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André Nies

February 6

1 / 28



Plan

I Brief introduction to randomness

and its connection to other fields

I Anti-randomness (or K-triviality) coincides with

being close to computable

I Absolute and relative complexity within the class of K-trivials

I defined via subclasses,
I defined via the new “ML-reducibility”,

respectively.

2 / 28



Martin-Löf randomness

Our central algorithmic randomness notion is the one of

Martin-Löf. It has many equivalent definitions. Here is one.

Z is Martin-Löf random ⇐⇒
for every computable sequence (σi)i∈N of binary strings with∑

i 2
−|σi| <∞, there are only finitely many i such that σi is

an initial segment of Z.

Note that limi 2
−|σi| = 0, so this means that we cannot “Vitali

cover” Z, viewed as a real number, with the collection of dyadic

intervals corresponding to (σi)i∈N.
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Definition via ML-tests

Sets are viewed as points in Cantor space {0, 1}N.

Let λ denote the uniform (product) measure on {0, 1}N.

I A ML-test is a uniformly computably enumerable sequence

(Gm)m∈N of open sets in {0, 1}N such that λGm ≤ 2−m for each

m.

I A set Z is ML-random if Z passes each ML-test, in the sense

that Z is not in all of the Gm.

There is a universal ML-test (Sr): a set Z is ML-random iff it

passes (Sr).
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Characterise ML-randomness via differentiability

Theorem (Demuth 1975/Brattka, Miller, Nies 2011)

Let r ∈ [0, 1]. Then

r is ML-random ⇐⇒
f ′(r) exists, for each function f of bounded variation such

that f(q) is a computable real, uniformly in each rational q.

I The implication “⇒” is an effective version of the classical

theorem.

I The implication “⇐” has no classical counterpart. To prove it,

one builds a computable function f of bounded variation that is

only differentiable at ML-random reals.
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Density
Let λ denote uniform (Lebesgue) measure.

Definition
Let E be a measurable subset of [0, 1]. The (lower) density of E at

a real z is

ρ(E | z) = lim inf
z∈J , |J |→0

λ(J ∩ E)

|J |
,

where J ranges over intervals.

This gauges how much, at least, of E is in intervals that zoom in

on z.

ρ(E | z) is the limit over intervals containing z. Clearly

ρ(E | z) = 1↔ ρ(E | z) = 1.

6 / 28



Lebesgue’s Density Theorem

Theorem (Lebesgue Density Theorem, 1910)

Let E ⊆ [0, 1] be measurable. Then for almost every z ∈ [0, 1]:

if z ∈ E, then ρ(E | z) = 1.

It is sufficient to prove it for closed E, because closed sets

approximate E from inside.
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Martin-Löf randomness and density

Does Martin-Löf randomness ensure that an effectively closed

E ⊆ [0, 1] with z ∈ E has density one at z?

Answer: NO!

Example
I Let E 6= ∅, E ⊆ [0, 1] be an effectively closed set containing

only Martin-Löf randoms.

I E.g., E = [0, 1] \ S1 where 〈Sr〉r∈N is a universal ML-test.

I Let z = min(E).

I Then ρ(E | z) = 0 even though z is ML-random.

(This uses that every ML-random is Borel normal.)
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Density randomness

A ML-random real z is density random if the conclusion of

Lebesgue’s theorem holds for each effectively closed E containing z.

I Cantor space version (and dyadic density) is equivalent

I This notion is equivalent to left-r.e. martingale convergence,

and differentiability of “interval-r.e.” functions (Madison

group 2012; Myabe, Nies and Zhang BSL 2016)

I Day and Miller (2015) built a ML-random z 6≥T ∅′ which is

not density random. So Turing incompleteness of a

ML-random real is not sufficient for density randomness.

I I.o.w. density random properly implies “difference random”

(which is equivalent to positive density).
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Anti-random, or K-trivial sets
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Definition of K-triviality

K(x) is the prefix-free complexity of string x.

