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Invariant Kolmogorov complexity

in classes of finite structures
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Invariant Kolmogorov complexity

I Fix a universal system of descriptions; say, a universal Turing

machine M taking as input bit strings σ.

I The Kolmogorov complexity of a finite mathematical object x

(e.g. a string) is the length of a shortest description, i.e.

min{|σ| : M(σ) = x}
I We can encode a finite structure G over a finite symbol set by

a string xG.

I The Kolmogorov complexity of xG is not necessarily invariant

under isomorphism of the structures.

I The invariant Kolmogorov complexity Kinv(G) is the

minimum of the Kolmogorov complexities of xH for all

structures H ∼= G.
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Compressibility for a class of finite structures

Recall: Kinv(G) is the minimum of the Kolmogorov complexities of all

structures H ∼= G.

I Let C be a class of finite structures for the same finite symbol

set.

I Let R : N→ N+ be an unbounded function.

I If Kinv(G) ≤ R(|G|) for each G ∈ C, what can we say about

the growth of R?
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I.o. lower bound of log n

log denotes the logarithm in base 2.

Let C be a class of finite structures containing a structure of each

size. If Kinv(G) ≤ R(|G|) for each G ∈ C, then for some constant c

∃∞n [log n− c ≤ R(n)] .

I To see this: for each k there is a number n with blog nc = k

such that any binary description of n has at least k bits.

I If some structure of size n has too short a description,

then n has a description of length < k, contradiction.
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Lower bounds by counting: graphs

Let C be the class of finite graphs. If Kinv(G) ≤ R(|G|) for each

G ∈ C, then n2 − 6 log n = O(R(n)). “No compression possible.”

I The number of non-isomorphic undirected graphs with n

vertices is at least
2(n

2)

n!
=

1

n

n−1∏
i=1

2i

i
,

which for large n exceeds 1
n
2n

2/6.

I For each k there are fewer than 2k binary descriptions of length

less than k. So for some constant c, for large enough n there is

an undirected graph G with n vertices such that

n2 − 6 log n ≤ c|σ|, for any binary description σ of any H ∼= G.

Hence n2 − 6 log n ≤ cKinv(G).
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Lower bounds by counting: p-groups

Let C be the class of finite p-groups (p a prime).

If Kinv(G) ≤ R(|G|) for each G ∈ C, then (log n)3 = O(R(n)).

I Higman (1960) showed1 that there are at least

p(
2
27

+τ(m))m3

non-isomorphic groups of order pm, for some function τ with

limm τ(m) = 0. (They are in fact all nil-2 of exponent p2.)

I This implies that for some constant c, for each large enough n a

power of p, there is a group G with n elements such that

log3 n ≤ c|σ|
for any binary description σ of any H ∼= G.

1See 2007 book by Blackburn, Neumann and Venkataram
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First-order compressibility within

classes of finite structures
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Main definition: compressibility in first-order logic

Let C be a class of finite structures for the same finite symbol set.

Let R : N→ N+ be an unbounded function.

The class C is R-compressible if for any G ∈ C, there exists a

first-order sentence ψG of length |ψG| = O(R(|G|)) such that

I G |= ψG, and

I if H |= ψG then G ∼= H.

I The “atomic diagram” of the structure is its trivial description.

(For a finite group, this is essentially the multiplication table.)

I This description has length O(|G|k+1), where k is the

maximum arity of a symbol in the set.
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Remarks on decompression and encoding

I Our descriptions are now first-order sentences φ.

I Decompression: a machine takes input φ and outputs the first

finite model of φ (if any)

I Descriptions use an infinite alphabet

I we can convert them into binary descriptions (essentially,

index the variables in binary to get down to a finite alphabet).

I The length of binary description of φ is O(|φ| log |φ|) so this

slightly worsens upper bounds on compressibility for classes we

now give.

I Let KFO(G) denote the least length of a first-order description

of G. We have Kinv(G) = O(KFO(G) log(KFO(G))).
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Cycle graphs are log-compressible

Let Cn be the undirected cycle graph with n vertices.

The class C = {Cn : n ∈ N} is log-compressible.

Let n = 2k or n = 2k + 1. Let φn be the sentence

I the graph is undirected, every vertex has degree 2,

I ∀x, y Pk(x, y),

I ∃x, y ¬Pk−1(x, y).

Pk(x, y) is a formula of length O(log k) saying that there is a path with

≤ k edges from x to y. (It uses O(log k) quantifiers.)

To distinguish whether n is even or odd, note that

∀u∀v∀z[Euv → (Pk−1uz ∨ Pk−1vz)] holds iff n = 2k.

11 / 30



Cyclic groups are log-compressible

Recall:

The class C is R-compressible if for any G ∈ C, there exists a first-order

sentence ψG of length |ψG| = O(R(|G|)) such that

I G |= ψG, and

I if H |= ψG then G ∼= H.

To say that a group G is cyclic of order n, express that

∃g [ the undirected Cayley graph given by g is Cn].
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Finite (difference) fields are log-compressible
A difference field is a field with a distinguished automorphism.

