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Quantum bits

Finite sequences of quantum bits, density operators
Infinite coherent sequences of density operators.
They are states on a certain computable C*-algebra

Extend Martin-Lof randomness to this setting.
Universal quantum Martin-Lof test
For classical bit sequences,

ML-random <= quantum ML-random

A version of Levin-Schnorr theorem in this setting.
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Quantum bits

A classical bit can be in states 0, 1. Write them as |0), |1).
A qubit is a physical system with two classical states:

» polarisation of photon horizontal/vertical,

» hydrogen atom with electron in basic/excited state

» Schrodinger’s cat dead / alive.

A qubit can be in a superposition of the two classical states:
al0)+p5]1),

a,BEC, a?+|B82=1. Eg a=2/V58=—i/V5.
Visualise as surface points on “Bloch sphere”, where |0), |1)
are South and North pole, respectively.
Measurement of a qubit w.r.t. standard basis |0), |1) yields 0
with probability |a|?, and 1 with probability |3]|?.
Measurement forces the system to settle on a classical state.
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Hilbert spaces and their tensor products

The state of a physical system is represented by a vector in a
finite dimensional Hilbert space.

(alb) denotes the inner product of vectors a, b, linear in the
second component.

For systems A, B, the tensor product A ® B is a Hilbert space
that represents the combined system.

A ® B is the quotient of the vector space generated by the set
A x B as a basis, by the relations saying things like
(va,b) = 7y(a,b) for v € C, and (a + d’,b) = (a,b) + (d', b).
Write a ® b for the equivalence class of (a,b).
Define inner product on A ® B by

(a ®blc®d) = (a|c)(b|d).
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Finite sequences of quantum bits

» Mathematically, a qubit is simply a unit vector in C2. The
state of a system of n qubits is a unit vector in the tensor
power

(C)er =C*®...® C.
—_———

» We denote the standard basis of C? by |0),|1). The standard
basis of (C?)®" is given by n-bit strings: it consists of vectors

lay...an) = la1) ®@...Q |an).

» The state of the system of n qubits is a linear superposition of
them. Example: Bell (or “maximally entangled”) state

22100 + 1)),
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Mixed states, or density operators
» So far we had “pure” states |¢)) viewed as unit vectors in
().
|1} (1] is orth. projection on the subspace spanned by [))

fixing |).
A mixed state is a convex linear combination S"2 | p;|;) (1]

v

v

for pairwise orthogonal pure states ;.
E.g. for n =1, a mixed state is 3|0)(0| + Z|1)(1].

Recall that for an operator S on A, the trace is

v

v

tr(S) = sum of eigenvalues of S.

v

A mixed state is the same as a positive Hermitean operator S
on (C?)®" with tr(S) = 1. One can see this via the spectral
decomposition.

6/ 21



Partial trace Tg: L(A® B) — L(A)

Recall: Given systems (finite dimensional Hilbert spaces) A, B, the
tensor product A ® B is a Hilbert space that represents the combined

system. L(A) denotes the space of the linear operators on A.

We want to surject L(A ® B) onto L(A). The partial trace Tp is
the unique linear operator L(A ® B) — L(A) such that for
Re L(A),S € L(B), we have Tg(R® S) = R - tr(95).

» Example: Let A = B = C2. The partial trace Tz corresponds to
deleting the last qubit. E.g. Tp(]|10)(10]) = |1)(1].

» Let’s consider again the Bell state (|00) +]11)), now viewed as

projection § in L(A ® B). We have TB(,B) £(10)(0] + {1)(1])
which is a mixed state!
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Infinite coherent sequences of density operators

M,, denotes the set of 2" x 2" matrices over C. We have a partial
trace operation T,,: M, 1 — M, (“erase the last qubit”).

“Quantum Cantor space” S(My) consists of the sequences (p,)nen
of density operators in M,, such that T,,(p,+1) = p, for each n.

» This is the set of states (linear functionals of norm 1) on the
computable C* algebra M., = lim,, M,,, known as the CAR
algebra (for “canonical anticommutation relations”).

» S(My) is compact in a natural topology (weak-*), and has a
convex structure.
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Embed Cantor space into quantum Cantor space

Recall: (C?)®" has as a base the vectors |o), for o a string of n

classical bits.
We describe the partial trace operation T,,: M, 1 — M, (“erase
last qubit”) given by the isomorphism M, ; = M, @ C.

For a 277! x 27! matrix A = (a,rrs) where |o|,|7| = n, 7, s are bits,
B =T,(A) is given by the 2" x 2" matrix

bO’,T = U00,70 + Qgl,71-

» Classical bit sequence Z becomes (p,)n,eny Where the bit matrix
B =p, € M, satisfies b, , =1<=oc=7=2Z],.

» If all the p, are diagonal matrices, we describe a measure on
Cantor space. Classical bit sequences are Dirac measures.
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» Main objects of study: states Z € S(Mx).

» 7 is a coherent sequence (p,)nen, where p, € M, is a density
matrix, Ty, (pn+1) = pn.
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Special projections

C.ig denotes the field of algebraic complex numbers.
A projection in M, is a hermitean matrix p such that p? = p.

A special projection in M, is a projection with matrix entries

in Calg'

We have a natural embedding M,, — M, .1 via A - A® I,
. 0

i.e. replace every element ¢ by 0t

p < q, for projections p € M,,,q € My, means that range of p
is contained in range of q.
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>0 probabilistic sets on quantum Cantor space

A X¥ set in Cantor space can be described by an ascending effective
union | J,, C,, where C,, is a clopen set given by strings of length n.

We want to give a quantum version of this.

