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Plan

I. I Quantum bits
I Finite sequences of quantum bits, density operators
I Infinite coherent sequences of density operators.

They are states on a certain computable C∗-algebra

II. I Extend Martin-Löf randomness to this setting.
I Universal quantum Martin-Löf test
I For classical bit sequences,

ML-random ⇐⇒ quantum ML-random

I A version of Levin-Schnorr theorem in this setting.
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Quantum bits
I A classical bit can be in states 0, 1. Write them as |0〉, |1〉.
I A qubit is a physical system with two classical states:

I polarisation of photon horizontal/vertical,
I hydrogen atom with electron in basic/excited state
I Schrödinger’s cat dead / alive.

I A qubit can be in a superposition of the two classical states:

α | 0〉+ β | 1〉,
α, β ∈ C, |α|2 + |β|2 = 1. E.g. α = 2/

√
5, β = −i/

√
5.

I Visualise as surface points on “Bloch sphere”, where |0〉, |1〉
are South and North pole, respectively.

I Measurement of a qubit w.r.t. standard basis |0〉, |1〉 yields 0

with probability |α|2, and 1 with probability |β|2.
I Measurement forces the system to settle on a classical state.
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Hilbert spaces and their tensor products

I The state of a physical system is represented by a vector in a

finite dimensional Hilbert space.

I 〈a|b〉 denotes the inner product of vectors a, b, linear in the

second component.

I For systems A,B, the tensor product A⊗B is a Hilbert space

that represents the combined system.

I A⊗B is the quotient of the vector space generated by the set

A×B as a basis, by the relations saying things like

(γa, b) = γ(a, b) for γ ∈ C, and (a+ a′, b) = (a, b) + (a′, b).

Write a⊗ b for the equivalence class of (a, b).

I Define inner product on A⊗B by

〈a⊗ b|c⊗ d〉 = 〈a|c〉〈b|d〉.
4 / 21



Finite sequences of quantum bits

I Mathematically, a qubit is simply a unit vector in C2. The

state of a system of n qubits is a unit vector in the tensor

power

(C2)⊗n := C2 ⊗ . . .⊗ C2︸ ︷︷ ︸
n

.

I We denote the standard basis of C2 by |0〉, |1〉. The standard

basis of (C2)⊗n is given by n-bit strings: it consists of vectors

|a1 . . . an〉 := |a1〉 ⊗ . . .⊗ |an〉.
I The state of the system of n qubits is a linear superposition of

them. Example: Bell (or “maximally entangled”) state
1√
2
(|00〉+ |11〉).
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Mixed states, or density operators

I So far we had “pure” states |ψ〉 viewed as unit vectors in

(C2)⊗n.

I |ψ〉〈ψ| is orth. projection on the subspace spanned by |ψ〉
fixing |ψ〉.

I A mixed state is a convex linear combination
∑2n

i=1 pi|ψi〉〈ψi|
for pairwise orthogonal pure states ψi.

I E.g. for n = 1, a mixed state is 1
3
|0〉〈0|+ 2

3
|1〉〈1|.

I Recall that for an operator S on A, the trace is

tr(S) = sum of eigenvalues of S.

I A mixed state is the same as a positive Hermitean operator S

on (C2)⊗n with tr(S) = 1. One can see this via the spectral

decomposition.
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Partial trace TB : L(A⊗B)→ L(A)
Recall: Given systems (finite dimensional Hilbert spaces) A,B, the

tensor product A⊗B is a Hilbert space that represents the combined

system. L(A) denotes the space of the linear operators on A.

We want to surject L(A⊗B) onto L(A). The partial trace TB is

the unique linear operator L(A⊗B)→ L(A) such that for

R ∈ L(A), S ∈ L(B), we have TB(R⊗ S) = R · tr(S).

I Example: Let A = B = C2. The partial trace TB corresponds to

deleting the last qubit. E.g. TB(|10〉〈10|) = |1〉〈1|.

I Let’s consider again the Bell state 1√
2
(|00〉+ |11〉), now viewed as

projection β in L(A⊗B). We have TB(β) = 1
2(|0〉〈0|+ 1

2 |1〉〈1|)
which is a mixed state!
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Infinite coherent sequences of density operators

Mn denotes the set of 2n × 2n matrices over C. We have a partial

trace operation Tn : Mn+1 →Mn (“erase the last qubit”).

