Randomness for infinite sequences of quantum bits

André Nies

CCR 2017, Mysore

Joint work with Volkher Scholz, ETH Zürich

Plan

- I.
 Quantum bits
 - ▶ Finite sequences of quantum bits, density operators
 - Infinite coherent sequences of density operators. They are states on a certain computable C^* -algebra
- II. Extend Martin-Löf randomness to this setting.
 - Universal quantum Martin-Löf test
 - ▶ For classical bit sequences,

 $\text{ML-random} \Longleftrightarrow \text{quantum ML-random}$

• A version of Levin-Schnorr theorem in this setting.

Quantum bits

- A classical bit can be in states 0, 1. Write them as $|0\rangle, |1\rangle$.
- ▶ A qubit is a physical system with two classical states:
 - polarisation of photon horizontal/vertical,
 - ▶ hydrogen atom with electron in basic/excited state
 - Schrödinger's cat dead / alive.
- ► A qubit can be in a superposition of the two classical states:

 $\alpha \mid 0 \rangle + \beta \mid 1 \rangle,$

 $\alpha,\beta\in\mathbb{C},\,|\alpha|^2+|\beta|^2=1.\ \text{E.g.}\ \alpha=2/\sqrt{5},\beta=-i/\sqrt{5}.$

- ► Visualise as surface points on "Bloch sphere", where |0⟩, |1⟩ are South and North pole, respectively.
- ► Measurement of a qubit w.r.t. standard basis |0⟩, |1⟩ yields 0 with probability |α|², and 1 with probability |β|².
- ▶ Measurement forces the system to settle on a classical state.

Hilbert spaces and their tensor products

- The state of a physical system is represented by a vector in a finite dimensional Hilbert space.
- ► $\langle a|b \rangle$ denotes the inner product of vectors a, b, linear in the second component.
- ▶ For systems A, B, the tensor product $A \otimes B$ is a Hilbert space that represents the combined system.
- $A \otimes B$ is the quotient of the vector space generated by the set $A \times B$ as a basis, by the relations saying things like $(\gamma a, b) = \gamma(a, b)$ for $\gamma \in \mathbb{C}$, and (a + a', b) = (a, b) + (a', b). Write $a \otimes b$ for the equivalence class of (a, b).
- Define inner product on $A \otimes B$ by

 $\langle a \otimes b | c \otimes d \rangle = \langle a | c \rangle \langle b | d \rangle.$

Finite sequences of quantum bits

► Mathematically, a qubit is simply a unit vector in C². The state of a system of n qubits is a unit vector in the tensor power

$$(\mathbb{C}^2)^{\otimes n} := \underbrace{\mathbb{C}^2 \otimes \ldots \otimes \mathbb{C}^2}_n$$

- We denote the standard basis of C² by |0⟩, |1⟩. The standard basis of (C²)^{⊗n} is given by n-bit strings: it consists of vectors |a₁...a_n⟩ := |a₁⟩ ⊗ ... ⊗ |a_n⟩.
- ► The state of the system of n qubits is a linear superposition of them. Example: Bell (or "maximally entangled") state ¹/_{√2}(|00⟩ + |11⟩).

Mixed states, or density operators

- ▶ So far we had "pure" states $|\psi\rangle$ viewed as unit vectors in $(\mathbb{C}^2)^{\otimes n}$.
- ► $|\psi\rangle\langle\psi|$ is orth. projection on the subspace spanned by $|\psi\rangle$ fixing $|\psi\rangle$.
- A mixed state is a convex linear combination $\sum_{i=1}^{2^n} p_i |\psi_i\rangle \langle \psi_i |$ for pairwise orthogonal pure states ψ_i .
- E.g. for n = 1, a mixed state is $\frac{1}{3}|0\rangle\langle 0| + \frac{2}{3}|1\rangle\langle 1|$.
- Recall that for an operator S on A, the trace is

tr(S) = sum of eigenvalues of S.

