My work with Rod 1995-2001

André Nies

The University of Auckland

Jan. 7, 2017

Degree structures

Back in the days before everyone started using the beamer package, degree structures were studied even more intensely than now. My work with Rod 1995-2001 was centred around degree structures.

We looked at reducibilities other than Turing:

- \leq_Q ,
- \leq_m^p , \leq_T^p (polynomial time *m* and Turing),
- \leq_S (Solovay).

Three degree structures

Rod, I and co-authors studied three very different degree structures.

- The Q degrees of r.e. sets, with LaForte
- polynomial time many-one and Turing degrees of exponential time sets of strings
- Solovay degrees of left-r.e. reals, with Hirschfeldt.

I. Q-degrees of r.e. sets

Q-reducibility was defined by Tennenbaum (according to Rogers). The "Q" stands for "quasi". In the Turing case we have for r.e. sets $A \leq_T B \Leftrightarrow \exists R \text{ r.e. } \forall y [y \in \overline{A} \leftrightarrow \exists z [\langle y, z \rangle \in R \& D_z \subseteq \overline{B}]].$

For Q-reducibility, the reduction procedure is allowed at most one negatively answered oracle question. Thus, each D_z is a singleton. Now let $W_{g(y)} = \bigcup_{\langle y, z \rangle \in R} D_z$ for computable g:

Definition 1 For $A, B \subseteq \mathbb{N}$, let $A \leq_Q B \Leftrightarrow$

 $\exists g \ computable \ \forall y \ [y \in A \leftrightarrow W_{g(y)} \subseteq B].$

For r.e. sets $A \leq_Q B \Rightarrow A \leq_T B$.

Q-reducibility was used for a structural solution to Post's problem (Marchenkov), and for the complexity of word problems of groups.

Meets and joins in \mathcal{R}_Q

Results below are from Downey, N, LaForte,

Computably enumerable sets and quasi-reducibility,

APAL 95.1 (1998): 1-35.

First note that \mathcal{R}_Q is an upper semilattice where the sup of degrees of A, B is the degree of $A \oplus B$.

Theorem 2 There is a minimal pair of r.e. Q-degrees that have the same Turing degree.

The proof uses a pinball machine model.

Theorem 3 There is a meet-irreducible r.e. Q-degree outside any nontrivial upper cone.

$\textbf{Density of } \mathcal{R}_Q$

The hardest result answers a question of Ishmukametov.

Theorem 4 The r.e. Q-degrees are dense.

Given r.e. $B <_Q A$, we want to build r.e. C such that $B <_Q B \oplus C <_Q A$. The proof is harder than in the Turing case. For instance, the usual permitting technique for $C \leq_T A$ doesn't yield a Q-reduction. We use a tree of strategies.

Truth table reducibility (not dense) and Q-reducibility are incomparable reducibilities on the r.e. sets; the result shows that Q-reducibility is in a sense closer to Turing.

Undecidability of $\operatorname{Th}(\mathcal{R}_Q)$

Theorem 5 The first-order theory of \mathcal{R}_Q is undecidable.

This is proved by encoding with parameters any given computable partial order (\mathbb{N}, \prec) .

- The domain is represented by a Slaman-Woodin set $\{G_i\}$ (the sets below C of minimal degree cupping P above Q).
- Build a further parameter L with $i \leq k \leftrightarrow G_i \leq_Q G_k \oplus L$.

Some later work on *Q*-degrees

• Affatato, Kent and Sorbi 2007: paper on s-degrees (singleton reducibility). This is a restricted version of e-reducibility. Note that $\overline{A} \leq_s \overline{B} \Leftrightarrow A \leq_Q B$.

They show the Σ_2^0 and the Π_1^0 s-degrees are undecidable, using "exact degree theorems".

• Arslanov, Baturshin and Omanadze (2007) work on *n*-r.e. *Q*-degrees.

They also prove that there is a noncappable incomplete r.e. Q-degree.

II: subrecursive degree structures

Let Σ be alphabet, $X, Y \subseteq \Sigma^*$ languages over Σ .

 $X \leq_m^p Y \Leftrightarrow \exists f \in P \ [X = f^{-1}(Y)]$

 $X \leq_T^p Y \Leftrightarrow \exists$ polynomial time bounded oracle TM which computes X with oracle Y.

Ladner (1975) proved that the degree structures induced on the computable languages are dense.

Theorem 6 (Downey and N., JCSS 2003) The polynomial time many-one and Turing degrees of languages in $DTIME(2^n)$ have an undecidable theory.

Instead of 2^n , one can take any nondecreasing time constructible function $h: \omega \to \omega$ such that $P \subset \text{DTIME}(h)$. E.g. $h(n) = n^{\log \log n}$.