I (i) For any finite field Fq, there is a Σ3-sentence ϕq of length

O(log q) in the language L(+,×, 0, 1) describing Fq.
I (ii) For any finite difference field (Fq, σ) there is a Σ3-sentence

ψq,σ of length O(log q) in L(+,×, 0, 1, σ) describing 〈Fq, σ〉.

Proof (i): Let q = pn for a prime p.

I The sentence φq says that the structure is a field of characteristic p

such that ∀x [xp
n

= x] and ∃y [yp
n−1 6= y].

I These formulas can be replaced by short formulas using a method

from the theory of algorithms known as “exponentiation via

repeated squaring”.
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First-order compressibility of finite simple groups:

log |G|

14 / 30



Examples of first-order sentences for groups

Let [x, y] denote the commutator x−1y−1xy.

I The first-order sentence ∀x∀y [x, y] = 1 expresses that the

group is abelian.

I The following first-order sentence expresses that every

commutator is a product of three squares:

∀u∀v∃r∃s∃t [u, v] = rrsstt.
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Short formulas for defining a generated subgroup

For each n, k > 0 we can find a first-order formula

αgen(g;x1, . . . , xk) of length O(k + log n) such that

G |= αgen(g;x1, . . . , xk) if and only if g ∈ 〈x1, . . . , xk〉 for |G| = n.

To build the formulas αgen we use a technique that originated in

computational complexity, e.g. to show that the set of true quantified

boolean formulas is complete for polynomial space.

Drawback: this leads to an unbounded number of quantifier alternations.

We can avoid them at the cost of somewhat longer formulas:

For each each n, k > 0 we can find existential f.o. formula

βgen(g;x1, . . . , xk) of length O(k log2 n) such that

G |= βgen(g;x1, . . . , xk) if and only if g ∈ 〈x1, . . . , xk〉 for |G| = n.
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Ree groups2

I Let G2(q) be the automorphism group of the octonion algebra

over a q-element field Fq, where q has the form 32k+1, k > 0.

I τ is the automorphism of G2(q) arising from the symmetry of

the underlying (undirected) Dynkin diagram ·
6
− ·

I σ is the automorphism of G2(q) given by the square root of

the Frobenius automorphism x→ x3 on Fq (so σ(x) = x3
k+1

).

I The Ree group 2G2(q) is a subgroup of G2(q): it consists of

the elements g such that τ(g) = σ(g).

2Rimhak Ree, 1961
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Short presentations for finite simple groups
A finite presentation of a group has the form

〈x1, . . . , xk | r1, . . . , rm〉.

E.g. for dihedral groups we have D2n = 〈x, y | x2, yn, x−1yxy〉.
This presentation has length n+ constant.

Theorem (Guralnick et al., JAMS, 2008)

For some constant C0: the nonabelian finite simple groups, possibly

except the Ree groups of type 2G2, have a presentation with

I at most C0 generators and relators

I length at most C0(log q + log n).

q is the size of the underlying field, n the Lie rank of the group.

log n+ log q ≤ log |G|, so the presentations are O(log |G|) long.
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Conversion to a short first-order description

Suppose that a finite simple group G has a presentation

〈x1, . . . , xk | r1, . . . , rm〉. Let gi be the image of xi in G.

There is a formula ψ(x1, . . . , xk) of length O(log |G|+ k +
∑

i |ri|)
describing the structure (G, g1, . . . , gk).

I The formula is x1 6= 1 ∧
∧

1≤i≤m ri = 1 ∧ ∀y αgen(y;x1, . . . , xk).

I αgen is the formula of length O(k + log |G|) from a previous lemma,

expressing that y is generated by the xi within G.

I The models of ψ are the nontrivial quotients of (G, g1, . . . , gk).

I Then, since G is simple, ψ describes (G, g1, . . . , gk).
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Compression for finite groups: first result

Theorem
Suppose a finite group G has a presentation of length N .

Then G has a first-order description of length N +O(log2 |G|).

The proof follows the argument in the case of simple groups. The

group is determined by:

I generated by a sequence g1, . . . , gk satisfying the relators

I the length of a composition series. Using the formulas αgen for

generation, this extra information takes length O(log2 |G|).

Corollary (using Guralnick et al, JAMS 2008)

The class of finite groups not containing a Ree group 2G2 as a

composition factor is log3-compressible.
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Short first-order descriptions for Ree groups

I 2G2(q) is bi-interpretable with the difference field (Fq, σ). The

formulas don’t depend on q. (See Ryten’s 2007 PhD thesis at

the University of Leeds for a proof.)

I The class of finite difference fields is log-compressible.

I log-compressibility is preserved under bi-interpretability.

I So we can find short first-order descriptions of length O(log n)

for the Ree groups.

There is a slight complication because the interpretation of the

appropriate difference fields in the Ree groups needs parameters. To

deal with this, we actually want that the class of difference fields is

strongly log-compressible, i.e. we can add a list of constants of fixed

length and still get a description of length O(log).