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some b ∈ N,

∀n [K(A�n) ≤ K(0n) + b],

namely, all its initial segments have minimal K-complexity.
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Some properties of the K-trivials

⌦

K-trivial sets

⌦

B
A

K-trivial sets

⌦

C  (c.e., low )2

K-trivial sets

⌦

R  (low)

K-trivial sets

I Ideal in the ∆0
2 Turing degrees

(Chaitin ‘75, DHNS ‘03, N. ‘05)

I C.e. K-trivs have Σ0
3 index set

I they are all superlow: A′ ≤tt ∅′

(N. ‘05)

I there is no largest: for every low

c.e. set B, there is a K-trivial

set

A 6≤T B (N., ‘02)

I there is a low2 c.e. set C above

all of them (Barmpalias and N.,

2011)

I there is a low1 set R above all of

them (Kučera and Slaman)
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Far from random = close to computable

I An oracle A ⊆ N is low for Martin-Löf randomness if every

random set is already random with oracle A.

I That is, A cannot “derandomize” any random set.

I This means that A is very close to computable.

The following says that far from random = close to computable.

Theorem (N., 2005)

Let A ⊆ N. Then

A is K-trivial ⇐⇒ A is low for Martin-Löf randomness.
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Lowness for K

A is called low for K (Muchnik, 1998) if enhancing the

computational power of the universal function U by an oracle A

does not decrease K(y):

∀y [K(y) ≤ KA(y) +O(1)].

I The straightforward implications

are

low for K ⇒ low for ML and

low for K ⇒ K-trivial.

I In N (2005) the converse

implications are shown. Low for K

Low for ML

easy
easy

K-trivial

harder
hardest,
non-
uniform
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A more recent equivalence for K-trivial c.e. sets

Theorem (BGKNT 16 + Day, Miller 16)

Let A ⊆ N be c.e.

A is K-trivial ⇐⇒ A ≤T Z for some ML-random set Z 6≥T ∅′.

Proof idea:

I If Z is ML-random and fails the conclusion of the Lebesgue

density theorem, then Z computes all the K-trivials.

I By Day and Miller’s theorem there is such a Z that is Turing

incomplete (and even ∆0
2).

So in fact a single ML-random Z <T ∅′ suffices to Turing-cover all the

K-trivials.

This also yields a new proof of K-trivial ⇒ low for K.
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Dynamic characterisation of the K-trivials
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Definition of cost functions

Definition
A cost function is a computable function

c : N× N→ {x ∈ Q : x ≥ 0}.

We say that c is monotonic if c(x, s) is nonincreasing in x, and

nondecreasing in s.

When building a computable approximation of a ∆0
2 set A, we view

c(x, s) as the cost of changing A(x) at stage s.
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Obeying a cost function

We want to make the total cost of changes, taken over all x, finite.

Definition

The computable approximation (As)s∈N obeys a cost function c if

∞ >
∑

x,s c(x, s) [[x < s ∧ x is least s.t. As−1(x) 6= As(x)]].

For a ∆0
2 set A, we write A |= c (A obeys c) if some computable

approximation of A obeys c.
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Basic existence theorem

We say that a cost function c satisfies the limit condition if

limx sups c(x, s) = 0.

Theorem (Kučera, Terwijn 1999; D,H,N,S 2003; . . .)

If a cost function c satisfies the limit condition, then some promptly

simple set A obeys c.

Theorem (N. to appear in this version)

A is K-trivial ⇐⇒ A obeys the cost function cΩ(x, s) = Ωs − Ωx.

Here Ω is Chaitin’s number. One can in fact take any left-c.e.

ML-random real.
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Subideals of the K-trivials

Even though K-trivials are very close to computable, a lot of

structure has emerged inside that class.

Title of a talk of R. Feynman: “There’s lots of space down there”
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Below both halves of a ML-random

The “halves” of a set Z ⊆ N are

Z0 = {n : 2n ∈ Z} and Z1 = {n : 2n+ 1 ∈ Z}.

