Structure within the class of K-trivial sets

André Nies

Plan

- Brief introduction to randomness and its connection to other fields
- ▶ Anti-randomness (or K-triviality) coincides with being close to computable

 \blacktriangleright Absolute and relative complexity within the class of $K\text{-}{\rm trivials}$

- defined via subclasses,
- ▶ defined via the new "ML-reducibility",

respectively.

Martin-Löf randomness

Our central algorithmic randomness notion is the one of Martin-Löf. It has many equivalent definitions. Here is one.

Z is Martin-Löf random \iff

for every computable sequence $(\sigma_i)_{i \in \mathbb{N}}$ of binary strings with $\sum_i 2^{-|\sigma_i|} < \infty$, there are only finitely many *i* such that σ_i is an initial segment of *Z*.

Note that $\lim_{i} 2^{-|\sigma_i|} = 0$, so this means that we cannot "Vitali cover" Z, viewed as a real number, with the collection of dyadic intervals corresponding to $(\sigma_i)_{i \in \mathbb{N}}$.

Definition via ML-tests

Sets are viewed as points in Cantor space $\{0, 1\}^{\mathbb{N}}$. Let λ denote the uniform (product) measure on $\{0, 1\}^{\mathbb{N}}$.

- ► A ML-test is a uniformly computably enumerable sequence $(G_m)_{m \in \mathbb{N}}$ of open sets in $\{0, 1\}^{\mathbb{N}}$ such that $\lambda G_m \leq 2^{-m}$ for each m.
- ▶ A set Z is ML-random if Z passes each ML-test, in the sense that Z is not in all of the G_m .

There is a universal ML-test (S_r) : a set Z is ML-random iff it passes (S_r) .

Characterise ML-randomness via differentiability

- Theorem (Demuth 1975/Brattka, Miller, Nies 2011) Let $r \in [0, 1]$. Then
- $r \ is \ ML$ -random \iff

f'(r) exists, for each function f of bounded variation such that f(q) is a computable real, uniformly in each rational q.

- ► The implication "⇒" is an effective version of the classical theorem.
- ► The implication "⇐" has no classical counterpart. To prove it, one builds a computable function f of bounded variation that is only differentiable at ML-random reals.

Density

Let λ denote uniform (Lebesgue) measure.

Definition

Let E be a measurable subset of [0, 1]. The (lower) density of E at a real z is

$$\underline{\rho}(E \mid z) = \liminf_{z \in J, \, |J| \to 0} \frac{\lambda(J \cap E)}{|J|},$$

where J ranges over intervals.

This gauges how much, at least, of E is in intervals that zoom in on z.

 $\rho(E\mid z)$ is the limit over intervals containing z. Clearly $\underline{\rho}(E\mid z)=1\leftrightarrow\rho(E\mid z)=1.$

Lebesgue's Density Theorem

Theorem (Lebesgue Density Theorem, 1910) Let $E \subseteq [0, 1]$ be measurable. Then for almost every $z \in [0, 1]$: if $z \in E$, then $\underline{\rho}(E \mid z) = 1$.

It is sufficient to prove it for closed E, because closed sets approximate E from inside.

Martin-Löf randomness and density

Does Martin-Löf randomness ensure that an effectively closed $E \subseteq [0, 1]$ with $z \in E$ has density one at z?

Answer: NO!

Example

- ▶ Let $E \neq \emptyset$, $E \subseteq [0, 1]$ be an effectively closed set containing only Martin-Löf randoms.
- ▶ E.g., $E = [0, 1] \setminus S_1$ where $\langle S_r \rangle_{r \in \mathbb{N}}$ is a universal ML-test.
- Let $z = \min(E)$.
- Then $\rho(E \mid z) = 0$ even though z is ML-random.

(This uses that every ML-random is Borel normal.)

Density randomness

A ML-random real z is density random if the conclusion of Lebesgue's theorem holds for each effectively closed E containing z.

- ▶ Cantor space version (and dyadic density) is equivalent
- This notion is equivalent to left-r.e. martingale convergence, and differentiability of "interval-r.e." functions (Madison group 2012; Myabe, Nies and Zhang BSL 2016)
- ► Day and Miller (2015) built a ML-random z ≥_T Ø' which is not density random. So Turing incompleteness of a ML-random real is not sufficient for density randomness.
- I.o.w. density random properly implies "difference random" (which is equivalent to positive density).

Anti-random, or K-trivial sets

Definition of K-triviality

K(x) is the prefix-free complexity of string x.

