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The Γ parameter of a Turing degree
For Z ⊆ N the lower density is defined to be

ρ(Z) = lim inf
n

|Z ∩ [0, n)|
n

.

Recall that
γ(A) = sup

X computable
ρ(A↔ X)

The Γ parameter was introduced by Andrews et al. (2013):

Γ(A) = inf{γ(Y ) : Y ≤T A}.

Theorem (Monin, 2016, available on Logic Blog 2016)

Γ(A) is either 0, or 1/2, or 1. Also Γ(A) = 0⇔ ∃f ≤T A
∀g computable, bounded by 2(2n)∃∞n f(n) = g(n)]
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Viewing 1− Γ as a Hausdorff pseudodistance

For Z ⊆ N the upper density is defined by

ρ(Z) = lim sup
n

|Z ∩ [0, n]|
n

.

I For X, Y ∈ 2N let d(X, Y ) = ρ(X4Y ) be the upper
density of the symmetric difference of X and Y

I this is a pseudodistance on Cantor space 2N (that is,
two objects may have distance 0 without being equal).
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Let R ⊆ A ⊆M for a pseudometric space(M,d). The
Hausdorff distance is dH(A,R) = supY ∈A infS∈R d(Y, S)).

Given an oracle set A let A = {Y : Y ≤T A}. Let R ⊆ A
denote the collection of computable sets. We have

1− Γ(A) = dH(A,R).
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∆ parameter of a Turing degree

δ(Y ) = inf{ρ(Y ↔ S) : S computable}
∆(A) = sup{δ(Y ) : Y ≤T A}.

I Γ(A) measures how well computable sets can
approximate the sets that A computes.
“Γ(A) > p” for fixed p ∈ [0, 1) is a lowness property.

I ∆(A) measures how well the sets that A computes can
approximate the computable sets.
“∆(A) > p” is a highness property.
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δ(Y ) = inf{ρ(Y ↔ S) : S computable}
∆(A) = sup{δ(Y ) : Y ≤T A}.

Properties of δ and ∆ (w. Merkle and Stephan, Feb 2016)

I δ(Y ) ≤ 1/2 for each Y (by considering also the
complement of S)

I Y Schnorr random ⇒ δ(Y ) = 1/2 (by law of large
numbers)

I A computable ⇒ ∆(A) = 0.

I ∆(A) = 0 is possible for noncomputable A, e.g. if A is
low and c.e., or A is 2-generic.
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The highness classes B(p)

Definition (Brendle and N.)

For p ∈ [0, 1/2) let

B(p) = {A : ∃Y ≤T A ∀S computable ρ(Y ↔ S) > p}.

∆(A) > p⇒ A ∈ B(p)⇒ ∆(A) ≥ p.

We will show that all the classes B(p) coincide, for
0 < p < 1/2. Therefore:

∆(A) > 0⇒ ∆(A) = 1/2.
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Almost everywhere avoiding a comp. function
Definition (B(6=∗, h), also known as SNRh)

For a function h, we let
B( 6=∗, h) = {A : ∃f ≤T A, f < h∀g computable

∀∞n f(n) 6= g(n)}.

I This gets easier as h grows faster.

I The largest class B(6=∗,∞) coincides with “high or
diagonally noncomputable”.

(Kjos-Hanssen, Merkle and Stephan, TAMS, Thm 5.1)

I outside the high sets, the hierarchy is closely related to the
hierarchy of computing a DNR function below ĥ.

Fact

A computes a Schnorr random ⇒
A ∈ B( 6=∗, 2ĥ) whenever ĥ is computable

and ∞ >
∑

n 1/ĥ(n) is computable. E.g. ĥ(n) = n2. 8/15



Main result
Recall B(p) = {A : ∃Y ≤T A∀S computable ρ(S ↔ Y ) > p}.

B( 6=∗, h) = {A : ∃f ≤T A, f < h∀g computable

∀∞n g(n) 6= f(n)}.

Theorem (N., dual form of Monin’s result)

B(p) = B( 6=∗, 2(2n)) for each p ∈ (0, 1/2).