A mixed state is the same as a positive Hermitean operator S on (C²)^{⊗n} with tr(S) = 1. One can see this via the spectral decomposition. Partial trace $T_B: L(A \otimes B) \to L(A)$ Recall: Given systems (finite dimensional Hilbert spaces) A, B, the tensor product $A \otimes B$ is a Hilbert space that represents the combined system. L(A) denotes the space of the linear operators on A.

We want to surject $L(A \otimes B)$ onto L(A). The partial trace T_B is the unique linear operator $L(A \otimes B) \to L(A)$ such that for $R \in L(A), S \in L(B)$, we have $T_B(R \otimes S) = R \cdot tr(S)$.

- ► Example: Let $A = B = \mathbb{C}^2$. The partial trace T_B corresponds to deleting the last qubit. E.g. $T_B(|10\rangle\langle 10|) = |1\rangle\langle 1|$.
- Let's consider again the Bell state $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$, now viewed as projection β in $L(A \otimes B)$. We have $T_B(\beta) = \frac{1}{2}(|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1|)$ which is a mixed state!

Infinite coherent sequences of density operators

 M_n denotes the set of $2^n \times 2^n$ matrices over \mathbb{C} . We have a partial trace operation $T_n: M_{n+1} \to M_n$ ("erase the last qubit").

"Quantum Cantor space" $S(M_{\infty})$ consists of the sequences $(\rho_n)_{n \in \mathbb{N}}$ of density operators in M_n such that $T_n(\rho_{n+1}) = \rho_n$ for each n.

- ▶ This is the set of states (linear functionals of norm 1) on the computable C^* algebra $M_{\infty} = \lim_n M_n$, known as the CAR algebra (for "canonical anticommutation relations").
- ▶ $S(M_{\infty})$ is compact in a natural topology (weak-*), and has a convex structure.

Embed Cantor space into quantum Cantor space Recall: $(\mathbb{C}^2)^{\otimes n}$ has as a base the vectors $|\sigma\rangle$, for σ a string of n classical bits.

We describe the partial trace operation $T_n: M_{n+1} \to M_n$ ("erase last qubit") given by the isomorphism $M_{n+1} \cong M_n \otimes \mathbb{C}^2$.

For a $2^{n+1} \times 2^{n+1}$ matrix $A = (a_{\sigma r,\tau s})$ where $|\sigma|, |\tau| = n, r, s$ are bits, $B = T_n(A)$ is given by the $2^n \times 2^n$ matrix

 $b_{\sigma,\tau} = a_{\sigma0,\tau0} + a_{\sigma1,\tau1}.$

- Classical bit sequence Z becomes $(\rho_n)_{n \in \mathbb{N}}$ where the bit matrix $B = \rho_n \in M_n$ satisfies $b_{\sigma,\tau} = 1 \iff \sigma = \tau = Z \upharpoonright_n$.
- If all the ρ_n are diagonal matrices, we describe a measure on Cantor space. Classical bit sequences are Dirac measures.

Part 2: Randomness for coherent

sequences of density operators

- Main objects of study: states $Z \in S(M_{\infty})$.
- ► Z is a coherent sequence $(\rho_n)_{n \in \mathbb{N}}$, where $\rho_n \in M_n$ is a density matrix, $T_n(\rho_{n+1}) = \rho_n$.

Special projections

- \mathbb{C}_{alg} denotes the field of algebraic complex numbers.
- A projection in M_n is a hermitean matrix p such that $p^2 = p$.
- A special projection in M_n is a projection with matrix entries in \mathbb{C}_{alg} .
- ▶ We have a natural embedding $M_n \to M_{n+1}$ via $A \to A \otimes I_2$, i.e. replace every element t by $\begin{array}{c}t & 0\\0 & t\end{array}$.
- ▶ $p \leq q$, for projections $p \in M_n, q \in M_k$, means that range of p is contained in range of q.

