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Degree structures

Back in the days before everyone started using the beamer package,

degree structures were studied even more intensely than now.

My work with Rod 1995-2001 was centred around degree structures.

We looked at reducibilities other than Turing:

• ≤Q,

• ≤p
m , ≤p

T (polynomial time m- and Turing),

• ≤S (Solovay).
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Three degree structures

Rod, I and co-authors studied three very different degree structures.

• The Q degrees of r.e. sets, with LaForte

• polynomial time many-one and Turing degrees of exponential

time sets of strings

• Solovay degrees of left-r.e. reals, with Hirschfeldt.
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I. Q-degrees of r.e. sets

Q-reducibility was defined by Tennenbaum (according to Rogers).

The “Q” stands for “quasi”. In the Turing case we have for r.e. sets

A ≤T B ⇔ ∃R r.e. ∀y [y ∈ A ↔ ∃z[〈y, z〉 ∈ R & Dz ⊆ B]].

For Q-reducibility, the reduction procedure is allowed at most one

negatively answered oracle question. Thus, each Dz is a singleton.

Now let Wg(y) =
⋃

〈y,z〉∈R Dz for computable g:

Definition 1 For A,B ⊆ N, let A ≤Q B ⇔

∃g computable ∀y [y ∈ A ↔ Wg(y) ⊆ B].

For r.e. sets A ≤Q B ⇒ A ≤T B.

Q-reducibility was used for a structural solution to Post’s problem

(Marchenkov), and for the complexity of word problems of groups.
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Meets and joins in RQ

Results below are from Downey, N, LaForte,

Computably enumerable sets and quasi-reducibility,

APAL 95.1 (1998): 1-35.

First note that RQ is an upper semilattice where the sup of degrees

of A,B is the degree of A⊕B.

Theorem 2 There is a minimal pair of r.e. Q-degrees that have

the same Turing degree.

The proof uses a pinball machine model.

Theorem 3 There is a meet-irreducible r.e. Q-degree outside any

nontrivial upper cone.
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Density of RQ

The hardest result answers a question of Ishmukametov.

Theorem 4 The r.e. Q-degrees are dense.

Given r.e. B <Q A, we want to build r.e. C such that

B <Q B ⊕ C <Q A. The proof is harder than in the Turing case.

For instance, the usual permitting technique for C ≤T A doesn’t

yield a Q-reduction. We use a tree of strategies.

Truth table reducibility (not dense) and Q-reducibility are

incomparable reducibilities on the r.e. sets; the result shows that

Q-reducibility is in a sense closer to Turing.
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Undecidability of Th(RQ)

Theorem 5 The first-order theory of RQ is undecidable.

This is proved by encoding with parameters any given computable

partial order (N,≺).

• The domain is represented by a Slaman-Woodin set {Gi} (the

sets below C of minimal degree cupping P above Q).

• Build a further parameter L with i � k ↔ Gi ≤Q Gk ⊕ L.
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Some later work on Q-degrees

• Affatato, Kent and Sorbi 2007: paper on s-degrees (singleton

reducibility). This is a restricted version of e-reducibility.

Note that A ≤s B ⇔ A ≤Q B.

They show the Σ0
2 and the Π0

1 s-degrees are undecidable, using

“exact degree theorems”.

• Arslanov, Baturshin and Omanadze (2007) work on n-r.e.

Q-degrees.

They also prove that there is a noncappable incomplete r.e.

Q-degree.
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II: subrecursive degree structures

Let Σ be alphabet, X, Y ⊆ Σ∗ languages over Σ.

X ≤p
m Y ⇔ ∃f ∈ P [X = f−1(Y )]

X ≤p
T Y ⇔ ∃ polynomial time bounded oracle TM which

computes X with oracle Y .

Ladner (1975) proved that the degree structures induced on the

computable languages are dense.

Theorem 6 (Downey and N., JCSS 2003) The polynomial

time many-one and Turing degrees of languages in DTIME(2n) have

an undecidable theory.