“Quantum Cantor space” S(M∞) consists of the sequences (ρn)n∈N
of density operators in Mn such that Tn(ρn+1) = ρn for each n.

I This is the set of states (linear functionals of norm 1) on the

computable C∗ algebra M∞ = limnMn, known as the CAR

algebra (for “canonical anticommutation relations”).

I S(M∞) is compact in a natural topology (weak-∗), and has a

convex structure.
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Embed Cantor space into quantum Cantor space
Recall: (C2)⊗n has as a base the vectors |σ〉, for σ a string of n

classical bits.

We describe the partial trace operation Tn : Mn+1 →Mn (“erase

last qubit”) given by the isomorphism Mn+1
∼= Mn ⊗ C2.

For a 2n+1 × 2n+1 matrix A = (aσr,τs) where |σ|, |τ | = n, r, s are bits,

B = Tn(A) is given by the 2n × 2n matrix

bσ,τ = aσ0,τ0 + aσ1,τ1.

I Classical bit sequence Z becomes (ρn)n∈N where the bit matrix

B = ρn ∈Mn satisfies bσ,τ = 1⇐⇒ σ = τ = Z �n.

I If all the ρn are diagonal matrices, we describe a measure on

Cantor space. Classical bit sequences are Dirac measures.

9 / 21



Part 2: Randomness for coherent

sequences of density operators

I Main objects of study: states Z ∈ S(M∞).

I Z is a coherent sequence (ρn)n∈N, where ρn ∈Mn is a density

matrix, Tn(ρn+1) = ρn.
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Special projections

I Calg denotes the field of algebraic complex numbers.

I A projection in Mn is a hermitean matrix p such that p2 = p.

I A special projection in Mn is a projection with matrix entries

in Calg.

I We have a natural embedding Mn →Mn+1 via A→ A⊗ I2,

i.e. replace every element t by
t 0

0 t
.

I p ≤ q, for projections p ∈Mn, q ∈Mk, means that range of p

is contained in range of q.

11 / 21



Σ0
1 probabilistic sets on quantum Cantor space

A Σ0
1 set in Cantor space can be described by an ascending effective

union
⋃
nCn where Cn is a clopen set given by strings of length n.

We want to give a quantum version of this.

A quantum Σ0
1 set G is given by a computable ascending sequence

of special projections (pn) where pn ∈Mn. Corresponding to

measure, we have

τ(G) := supn 2−ntr(pn).

For Z in quantum Cantor space let G(Z) = supn Z(pn).
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Measurements

Recall: A quantum Σ0
1 set G is given by a computable ascending

sequence of special projections (pn) where pn ∈Mn. For Z in quantum

Cantor space let G(Z) = supn Z(pn).

In classic setting, pn is a clopen set given by strings of length n. If

Z is a bit sequence, we have Z(pn) = 1⇐⇒ Z �n∈ pn, so G(Z) is

as usual.

In the language of quantum mechanics we can view Z(pn) as a

measurement of Z with the observable pn. Z(pn) is the probability

that Z is “in” pn. In the classical case this is simply 1 (in) or 0

(out).

We have Z(pn) = tr(Z �n pn), recalling that tr is the trace, and

Z �n∈Mn is a density operator. This means the measurement only

depends on the first n qubits of Z.
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Quantum ML test

I A quantum Martin-Löf test is an effective sequence 〈Gr〉r∈N of

quantum Σ0
1 sets such that τ(Gr) ≤ 2−r for each r.

I Z passes the test if infrGr(Z) = 0. Z is quantum ML random

if it passes each quantum ML test.

Adapting the usual construction, we have:

Prop. There is a universal quantum ML-test 〈Ln〉. In fact for each

qML test 〈Gk〉 and each state Z we have infn Ln(Z) ≥ infkGk(Z).

However, because of the “inf(...) = 0” in the passing condition,

quantum ML-randomness is merely a Π0
3 property of states (while

the usual ML-randomness of bit sequences is Σ0
2).
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No difference for bit sequences

Thm. Suppose Z ∈ {0, 1}N. Then Z is ML-random ⇐⇒
Z viewed as an element of S(M2∞) is qML-random.

⇐: Every classical ML-test is also a quantum ML-test.