Undecidable ideal lattices

- A structure $(\mathbb{N}, \leq, \wedge, \vee)$ is a Σ_k^0 -boolean algebra if \leq is Σ_k^0 , and the operations \wedge, \vee are recursive in $\emptyset^{(k-1)}$.
- A Σ⁰_k-boolean algebra B is called
 effectively dense if there is a function F ≤_T Ø^(k-1) such that
 ∀x [F(x) ≤ x] and
 ∀x ≠ 0 [0 ≺ F(x) ≺ x].
- For a Σ_k^0 -boolean algebra \mathcal{B} , let $\mathcal{I}(\mathcal{B})$ be the lattice of Σ_k^0 -ideals of \mathcal{B} with \cap and \vee as operations.

Theorem 7 (N, Trans. AMS 2000) Suppose \mathcal{B} is an effectively dense Σ_k^0 -Boolean algebra. Then $Th(\mathbb{N}, +, \cdot) \equiv_m Th(\mathcal{I}(\mathcal{B}))$.

It is much easier to show that $\operatorname{Th}(\mathcal{I}(\mathcal{B}))$ is hereditarily undecidable [N., Bull. LMS 1997].

Undecidability via coding $\mathcal{I}(\mathcal{B})$

It is often natural to interpret with parameters $\mathcal{I}(\mathcal{B})$ in a structure. This shows that the structure has an undecidable theory.

If no parameters are needed, it yields an interpretation of $Th(\mathbb{N}, +, \cdot)$ in the theory of the structure.

- Intervals of \mathcal{E}^* that are not Boolean algebras; no parameters needed (N., 1997)
- Computable sets with parameterized reducibilities (Coles, Downey, Sorbi, year?).
- Solovay degrees of left-r.e. reals (Downey, Hirschfeldt and LaForte, JCSS, 2007). Details later.

Supersparse sets in complexity theory

We will apply the method of coding $\mathcal{I}(\mathcal{B})$ in the proof that polytime degrees of DTIME(h) have an undecidable theory. Here k = 2, because \leq_m^p and \leq_T^p are Σ_2^0 -relations on such a class.

Definition 8 (Ambos-Spies 1986) Let $f: \omega \to \omega$ be a strictly increasing, time constructible function. We say that a language $A \subseteq \{0^{f(k)} : k \in \omega\}$ is super sparse via f if

" $0^{f(k)} \in A$?" can be determined in time O(f(k+1)).

Supersparse sets exist in the time classes we are interested in.

Lemma 9 (Ambos-Spies 1986) Suppose that $h : \omega \to \omega$ is a nondecreasing time constructible ("nice") function with $P \subset \text{DTIME}(h)$. Then there is a super sparse language $A \in \text{DTIME}(h) - P$.

Interpreting $\mathcal{I}(\mathcal{B})$ in $[\mathbf{o}, \boldsymbol{a}]$ for super sparse \boldsymbol{a}

Now let f, h be time constructible functions as above, let $A \in DTIME(h) - P$ be supersparse via f, and a be its degree. Ambos-Spies has shown that $[\mathbf{0}, \mathbf{a}]$ is a distributive lattice that does not depend on the reducibility.

- Each complemented element in $[\mathbf{o}, \mathbf{a}]$ is the degree of a splitting $A \cap R$, where R is polytime.
- This implies that the algebra \mathcal{B} of complemented elements is Σ_2^0 and effectively dense.
- Downey and N. showed that for each ideal I in $\mathcal{I}(\mathcal{B})$, there is $c_I \leq a$ such that $x \in I \Leftrightarrow x \leq c_I$ for each $x \leq a$.

So one can interpret $\mathcal{I}(\mathcal{B})$ in $[\mathbf{o}, \mathbf{a}]$ without parameters (and hence in DTIME(h) with parameter \mathbf{a}).

III. Solovay reducibility on left-r.e. reals

A real α is **left-r.e.** if there is a non-decreasing effective sequence (α_s) of rationals converging to α .

We will use α, β, γ to denote left-r.e. reals. We think of them as equipped with an effective sequence of rationals of this kind.

Example of a left-r.e. real: The halting probability of a fixed universal prefix-free machine ${\cal U}$

$$\Omega = \sum \{ 2^{|\sigma|} : U(\sigma) \downarrow \}.$$

Solovay reducibility

Solovay (1975) introduced a reducibility \leq_S to compare the "randomness content" of left-r.e. reals.

 $\beta \leq_S \alpha \ \Leftrightarrow$

 $\exists C \in \mathbb{Q} \ \exists f \text{ computable increasing} \quad \forall s \ [\beta - \beta_{f(s)} \leq C(\alpha - \alpha_s)].$ He proved that $\beta \leq_S \alpha \implies \exists c \ \forall n \ K(\beta \upharpoonright n) \leq K(\alpha \upharpoonright n) + c.$

 Ω is \leq_S -complete. Kucera and Slaman (2001) showed that, for left-r.e. reals,

 \leq_S -complete \Leftrightarrow ML-random.

Fact 10 $\beta \leq_S \alpha \iff \exists C \text{ rational } \exists \gamma \ C(\beta + \gamma) = \alpha.$

Fact 11 $\beta \leq_S \alpha \Rightarrow \beta \leq_T \alpha$. But \leq_S is incomparable with \leq_{wtt} .