Σ_1^0 probabilistic sets on quantum Cantor space

A Σ_1^0 set in Cantor space can be described by an ascending effective union $\bigcup_n C_n$ where C_n is a clopen set given by strings of length n.

We want to give a quantum version of this.

A quantum Σ_1^0 set G is given by a computable ascending sequence of special projections (p_n) where $p_n \in M_n$. Corresponding to measure, we have

$$\tau(G) := \sup_n 2^{-n} \mathsf{tr}(p_n).$$

For Z in quantum Cantor space let $G(Z) = \sup_n Z(p_n)$.

Measurements

Recall: A quantum Σ_1^0 set G is given by a computable ascending sequence of special projections (p_n) where $p_n \in M_n$. For Z in quantum Cantor space let $G(Z) = \sup_n Z(p_n)$.

In classic setting, p_n is a clopen set given by strings of length n. If Z is a bit sequence, we have $Z(p_n) = 1 \iff Z \upharpoonright_n \in p_n$, so G(Z) is as usual.

In the language of quantum mechanics we can view $Z(p_n)$ as a measurement of Z with the observable p_n . $Z(p_n)$ is the probability that Z is "in" p_n . In the classical case this is simply 1 (in) or 0 (out).

We have $Z(p_n) = \operatorname{tr}(Z \upharpoonright_n p_n)$, recalling that tr is the trace, and $Z \upharpoonright_n \in M_n$ is a density operator. This means the measurement only depends on the first n qubits of Z.

Quantum ML test

- ► A quantum Martin-Löf test is an effective sequence $\langle G_r \rangle_{r \in \mathbb{N}}$ of quantum Σ_1^0 sets such that $\tau(G_r) \leq 2^{-r}$ for each r.
- ► Z passes the test if $\inf_r G_r(Z) = 0$. Z is quantum ML random if it passes each quantum ML test.

Adapting the usual construction, we have:

Prop. There is a universal quantum ML-test $\langle L_n \rangle$. In fact for each qML test $\langle G_k \rangle$ and each state Z we have $\inf_n L_n(Z) \geq \inf_k G_k(Z)$.

However, because of the "inf(...) = 0" in the passing condition, quantum ML-randomness is merely a Π_3^0 property of states (while the usual ML-randomness of bit sequences is Σ_2^0).

No difference for bit sequences

Thm. Suppose $Z \in \{0,1\}^{\mathbb{N}}$. Then Z is ML-random \iff Z viewed as an element of $\mathcal{S}(M_{2^{\infty}})$ is qML-random.

⇐: Every classical ML-test is also a quantum ML-test. ⇒: Given a quantum ML test (G_r) with $\inf_r G_r(Z) > 0$, we have to find a classical ML-test that succeeds on Z.

- ► For the projection p_n , compute unitary $u_n \in M_n$ such that $q_n := u_n^* p_n u_n$ is a (projection onto the subspace spanned by a) clopen set.
- Make the u_n cohere with the q_n in sense that $u_{n+1}q_n = u_nq_n$ $(u_{n+1} \text{ doesn't do new things on the range of } p_n).$
- Z(p_n) = ∑_{|σ|=n,q_n(<u>σ</u>)=<u>σ</u>} |⟨u(<u>σ</u>)|Z↾_n⟩|² where <u>σ</u> is short for |σ⟩.
 Use this to build a classical ML-test for Z.

Value of quantum ML test at state

Recall: A quantum Martin-Löf test is an effective sequence $\langle G_r \rangle_{r \in \mathbb{N}}$ of quantum Σ_1^0 sets such that $\tau(G_r) \leq 2^{-r}$ for each r.

Think of $\langle G_r \rangle_{r \in \mathbb{N}}$ as a sequence of measurements. The overall measured value at Z is $\inf_r G_r(Z)$.