A quantum XY set G is given by a computable ascending sequence
of special projections (p,) where p, € M,. Corresponding to
measure, we have

7(G) := sup,, 27"tr(py,).

For Z in quantum Cantor space let G(Z) = sup,, Z(py,).
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Measurements

Recall: A quantum X set G is given by a computable ascending
sequence of special projections (p,) where p,, € M,,. For Z in quantum
Cantor space let G(Z) = sup,, Z(py).

In classic setting, p,, is a clopen set given by strings of length n. If
Z is a bit sequence, we have Z(p,) = 1 <= Z [,€ p,, so G(Z) is
as usual.

In the language of quantum mechanics we can view Z(p,) as a
measurement of Z with the observable p,. Z(p,) is the probability
that Z is “in” p,. In the classical case this is simply 1 (in) or 0
(out).

We have Z(p,) = tr(Z |, pn), recalling that tr is the trace, and

Z [n€ M, is a density operator. This means the measurement only
depends on the first n qubits of Z.
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Quantum ML test

» A quantum Martin-Lof test is an effective sequence (G,.),en of
quantum XY sets such that 7(G,) < 27" for each r.

» 7 passes the test if inf, G,.(Z) = 0. Z is quantum ML random
if it passes each quantum ML test.

Adapting the usual construction, we have:

Prop. There is a universal quantum ML-test (L, ). In fact for each
qML test (Gy) and each state Z we have inf, L, (Z) > inf, Gx(Z).

However, because of the “inf(...) = 0” in the passing condition,
quantum ML-randomness is merely a I3 property of states (while
the usual ML-randomness of bit sequences is %9).
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No difference for bit sequences

Thm. Suppose Z € {0,1}. Then Z is ML-random <=
Z viewed as an element of S(Ma~) is gML-random.

«: Every classical ML-test is also a quantum ML-test.
=: Given a quantum ML test (G,) with inf, G,(Z) > 0, we have
to find a classical ML-test that succeeds on Z.

» For the projection p,,, compute unitary u, € M, such that
Gn = u:pyu, is a (projection onto the subspace spanned by a)
clopen set.

» Make the wu, cohere with the g, in sense that u,1¢, = u.q,
(tp41 doesn’t do new things on the range of p,,).

> Z(Pn) = Xjojmngn(e)=c |{W(@)|Z [4)|* where g is short for |o).

» Use this to build a classical ML-test for Z.
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Value of quantum ML test at state

Recall: A quantum Martin-Lof test is an effective sequence (G)en
of quantum X sets such that 7(G,) < 27" for each r.

Think of (G,),en as a sequence of measurements. The overall
measured value at Z is inf, G,(Z).

It is possible Z is not random, but the measured value is < 1 for

the universal quantum ML-test:
Take a ML-random bit sequence Y. Let Z be the state %Y + %OOO‘
This is not random, but for the universal qML-test (L,) we have

inf, L,(Z) <inf, L.(Y) + % = %
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ML-random measures on {0, 1}

Recall that measures on {0, 1} correspond to states Z on M, with all
the Z[,, diagonal matrices. Mauldin and Monticino (Israel J. Math.,
1995) and then Culver’s thesis (Notre Dame, 2015) describe the uniform
computable probability measure P on the set of measures on Cantor

space. So for measures there is an established notion of ML-randomness.

Question. If a probability measure p is ML-random wrt to P, is p
quantum ML-random?

All we can show: if p is P-random and (G") a (classical) ML-test,
then p passes the test in the sense above that inf u(G") = 0.
This uses that fM({O 13 w(G)dP(p) = M\(G) for open G C {0, 1}V
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Quantum Turing machines

Bernstein and Vazirani (SIAM, 1997) introduced quantum
TM.

Single steps are unitary operations. Computation is reversible.
QTM input and output are qubit strings.
They showed that there is a universal QTM U.

I/O behaviour is linear, so we can use as inputs density
operators in some M,,.
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Quantum Kolmogorov complexity

Berthiaume, van Dam, LaPlante JCSS 2001 defined quantum
Kolmogorov complexity.

» For an operator p, the trace norm is ||p||ty = |tr(p)].
(Generalises L; norm of vectors.)
» For € > 0 let
QC(X) = min{((P): [[X —U(P)[ltr < €}
This says we take the least length of a qubit string P such
that U(P) and X are within € in the trace distance.
» conditional version QC(X)|r, where 7 is a number (in binary)

No convincing prefix free version of quantum Kolg. complexity (an
attempt is in Markus Mueller’s 2007 thesis, U. Berlin).
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Version of Miller/Yu theorem (in progress)

Let Z be a state on M,,. Then we have the following:

» If 7 is gML-random, then for each computable function f
with >° 277 < 00, Ve >0 3Ir Vn

QC(Z 1, n)>n— f(n)—r.
» There exists a computable function f with > 2= < o
such that: Z not quantum ML-random = Je > 0 Vr dn
QC(ZIn| n) <n—f(n)—r.
In fact if Z fails the uniform qML test at order 6 < 1, we can

choose € = 2(v/1 — ¢.

We plan to adapt the short proof in the Bienvenu/Merkle/Shen
2007 paper to the quantum setting. Many new complications.
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Questions

» Closure properties of quantum ML-randomness. E.g., is a
computable convex combination of gML-random states again
gML-random?

» Base invariance (how about sequences of “qutrits”- are they
equivalent in some way to qML-random sequences?)

» One can introduce quantum Solovay tests. Are they equivalent
in strength to quantum ML-tests? (No direction is obvious.
However, a classic ML-random bit sequence is also quantum
Solovay random.)

» Is each ML-random measure quantum ML-random?

Reference: upcoming paper with Volkher Scholz.
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