Instead of 2n, one can take any nondecreasing time constructible

function h : ω → ω such that P ⊂ DTIME(h). E.g. h(n) = nlog logn.
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Undecidable ideal lattices

• A structure (N,�,∧,∨) is a Σ0
k-boolean algebra if � is Σ0

k, and

the operations ∧,∨ are recursive in ∅(k−1).

• A Σ0
k-boolean algebra B is called

effectively dense if there is a function F ≤T ∅(k−1) such that

∀x [F (x) � x] and

∀x 6≡ 0 [0 ≺ F (x) ≺ x].

• For a Σ0
k–boolean algebra B, let I(B) be the lattice of

Σ0
k–ideals of B with ∩ and ∨ as operations.

Theorem 7 (N, Trans. AMS 2000) Suppose B is an effectively

dense Σ0
k-Boolean algebra. Then Th(N,+, ·) ≡m Th(I(B)).

It is much easier to show that Th(I(B)) is hereditarily undecidable

[N., Bull. LMS 1997].
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Undecidability via coding I(B)

It is often natural to interpret with parameters I(B) in a structure.

This shows that the structure has an undecidable theory.

If no parameters are needed, it yields an interpretation of

Th(N,+, ·) in the theory of the structure.

• Intervals of E∗ that are not Boolean algebras; no parameters

needed (N., 1997)

• Computable sets with parameterized reducibilities (Coles,

Downey, Sorbi, year?).

• Solovay degrees of left-r.e. reals (Downey, Hirschfeldt and

LaForte, JCSS, 2007). Details later.
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Supersparse sets in complexity theory

We will apply the method of coding I(B) in the proof that

polytime degrees of DTIME(h) have an undecidable theory. Here

k = 2, because ≤p
m and ≤p

T are Σ0
2-relations on such a class.

Definition 8 (Ambos-Spies 1986) Let f : ω → ω be a strictly

increasing, time constructible function. We say that a language

A ⊆ {0f(k) : k ∈ ω} is super sparse via f if

“ 0f(k) ∈ A ?” can be determined in time O(f(k + 1)).

Supersparse sets exist in the time classes we are interested in.

Lemma 9 (Ambos-Spies 1986) Suppose that h : ω → ω is a

nondecreasing time constructible (“nice”) function with

P ⊂ DTIME(h). Then there is a super sparse language

A ∈ DTIME(h)− P .
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Interpreting I(B) in [,a] for super sparse a

Now let f, h be time constructible functions as above, let

A ∈ DTIME(h)− P be supersparse via f , and a be its degree.

Ambos-Spies has shown that [,a] is a distributive lattice that does

not depend on the reducibility.

• Each complemented element in [,a] is the degree of a splitting

A ∩R, where R is polytime.

• This implies that the algebra B of complemented elements is

Σ0
2 and effectively dense.

• Downey and N. showed that for each ideal I in I(B), there is

cI ≤ a such that x ∈ I ⇔ x ≤ cI for each x ≤ a.

So one can interpret I(B) in [,a] without parameters (and hence

in DTIME(h) with parameter a).
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III. Solovay reducibility on left-r.e. reals

A real α is left-r.e. if there is a non-decreasing effective sequence

(αs) of rationals converging to α.

We will use α, β, γ to denote left-r.e. reals. We think of them as

equipped with an effective sequence of rationals of this kind.

Example of a left-r.e. real: The halting probability of a fixed

universal prefix-free machine U

Ω =
∑

{2|σ| : U(σ) ↓}.

14



Solovay reducibility

Solovay (1975) introduced a reducibility ≤S to compare the

“randomness content” of left-r.e. reals.

β ≤S α ⇔

∃C ∈ Q ∃f computable increasing ∀s [β − βf(s) ≤ C(α− αs)].

He proved that β ≤S α ⇒ ∃c ∀n K(β ↾ n) ≤ K(α ↾ n) + c.

Ω is ≤S–complete. Kucera and Slaman (2001) showed that, for

left-r.e. reals,

≤S–complete ⇔ ML-random.

Fact 10 β ≤S α ⇔ ∃C rational ∃γ C(β + γ) = α.

Fact 11 β ≤S α ⇒ β ≤T α. But ≤S is incomparable with ≤wtt.
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Algebraic properties

Results below are from Downey, Hirschfeldt, Nies, Randomness,

computability, and density, Siam J. Computing 31, 2002.