Algebraic properties

Results below are from Downey, Hirschfeldt, Nies, *Randomness, computability, and density*, Siam J. Computing 31, 2002.

Let \mathcal{S} be the degree structure induced on the r.e. reals. We investigate the algebraic properties of \mathcal{S} .

 \mathcal{S} is an upper semilattice (u.s.l.) where the sup is given by the usual addition.

Recall that an u.s.l. is distributive if it satisfies

$$a \leq b \lor c \Rightarrow a = \widetilde{b} \lor \widetilde{c}$$
 for some $\widetilde{b} \leq b, \widetilde{c} \leq c$.

Proposition 12 S is a distributive u.s.l.

Among the common degree structures on r.e. sets, \mathcal{R}_m (many-one) and \mathcal{R}_{wtt} (weak truth-table) are distributive.

Is S more like \mathcal{R}_{wtt} , or more like \mathcal{R}_m ?

Density

Using standard coding and preservation strategies, we obtain upward density.

Theorem 13 Let $\gamma \leq_S \Omega$. Then there is β such that $\gamma \leq_S \beta \leq_S \Omega$.

If $\alpha <_S \Omega$, we prove that in a sense any sequence for Ω converges much slower than one for α . This gives combined splitting and density below α .

Theorem 14 Let $\gamma <_S \alpha <_S \Omega$. There are β^0 and β^1 such that $\gamma <_S \beta^0, \beta^1 <_S \alpha$ and $\beta^0 + \beta^1 = \alpha$.

Combining the two, we obtain a (non-uniform) proof of density. S shares this property with \mathcal{R}_{wtt} .

Random left-r.e. reals

Fact 15 If one of α, β is ML-random, then $\gamma = \alpha + \beta$ is ML random.

By contraposition suppose that γ is not ML-random. So $\gamma \in \bigcap G_m$ for a ML-test (G_m) , where $\lambda G_m \leq 2^{-m-1}$. Build a ML-test (H_m) for α : At stage s, if $\gamma_s \in I$ where I = [x, y) is a maximal subinterval of $G_{m,s}$, then put the interval

$$J = [x - \beta_s - (y - x), y - \beta_s]$$

into H_m . (Note that J is twice as long as I.)

A similar fact *fails* for left-r.e. reals and weaker randomness notions. The opposite was announced (wrongly) during the talk.

Fact 16 (with Miyabe and Stephan, 2017) There is α partial computably random and β such that $\alpha + \beta$ is not Kurtz random.

Random left-r.e. reals

Now for the converse for ML-randomness.

Theorem 17 If $\alpha + \beta$ is ML-random, then one of α, β is ML random.

(Several years after our paper appeared in 2001, Kucera pointed out that this was claimed without proof by Demuth^a.

Using the Kucera and Slaman Theorem that any random left-r.e. real is \leq_S -complete, this implies

Corollary 18 In S, the greatest element is join irreducible.

 \mathcal{S} shares this property with \mathcal{R}_m .

^aConstructive pseudonumbers, Comment. Math. Univ. Carolinae, vol. 16 (1975), pp. 315 - 331, Russian)

Later work

- Downey, Hirschfeldt and LaForte, Undecidability of the structure of the Solovay degrees of c.e. reals (2002) uses the method of coding \$\mathcal{I}(\mathcal{B})\$. Similar to the complexity case, they build an r.e. set A such that all complemented elements below are given by r.e. splittings.
- Downey, Hirschfeldt and LaForte, Randomness and reducibility, JCSS, 2007 (also D-H book): proof of results such as density in a more general axiomatic setting; works for $\leq_S, \leq_C, \leq_K, \leq_{rK}$ but not \leq_{sw} .
- Barmpalias, Bull. Symb. Log. 19(3), 2013: elementary differences between the structures etc.

Additive cost functions

Not a lot has happened on the structure of Solovay degrees in recent years. However, I used \leq_S in the paper "Calculus of cost functions" (to appear in "The Incomputable").

For a r.e. real β with a given approximation let $c_{\beta}(x,s) = \beta_s - \beta_x$.

Proposition 19 c_{α} implies c_{β} for some approximations of α, β

 $\Leftrightarrow \beta \leq_S \alpha.$

E.g. c_{Ω} is the strongest additive cost function. Obeying it characterises the *K*-trivials.

Question 20 Find β such that the Δ_2^0 sets obeying \mathbf{c}_{β} form a proper Turing ideal different from the K-trivials.

More open questions

Question 21 Do the degree structures considered above interpret true arithmetic?

Question 22 Suppose $a \neq o$ is a polytime m (or Turing) degree. Is Th[o, a] undecidable?

Question 23 How can we distinguish incomplete Solovay degrees of left-r.e. reals? For instance, are there two non-isomorphic initial segments strictly below Ω ?

Also: study the Solovay degrees of left-r.e. Schnorr randoms.