Definition (going back to Chaitin, 1975) An infinite sequence of bits A is K-trivial if, for some $b \in \mathbb{N}$,

 $\forall n \left[K(A \upharpoonright_n) \le K(0^n) + b \right],$

namely, all its initial segments have minimal K-complexity.

Some properties of the K-trivials

Far from random = close to computable

▶ An oracle $A \subseteq \mathbb{N}$ is low for Martin-Löf randomness if every random set is already random with oracle A.

- That is, A cannot "derandomize" any random set.
- This means that A is very close to computable.

The following says that far from random = close to computable.

Theorem (N., 2005)

Let $A \subseteq \mathbb{N}$. Then

A is K-trivial \iff A is low for Martin-Löf randomness.

Lowness for K

A is called low for K (Muchnik, 1998) if enhancing the computational power of the universal function \mathbb{U} by an oracle A does not decrease K(y):

 $\forall y \ [K(y) \le K^A(y) + O(1)].$

► The straightforward implications are

low for $K \Rightarrow$ low for ML and low for $K \Rightarrow K$ -trivial.

▶ In N (2005) the converse implications are shown.

A more recent equivalence for K-trivial c.e. sets

Theorem (BGKNT 16 + Day, Miller 16) Let $A \subseteq \mathbb{N}$ be c.e.

A is K-trivial $\iff A \leq_T Z$ for some ML-random set $Z \not\geq_T \emptyset'$.

Proof idea:

- ► If Z is ML-random and fails the conclusion of the Lebesgue density theorem, then Z computes all the K-trivials.
- ► By Day and Miller's theorem there is such a Z that is Turing incomplete (and even Δ⁰₂).

So in fact a single ML-random $Z <_T \emptyset'$ suffices to Turing-cover all the K-trivials.

This also yields a new proof of K-trivial \Rightarrow low for K.

Dynamic characterisation of the K-trivials

Definition of cost functions

Definition

A cost function is a computable function

 $c: \mathbb{N} \times \mathbb{N} \to \{ x \in \mathbb{Q} \colon x \ge 0 \}.$

We say that c is monotonic if c(x, s) is nonincreasing in x, and nondecreasing in s.

When building a computable approximation of a Δ_2^0 set A, we view c(x, s) as the cost of changing A(x) at stage s.

Obeying a cost function

We want to make the total cost of changes, taken over all x, finite. Definition

The computable approximation $(A_s)_{s\in\mathbb{N}}$ obeys a cost function c if

 $\infty > \sum_{x,s} c(x,s) [x < s \land x \text{ is least s.t. } A_{s-1}(x) \neq A_s(x)].$

For a Δ_2^0 set A, we write $A \models c$ (A obeys c) if some computable approximation of A obeys c.

Basic existence theorem

We say that a cost function c satisfies the limit condition if

 $\lim_x \sup_s c(x,s) = 0.$

Theorem (Kučera, Terwijn 1999; D,H,N,S 2003; ...) If a cost function c satisfies the limit condition, then some promptly simple set A obeys c.

Theorem (N. to appear in this version) A is K-trivial \iff A obeys the cost function $c_{\Omega}(x,s) = \Omega_s - \Omega_x$.

Here Ω is Chaitin's number. One can in fact take any left-c.e. ML-random real.

Subideals of the K-trivials

Even though K-trivials are very close to computable, a lot of structure has emerged inside that class.

Title of a talk of R. Feynman: "There's lots of space down there"

Below both halves of a ML-random

The "halves" of a set $Z \subseteq \mathbb{N}$ are

 $Z_0 = \{n \colon 2n \in Z\}$ and $Z_1 = \{n \colon 2n + 1 \in Z\}.$

Theorem (Greenberg, Miller, N., submitted) The following are equivalent for a Δ_2^0 set A.

- ► A is Turing below both halves of a ML-random set
- A is Turing below both halves of Ω
- A obeys the cost function $c(x,s) = \sqrt{\Omega_s \Omega_x}$.

Obeying a cost function is closed under \oplus . So the first and third condition together show that the sets of this kind form a Turing ideal.

Below p out of q columns of a ML-random

The q-columns of a set $Z \subseteq \mathbb{N}$ are $Z_p = \{n : qn + p \in Z\}$ for p < q.

Theorem (Greenberg, Miller, N., ibd.)

The following are equivalent for a Δ_2^0 set A.