Corollary

∆(A) > 0⇔ ∆(A) = 1/2⇔ A ∈ B(6=∗, 2(2n)).

Recalling that B(6=∗, 2(2n)) ⊆ B( 6=∗,∞) = high ∨ d.n.c:

Corollary

∆(A) > 0⇒ A is high or d.n.c.
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View as mass problems

We can also view B(p) and B( 6=∗, h) as mass problems
(i.e. subsets of ωω). Re-define

B(p) = {Y ∈ 2N : ∀S computable ρ(S ↔ Y ) > p}.

B( 6=∗, h) = {f < h : ∀g computable ∀∞n g(n) 6= f(n)}.

Let ≤S denote uniform (or Medvedev) reducibility.
Unlike Monin’s result, here we have Medvedev reductions.

Theorem (strengthens previous theorem)

B(p) ≡S B(6=∗, 2(2n)) for each p ∈ (0, 1/2).

10/15



Easier direction (1)
Proposition

Let p ∈ (0, 1/2). We have B(p) ≥S B(6=∗, 2(2n)).

Pick a ∈ N with 2/a < p.

Claim (1)

B(2/a) ≥S B(6=∗, 2(an)).

Proof.

Let (In) be the consecutive intervals in N+ of length an.
Then |In| > (a− 1)|

⋃
k<n Ik|. So

X ∈ B(2/a)⇒ ∀U comp. ∀∞nX � In 6= U � In

because ρ(X ↔ U c) > 2/a. The class on the right is

Medvedev equivalent to B(6=∗, 2(an)).
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Easier direction (2)

Proposition (recall)

Let p ∈ (0, 1/2). We have B(p) ≥S B(6=∗, 2(2n)).

Claim (2)

B( 6=∗, h(n)) ≡S B(6=∗, h(2n)) for each nondecreasing h.

Proof.

≥S is trivial. For ≤S:
Given f ∈ B(6=∗, h(2n)), let g(2n) = g(2n+ 1) = f(n).
Then g ∈ B(6=∗, h(n)).

Iterating this log2 a times we get

B(6=∗, 2(an)) ≡S B(6=∗, 2(2n)).
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Sketch the harder direction B(p) ≤S B( 6=∗, 2(2n)):

Relation 1: Let q > p such that q < 1/2. For h(n) = 2ĥ(n)

and functions x, y < h, view x(n) as string of length ĥ(n).

x 6=∗
ĥ,q
y ⇔ ∀∞n |{i < ĥ(n) : x(n)(i) 6= y(n)(i)}| ≥ ĥ(n)q.

Relation 2: Let L ∈ N and u be a function. For a trace s
consisting of L-element sets, and a function y < u, let

s 63∗u,L y ⇔ ∀∞n[s(n) 63 y(n)].

Define B-classes for these relations as before. Four steps:

1. there is k such that where ĥ(n) = b2n/kc
B(p) ≤S B(6=∗

ĥ,q
).

2. There are L ∈ N, ε > 0 such that where u(n) = 2bεĥ(n)c,
we have B(6=∗

ĥ,q
) ≤S B( 63∗u,L) using error correction.

3. B( 63∗u,L) ≤S B( 63∗
2(L2n),L

).

4. Finally, B( 63∗
2(L2n),L

) ≤S B( 6=∗, 2(2n))
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Separations?
By the easy direction above, B(0) ≥S B(6=∗, 2n!).

Question

Is B(1/4) ≡S B(6=∗, 22n) >W B(0)?

When do we know B( 6=∗, g) >W B( 6=∗, h)? E.g.

I g(n) = 2n
2
, h(n) = 22n , or

I g(n) = 22n , h(n) = 2n!?

Work in progress with Khan and Kjos-Hanssen, building on
work of Khan and Miller on forcing with bushy trees:

I (Down) For each order function g there is order
function h with h > g such that B( 6=∗, g) >W B( 6=∗, h).

I (Up) For each order function h there is order function
g with h > g such that B(6=∗, g) >W B(6=∗, h).
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