It is possible Z is not random, but the measured value is < 1 for the universal quantum ML-test: Take a ML-random bit sequence Y. Let Z be the state $\frac{1}{2}Y + \frac{1}{2}0^{\infty}$. This is not random, but for the universal qML-test (L_r) we have

 $\inf_r L_r(Z) \le \inf_r L_r(Y) + \frac{1}{2} = \frac{1}{2}.$

ML-random measures on $\{0,1\}^{\mathbb{N}}$

Recall that measures on $\{0, 1\}^{\mathbb{N}}$ correspond to states Z on M_{∞} with all the $Z \upharpoonright_n$ diagonal matrices. Mauldin and Monticino (Israel J. Math., 1995) and then Culver's thesis (Notre Dame, 2015) describe the uniform computable probability measure \mathbb{P} on the set of measures on Cantor space. So for measures there is an established notion of ML-randomness.

Question. If a probability measure μ is ML-random wrt to \mathbb{P} , is μ quantum ML-random?

All we can show: if μ is \mathbb{P} -random and (G^r) a (classical) ML-test, then μ passes the test in the sense above that $\inf \mu(G^r) = 0$. This uses that $\int_{\mathcal{M}(\{0,1\}^{\mathbb{N}})} \mu(G) d\mathbb{P}(\mu) = \lambda(G)$ for open $G \subseteq \{0,1\}^{\mathbb{N}}$.

Quantum Turing machines

- Bernstein and Vazirani (SIAM, 1997) introduced quantum TM.
- ▶ Single steps are unitary operations. Computation is reversible.
- ▶ QTM input and output are qubit strings.
- ▶ They showed that there is a universal QTM U.
- I/O behaviour is linear, so we can use as inputs density operators in some M_n .

Quantum Kolmogorov complexity

Berthiaume, van Dam, LaPlante JCSS 2001 defined quantum Kolmogorov complexity.

- For an operator ρ , the trace norm is $||\rho||_{tr} = |tr(\rho)|$. (Generalises L_1 norm of vectors.)
- For $\epsilon > 0$ let

 $QC^{\epsilon}(X) = \min\{\ell(P) \colon ||X - \mathbb{U}(P)||_{\mathsf{tr}} \le \epsilon\}.$

This says we take the least length of a qubit string P such that $\mathbb{U}(P)$ and X are within ϵ in the trace distance.

• conditional version $QC^{\epsilon}(X)|r$, where r is a number (in binary)

No convincing prefix free version of quantum Kolg. complexity (an attempt is in Markus Mueller's 2007 thesis, U. Berlin).

Version of Miller/Yu theorem (in progress)

Let Z be a state on M_{∞} . Then we have the following:

▶ If Z is qML-random, then for each computable function f with $\sum_{n} 2^{-f(n)} < \infty$, $\forall \epsilon > 0 \exists r \forall n$

 $QC^{\epsilon}(Z\upharpoonright_n | n) \ge n - f(n) - r.$

► There exists a computable function f with $\sum_{n} 2^{-f(n)} < \infty$ such that: Z not quantum ML-random $\Rightarrow \exists \epsilon > 0 \forall r \exists n$ $QC^{\epsilon}(Z \upharpoonright_{n} \mid n) < n - f(n) - r.$

In fact if Z fails the uniform qML test at order $\delta < 1$, we can choose $\epsilon = 2(\sqrt{1-\delta})$.

We plan to adapt the short proof in the Bienvenu/Merkle/Shen 2007 paper to the quantum setting. Many new complications.

Questions

- Closure properties of quantum ML-randomness. E.g., is a computable convex combination of qML-random states again qML-random?
- ► Base invariance (how about sequences of "qutrits"- are they equivalent in some way to qML-random sequences?)
- One can introduce quantum Solovay tests. Are they equivalent in strength to quantum ML-tests? (No direction is obvious. However, a classic ML-random bit sequence is also quantum Solovay random.)
- ▶ Is each ML-random measure quantum ML-random?

Reference: upcoming paper with Volkher Scholz.