By general facts
on cost functions (N. ta), a < = B, C Bg.

We also showed that | J,_; B, is the class of sets that are robustly
computable from some ML-random Z (i.e. computable from all

coarse descriptions of 7).
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Relative complexity of K-trivials
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ML-reducibility
Some foregoing results suggest that the complexity of a K-trivial is
largely determined by its interaction with ML-random sets. For
sets A, B C N we define

This only measure the aspects of complexity of a K-trivial “known” to
ML-random oracles. Clearly <t implies <1, and the least degree is
the computable sets.
Theorem (restrict to ML-degrees of c.e. K-trivials)
» The K-trivials are closed downward under <y,.
» If B is c.e. and NOT K-trivial, then any MLR >1 B
computes ', so A <y, B for each AY set A.

» (GMNT, in prep.) For all A K-trivial there is a c.e. D > A
such that D <y, A. In particular D is K-trivial. 24 / 28



c-tests and smartness for a cost function ¢

» For a cost function ¢ with the limit condition write
c(m) = lims c(m, s).

» Suppose c is a cost function with ¢(m) > 27, A uniformly
¢ sequence (G,,) is a c-test if A\G,, < c(m).

» Ais smart for cif A= cand noY >7 A is c-random.

Theorem (BGKNT, JEMS 2016)

Some c.e. set A is smart for cq.
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Smart sets exist for cost functions

Theorem (GMNT, in prep)

For each ¢ > cq, some c.e. A is smart for c.

So A is smart for c iff A is <y -complete among the sets obeying c.
» E.g., for positive rational p/qg = a < 1 let A, be smart for
co(z,5) = (s — Q)%
» Recall that B, , is the class of A that Turing below the disjoint
sum of every p out of ¢ columns of a ML-random set Z.

» We have B, = {B: B <y A.}.

C by the theorem, O because B, is downward closed under <py,.

» The ML-degrees of the A, form a dense linear order.
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Structure of the ML-degrees of K-trivials

Theorem (Kucera, essentially)

For each c.e., incomputable D there are A, B <t D such that
A |ML B.

Theorem (GMNT, in prep)

There is no ML-minimal paur.

Proof idea: For each c.e. K-trivial A we have a cost function c4
with A |= ¢4 such that for MLR Y,

Y >7 A <= Y is not cy-random.

Let ¢ = c4 + cp and take simple D |= c. Then D <y, A, B.
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Questions

v

Is <asr dense on the K-trivials?

v

Is being a smart K-trival an arithmetical property? Stronger:
is <y, an arithmetical relation?

» Can a smart K-trivial be cappable?

» Does every nonzero ML-degree contain a Turing minimal pair?

A draft of this work is available on the 2016 Logic Blog.
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