Theorem (Greenberg, Miller, N., submitted)

The following are equivalent for a ∆0
2 set A.

I A is Turing below both halves of a ML-random set

I A is Turing below both halves of Ω

I A obeys the cost function c(x, s) =
√

Ωs − Ωx.

Obeying a cost function is closed under ⊕. So the first and third

condition together show that the sets of this kind form a Turing

ideal.
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Below p out of q columns of a ML-random
The q-columns of a set Z ⊆ N are Zp = {n : qn+ p ∈ Z} for p < q.

Theorem (Greenberg, Miller, N., ibd.)

The following are equivalent for a ∆0
2 set A.

I A is Turing below the disjoint sum of every p out of q columns

of a ML-random set Z

I Same for Z = Ω

I A obeys the cost function c(x, s) = (Ωs − Ωx)
p/q.

Again, sets of this kind form an ideal. Call it Bp/q. By general facts

on cost functions (N. ta), α < β ⇒ Bα ⊂ Bβ.

We also showed that
⋃
α<1 Bα is the class of sets that are robustly

computable from some ML-random Z (i.e. computable from all

coarse descriptions of Z).
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Relative complexity of K-trivials
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ML-reducibility
Some foregoing results suggest that the complexity of a K-trivial is

largely determined by its interaction with ML-random sets. For

sets A,B ⊆ N we define

A ≤ML B ⇐⇒ ∀Z ∈ MLR [B ≤T Z → A ≤T Z].

This only measure the aspects of complexity of a K-trivial “known” to

ML-random oracles. Clearly ≤T implies ≤ML, and the least degree is

the computable sets.

Theorem (restrict to ML-degrees of c.e. K-trivials)
I The K-trivials are closed downward under ≤ML.

I If B is c.e. and NOT K-trivial, then any MLR ≥T B
computes ∅′, so A ≤ML B for each ∆0

2 set A.

I (GMNT, in prep.) For all A K-trivial there is a c.e. D ≥tt A
such that D ≤ML A. In particular D is K-trivial. 24 / 28



c-tests and smartness for a cost function c

I For a cost function c with the limit condition write

c(m) = lims c(m, s).

I Suppose c is a cost function with c(m) ≥ 2−m. A uniformly

Σ0
1 sequence (Gm) is a c-test if λGm ≤ c(m).

I A is smart for c if A |= c and no Y ≥T A is c-random.

Theorem (BGKNT, JEMS 2016)

Some c.e. set A is smart for cΩ.
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Smart sets exist for cost functions

Theorem (GMNT, in prep)

For each c ≥ cΩ, some c.e. A is smart for c.

So A is smart for c iff A is ≤ML-complete among the sets obeying c.

I E.g., for positive rational p/q = α < 1 let Aα be smart for

cα(x, s) = (Ωs − Ωx)
α.

I Recall that Bp/q is the class of A that Turing below the disjoint

sum of every p out of q columns of a ML-random set Z.

I We have Bα = {B : B ≤ML Aα}.
⊆ by the theorem, ⊇ because Bα is downward closed under ≤ML.

I The ML-degrees of the Aα form a dense linear order.
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Structure of the ML-degrees of K-trivials

Theorem (Kučera, essentially)

For each c.e., incomputable D there are A,B ≤T D such that

A |ML B.

Theorem (GMNT, in prep)

There is no ML-minimal pair.

Proof idea: For each c.e. K-trivial A we have a cost function cA
with A |= cA such that for MLR Y ,

Y ≥T A⇐⇒ Y is not cA-random.

Let c = cA + cB and take simple D |= c. Then D ≤ML A,B.
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Questions

I Is <ML dense on the K-trivials?

I Is being a smart K-trival an arithmetical property? Stronger:

is ≤ML an arithmetical relation?

I Can a smart K-trivial be cappable?

I Does every nonzero ML-degree contain a Turing minimal pair?

A draft of this work is available on the 2016 Logic Blog.
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