- ► A is Turing below the disjoint sum of every p out of q columns of a ML-random set Z
- Same for $Z = \Omega$
- A obeys the cost function $c(x,s) = (\Omega_s \Omega_x)^{p/q}$.

Again, sets of this kind form an ideal. Call it $\mathcal{B}_{p/q}$. By general facts on cost functions (N. ta), $\alpha < \beta \Rightarrow \mathcal{B}_{\alpha} \subset \mathcal{B}_{\beta}$.

We also showed that $\bigcup_{\alpha < 1} \mathcal{B}_{\alpha}$ is the class of sets that are robustly computable from some ML-random Z (i.e. computable from all coarse descriptions of Z).

Relative complexity of K-trivials

ML-reducibility

Some foregoing results suggest that the complexity of a K-trivial is largely determined by its interaction with ML-random sets. For sets $A, B \subseteq \mathbb{N}$ we define

 $A \leq_{\mathrm{ML}} B \Longleftrightarrow \forall Z \in \mathsf{MLR} \left[B \leq_{\mathrm{T}} Z \to A \leq_{\mathrm{T}} Z \right].$

This only measure the aspects of complexity of a K-trivial "known" to ML-random oracles. Clearly $\leq_{\rm T}$ implies \leq_{ML} , and the least degree is the computable sets.

Theorem (restrict to ML-degrees of c.e. K-trivials)

- The K-trivials are closed downward under \leq_{ML} .
- ► If B is c.e. and NOT K-trivial, then any $MLR \ge_T B$ computes \emptyset' , so $A \le_{ML} B$ for each Δ_2^0 set A.
- ► (GMNT, in prep.) For all A K-trivial there is a c.e. $D \ge_{tt} A$ such that $D \le_{ML} A$. In particular D is K-trivial.

${\bf c}\text{-tests}$ and smartness for a cost function ${\bf c}$

- ► For a cost function **c** with the limit condition write $\underline{\mathbf{c}}(m) = \lim_{s} \mathbf{c}(m, s).$
- ▶ Suppose **c** is a cost function with $\mathbf{c}(m) \ge 2^{-m}$. A uniformly Σ_1^0 sequence (G_m) is a **c**-test if $\lambda G_m \le \mathbf{c}(m)$.
- A is smart for c if $A \models c$ and no $Y \ge_T A$ is c-random.

Theorem (BGKNT, JEMS 2016)

Some c.e. set A is smart for \mathbf{c}_{Ω} .

Smart sets exist for cost functions

Theorem (GMNT, in prep)

For each $\mathbf{c} \geq \mathbf{c}_{\Omega}$, some c.e. A is smart for \mathbf{c} .

So A is smart for c iff A is \leq_{ML} -complete among the sets obeying c.

- ► E.g., for positive rational $p/q = \alpha < 1$ let A_{α} be smart for $\mathbf{c}_{\alpha}(x,s) = (\Omega_s \Omega_x)^{\alpha}$.
- ▶ Recall that $\mathcal{B}_{p/q}$ is the class of *A* that Turing below the disjoint sum of every *p* out of *q* columns of a ML-random set *Z*.
- ► We have $\mathcal{B}_{\alpha} = \{B : B \leq_{\mathrm{ML}} A_{\alpha}\}.$ \subseteq by the theorem, \supseteq because \mathcal{B}_{α} is downward closed under \leq_{ML} .
- The ML-degrees of the A_{α} form a dense linear order.

Structure of the ML-degrees of K-trivials

Theorem (Kučera, essentially) For each c.e., incomputable D there are $A, B \leq_{\mathrm{T}} D$ such that $A \mid_{ML} B$.

Theorem (GMNT, in prep) There is no ML-minimal pair.

Proof idea: For each c.e. *K*-trivial *A* we have a cost function \mathbf{c}_A with $A \models \mathbf{c}_A$ such that for MLR *Y*,

 $Y \geq_T A \iff Y$ is not \mathbf{c}_A -random.

Let $\mathbf{c} = \mathbf{c}_A + \mathbf{c}_B$ and take simple $D \models \mathbf{c}$. Then $D \leq_{\mathrm{ML}} A, B$.

Questions

- Is $<_{ML}$ dense on the *K*-trivials?
- ▶ Is being a smart K-trival an arithmetical property? Stronger: is \leq_{ML} an arithmetical relation?
- Can a smart K-trivial be cappable?
- ▶ Does every nonzero ML-degree contain a Turing minimal pair?

A draft of this work is available on the 2016 Logic Blog.