⇒: Given a quantum ML test (Gr) with infrGr(Z) > 0, we have

to find a classical ML-test that succeeds on Z.

I For the projection pn, compute unitary un ∈Mn such that

qn := u∗npnun is a (projection onto the subspace spanned by a)

clopen set.

I Make the un cohere with the qn in sense that un+1qn = unqn
(un+1 doesn’t do new things on the range of pn).

I Z(pn) =
∑
|σ|=n,qn(σ)=σ |〈u(σ)|Z �n〉|2 where σ is short for |σ〉.

I Use this to build a classical ML-test for Z.
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Value of quantum ML test at state

Recall: A quantum Martin-Löf test is an effective sequence 〈Gr〉r∈N
of quantum Σ0

1 sets such that τ(Gr) ≤ 2−r for each r.

Think of 〈Gr〉r∈N as a sequence of measurements. The overall

measured value at Z is infrGr(Z).

It is possible Z is not random, but the measured value is < 1 for

the universal quantum ML-test:

Take a ML-random bit sequence Y . Let Z be the state 1
2
Y + 1

2
0∞.

This is not random, but for the universal qML-test (Lr) we have

infr Lr(Z) ≤ infr Lr(Y ) + 1
2

= 1
2
.
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ML-random measures on {0, 1}N
Recall that measures on {0, 1}N correspond to states Z on M∞ with all

the Z �n diagonal matrices. Mauldin and Monticino (Israel J. Math.,

1995) and then Culver’s thesis (Notre Dame, 2015) describe the uniform

computable probability measure P on the set of measures on Cantor

space. So for measures there is an established notion of ML-randomness.

Question. If a probability measure µ is ML-random wrt to P, is µ

quantum ML-random?

All we can show: if µ is P-random and (Gr) a (classical) ML-test,

then µ passes the test in the sense above that inf µ(Gr) = 0.

This uses that
∫
M({0,1}N) µ(G)dP(µ) = λ(G) for open G ⊆ {0, 1}N.
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Quantum Turing machines

I Bernstein and Vazirani (SIAM, 1997) introduced quantum

TM.

I Single steps are unitary operations. Computation is reversible.

I QTM input and output are qubit strings.

I They showed that there is a universal QTM U.

I I/O behaviour is linear, so we can use as inputs density

operators in some Mn.
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Quantum Kolmogorov complexity

Berthiaume, van Dam, LaPlante JCSS 2001 defined quantum

Kolmogorov complexity.

I For an operator ρ, the trace norm is ||ρ||tr = |tr(ρ)|.
(Generalises L1 norm of vectors.)

I For ε > 0 let

QCε(X) = min{`(P ) : ||X − U(P )||tr ≤ ε}.
This says we take the least length of a qubit string P such

that U(P ) and X are within ε in the trace distance.

I conditional version QCε(X)|r, where r is a number (in binary)

No convincing prefix free version of quantum Kolg. complexity (an

attempt is in Markus Mueller’s 2007 thesis, U. Berlin).
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Version of Miller/Yu theorem (in progress)

Let Z be a state on M∞. Then we have the following:

I If Z is qML-random, then for each computable function f

with
∑

n 2−f(n) <∞, ∀ε > 0 ∃r ∀n

QCε(Z �n| n) ≥ n− f(n)− r.

I There exists a computable function f with
∑

n 2−f(n) <∞
such that: Z not quantum ML-random ⇒ ∃ε > 0 ∀r ∃n

QCε(Z �n| n) < n− f(n)− r.
In fact if Z fails the uniform qML test at order δ < 1, we can

choose ε = 2(
√

1− δ.

We plan to adapt the short proof in the Bienvenu/Merkle/Shen

2007 paper to the quantum setting. Many new complications.
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Questions

I Closure properties of quantum ML-randomness. E.g., is a

computable convex combination of qML-random states again

qML-random?

I Base invariance (how about sequences of “qutrits”- are they

equivalent in some way to qML-random sequences?)

I One can introduce quantum Solovay tests. Are they equivalent

in strength to quantum ML-tests? (No direction is obvious.

However, a classic ML-random bit sequence is also quantum

Solovay random.)

I Is each ML-random measure quantum ML-random?

Reference: upcoming paper with Volkher Scholz.

21 / 21