Let S be the degree structure induced on the r.e. reals. We

investigate the algebraic properties of S.

S is an upper semilattice (u.s.l.) where the sup is given by the

usual addition.

Recall that an u.s.l. is distributive if it satisfies

a ≤ b ∨ c ⇒ a = b̃ ∨ c̃ for some b̃ ≤ b, c̃ ≤ c.

Proposition 12 S is a distributive u.s.l.

Among the common degree structures on r.e. sets, Rm (many-one)

and Rwtt (weak truth-table) are distributive.

Is S more like Rwtt, or more like Rm?
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Density

Using standard coding and preservation strategies, we obtain

upward density.

Theorem 13 Let γ <S Ω. Then there is β such that γ <S β <S Ω.

If α <S Ω, we prove that in a sense any sequence for Ω converges

much slower than one for α. This gives combined splitting and

density below α.

Theorem 14 Let γ <S α <S Ω. There are β0 and β1 such that

γ <S β0, β1 <S α and β0 + β1 = α.

Combining the two, we obtain a (non-uniform) proof of density.

S shares this property with Rwtt.

17



Random left-r.e. reals

Fact 15 If one of α, β is ML-random, then γ = α+ β is ML

random.

By contraposition suppose that γ is not ML-random. So γ ∈
⋂

Gm

for a ML-test (Gm), where λGm ≤ 2−m−1. Build a ML-test (Hm)

for α: At stage s, if γs ∈ I where I = [x, y) is a maximal

subinterval of Gm,s, then put the interval

J = [x− βs − (y − x), y − βs]

into Hm. (Note that J is twice as long as I .)

A similar fact fails for left-r.e. reals and weaker randomness

notions. The opposite was announced (wrongly) during the talk.

Fact 16 (with Miyabe and Stephan, 2017) There is α partial

computably random and β such that α+ β is not Kurtz random.

18



Random left-r.e. reals

Now for the converse for ML-randomness.

Theorem 17 If α+ β is ML-random, then one of α, β is ML

random.

(Several years after our paper appeared in 2001, Kucera pointed

out that this was claimed without proof by Demutha.

Using the Kucera and Slaman Theorem that any random left-r.e.

real is ≤S-complete, this implies

Corollary 18 In S, the greatest element is join irreducible.

S shares this property with Rm.

aConstructive pseudonumbers, Comment. Math. Univ. Carolinae, vol. 16

(1975), pp. 315 - 331, Russian)
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Later work

• Downey, Hirschfeldt and LaForte, Undecidability of the

structure of the Solovay degrees of c.e. reals (2002) uses the

method of coding I(B). Similar to the complexity case, they

build an r.e. set A such that all complemented elements below

are given by r.e. splittings.

• Downey, Hirschfeldt and LaForte, Randomness and reducibility,

JCSS, 2007 (also D-H book): proof of results such as density in

a more general axiomatic setting; works for ≤S ,≤C ,≤K ,≤rK

but not ≤sw.

• Barmpalias, Bull. Symb. Log. 19(3), 2013:

elementary differences between the structures etc.
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Additive cost functions

Not a lot has happened on the structure of Solovay degrees in

recent years. However, I used ≤S in the paper “Calculus of cost

functions” (to appear in “The Incomputable”).

For a r.e. real β with a given approximation let cβ(x, s) = βs − βx.

Proposition 19 cα implies cβ for some approximations of α, β

⇔ β ≤S α.

E.g. cΩ is the strongest additive cost function. Obeying it

characterises the K-trivials.

Question 20 Find β such that the ∆0
2 sets obeying cβ form a

proper Turing ideal different from the K-trivials.
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More open questions

Question 21 Do the degree structures considered above interpret

true arithmetic?

Question 22 Suppose a 6=  is a polytime m (or Turing) degree.

Is Th[,a] undecidable?

Question 23 How can we distinguish incomplete Solovay degrees

of left-r.e. reals? For instance, are there two non-isomorphic initial

segments strictly below Ω?

Also: study the Solovay degrees of left-r.e. Schnorr randoms.
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