21 / 30



First-order compressibility of all finite groups:

(log |G|)3
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Preliminary: straight line programs
Let G be a finite group, S ⊆ G and g ∈ G.

I A straight line program (SLP) L over S is a sequence of group

elements such that each element of L is in S, an inverse of an

earlier element, or a product of two earlier elements.

I The reduced length is the number of entries not in S.

I L computes B from S if L is an SLP over S containing B.

Reachability Lemma of Babai and Szemerédi (1984)

For each set S ⊆ G, there is a straight line program L over S of

reduced length at most (log |G|+ 1)2 that computes a

preprocessing set A = {z1, . . . , zn} as follows:

each g in 〈S〉 is of the form q−1p where p, q are products of some of

the zi in ascending order; so its red’d length over A is ≤ 2 log |G|.
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Proof that finite groups G are

(log |G|)3-compressible
We fix a composition series

1 = G0 CG1 C . . .CGr = G

with simple factors Hi := Gi/Gi−1, i = 1, . . . r.

The length r is bounded by log |G|. Pick an “appropriate” sequence

∅ = T0 ⊂ T1 ⊂ . . . ⊂ Tr = T with 〈Ti〉 = Gi.

Define the Gi from the sets Ti using the formulas αgen.

(a) introduce ascending preprocessing sets Ai for the Ti

(b) describe each Hi, together with the image of Ti \ Ti−1
(c) describe each Gi as a group extension

1→ Gi−1 → Gi → Hi → 1 (exact sequence).
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Introduce preprocessing sets Ai for the Ti
Recall: A is preprocessing set for S if 〈A〉 = 〈S〉 and for each g in 〈S〉
the reduced length of g over A is ≤ 2 log |G|.

I Our sentence describing G starts with a block of existential

quantifiers for the T , and another block referring to a

preprocessing set A for the generating set T of G.

I It states how A has been obtained from T via a SLP of

reduced length (log |G|+ 1)2. It uses at most that many

further existential quantifiers.

We build A in levels A0 ⊆ . . . ⊆ As = A, where Ai is a

preprocessing set for Ti. To do so we successively extend SLPs

computing Ai from Ti. The Ai will allow rapid access to particular

elements of Gi (at a cost of 2 log |Gi|).
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Describe Hi and the image of Ti \ Ti−1

Recall that Hi = Gi/Gi−1. By the case of simple groups (and the

right choice of the Ti) we have an O(log |G|) sentence φi describing

(Hi, Ti). We now need to express within G that (Hi, Ti) |= φi .

I Via the formulas αgen we express that Gi−1 is a normal

subgroup of Gi, using a length of O(log |Gi|).
I We restrict the quantifiers in φi to Gi using αgen and replace

each occurrence of “u = v” in φi by “uv−1 ∈ Gi−1”.

I Since we replace the equality symbols in φi by strings of

length O(log |Gi−1|), the resulting formula χi has length

O(log |Hi| log |Gi−1|). Then
∧
i χi has length O(log2 |G|).
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Describe Gi as a group extension of Gi−1 by Hi

1→ Gi−1 → Gi → Hi → 1 (exact sequence).

Conjugation action of Gi on Gi−1:

I Since 〈Ti−1〉 = Gi−1, it suffices to determine g−1wg, for each

pair g ∈ Ti \ Ti−1 and w ∈ Ti−1, as an element hg,w ∈ Gi−1.

I hg,w has length at most 2 log |Gi−1| over Ai−1.

I There are at most C0 · log |Gi−1| such pairs g, w.

(C0 is a bound on the number of generators of Hi. We picked

the Ti so that |Ti \ Ti−1| ≤ C0.)

I So this can be done by a formula of length O(log2 |Gi−1|).
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Describe Gi as a group extension of Gi−1 by Hi

Use result of Lubotzky and Segal that there is a “profinite”

presentation for Hi of length O(log |Hi|). Also use:

Lemma: there is d ≤ r · log |Z(Gi−1)|, and there are words

w1, . . . wd in ai = Ai \ Ai−1 of length at most 3 log |Hi| such that

the values wm(ai) ∈ Gi−1 determine Gi.

This is proved via some cohomology describing possible group

extensions, and the following fact suggested originally by Alex

Lubotzky at Hebrew U.

Let A be a finite abelian group (in our case it is the centre of Gi−1).

Let X be a set. Let V ≤ AX be a subgroup generated by d

elements. There is a set Y ⊆ X of size at most d log |A| such that

for each g ∈ V , g �Y = 0⇒ g = 0.
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Further directions and open questions

I Is the compression we obtain optimal for subclasses of the

finite simple groups, such as the alternating groups?

I Compress classes of groups close to simple, such as the almost

simple groups (S ≤ G ≤ Aut(S) for some finite simple group

S), or the central extensions of a simple group.

I Find short f.o. descriptions of the simple Lie algebras over C.

Descriptions must work within the class of Lie algebras over C.

I Fix a constant c. Develop a model theory for classes of finite

structures where the language consists of the first-order

formulas of size O(logc).
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