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The setting of computability theory

The objects of study are infinite sequences of
bits, identified with sets of natural numbers.

Computability theory studies their complexity.
Basic distinction: computable, or not.

A lowness notion provides a sense in which a
sequence of bits is close to computable.



Two examples of lowness notions

An oracle set Ais computably dominated if

functions that A computes don’t grow too fast:
every such function f is below a computable
function g.

An oracle set A is low if the halting set relative
to A has the least possible complexity:

A, =T @,



These lowness notions are incompatible

A computably dominated oracle A cannot be
Turing below the halting set, unless A'is
computable.

So being computably dominated and being low
are incompatible outside the computable!



Diagram of two lowness notions
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Kolmogorov complexity C(x)

* For a finite bit sequence x, let C(x) denote the
shortest length of a compressed form of x
(Solomonoff/Kolmogorov).

* We use a universal de-compressor U.

* (C(x)is the length of a shortest o such that
U(o) = x.

c —> U —> X




Prefix-free Kolmogorov complexity K(x)

An important modification of U: if o, Tare in the
domain of U, then t does not extend o.

The halting probability of U is

(= Z{Q‘lal o) halts}

K(x) is the length of a shortest o such that U(o) =

g = U} —> x

If U has access to an oracle set A we write KA(x)



Far-from-random sequences

A is K-trivial if for some number b,
K(A|n) <K(n) + b for each n (written in binary).

FACT: If Ais computable, then A is K-trivial.

Some A is K-trivial but not computable.



A is K-trivial < > Aislow for ML-randomness
N., 2002 every ML-random set is ML-random in A

<€ > Aislow for K
N., 2002
Vz K4(2) =T K(2)

= > Ais Turing below some Z
Hirschfeldt — that is ML-random in A
et al., 2006
< >
... (12 more)
< > Foreach,if QisY-random

Greenberg then Q is Y+A-random
et al., 2015
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Superlowness

An oracle A is called superlow if A’ (the halting
problem relative to A) is truth table equivalent
to @'. This is stronger than lowness A’ =1 (/.

AN
>, superlow sets
AN

computable sets K-trivial sets



Formalising randomness

A computable betting strategy M makes 2.3
a guess for the next bit, betting an %
amount b of the available capital. T

1
The bit is then revealed. If the guess was 0 \0.7

right, M gets b, otherwise M loses b.

1
Success of M on a bit sequence Z means
the capital along Z is unbounded. 1

0.8
V
Z is betting random (Schnorr, 1975) if no 0.5\

computable betting strategy succeeds 1
on Z. 0.2




Examples of computable betting strategies

* Some betting strategy can win on a sequence
with asymptotically at least € more 1s than Os

 Another betting strategy can win on a
sequence with infinitely many known Os,
e.g., 0in each position of the form n!



Left-c.e. reals and betting strategies

A real B is called left-computably enumerable
(left-c.e.) if B = sup, Bs for some computable
sequence of rationals (Bs),cx -

A betting strategy M is called left-c.e. if

M = sup, M, for some uniformly computable
sequence of (Mj) . of betting strategies.

A bit sequence Zis Martin-Lof random if no
left-c.e. betting strategy succeeds along Z.
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Diagram of randomness notions so far
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ML-random ——>
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Randomness

Effective forms of “almost everywhere” theorems in
analysis correspond to randomness notions.




Lebesgue’s theorem

Henri Lebesgue introduced a notion of measure
(size) for certain sets of real numbers.

Measure on [0,1] can be used to express that a
statement holds with probability one.

Lebesgue, 1904:
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Algorithmic forms of Lebesgue’s theorem |

A real number zis called betting-random if no
effective betting strategy succeeds on the binary
expansion of the real.

A function f defined on [0,1] is computable if from a
rational approximation to x we can compute one to f(x).

A real z is betting random if and only if

f’'(z) exists for each increasing

computable function f.
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Algorithmic forms of Lebesgue’s theorem |l

A function f: [a,b] — R is of bounded variation if

n—1
V(f) =sup Y |f(tit1) — f(t:)| < oo,
1=1

the sup taken over all collections t; <ty <... <, in [a,b].

A real z is ML-random if and only if

f'(z) exists for each computable function f

of bounded variation.
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Algorithmic forms of Lebesgue’s theorem Il

A real number z is called polynomial time
betting random if no polynomial time betting
strategy succeeds on the binary expansion of
the real.

Areal zis p.t.b. random if and only if

f’(z) exists for each increasing

polynomial time function f
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Lebesgue Density Theorem

Let A denote Lebesgue’s measure on [0,1].
Let £ be a measurable subset of [0,1].
The lower density of Eat z is

. A(J N E)
E|2)= liminf
p(E|2) = lminf =57,

where J ranges over intervals. This measures how
much of E is near z, as one zooms in on z.

Let £ be measurable. For almost every z in E,
the set £ has lower density 1 at 7.




A ML-random failing effective
Lebesgue Density Theorem

Let £ be measurable. For almost every
z in E, the set E has lower density 1 at z.

* Q denotes Chaitin’s halting probability, a ML-
random real that is left-computably enumerable.

e LetE=[Q,1]. Then E is an effectively closed set.

e Qisin E but the lower density of E at Q is O.



Randomness

Lowness calibrates randomness notions.




Randomness increases with lowness

given randomness notion

lower
implies
more random

v

* IfZis betting random and not high, then Z is ML-random.
e IfZis ML-random and forms a Turing minimal pair with the
halting problem, then Z is weakly 2-random.



Randomness increases with lowness

Franklin and Ng (2012) introduced difference randomness
via an algorithmic test notion. They showed that it
coincides with: ML random and not Turing above the
halting problem.

Difference tests were later emulated by density:

Let z be ML-random. Then z is not above the halting

problem (computationally weak) every effectively
closed E containing z has positive lower density at z (a
stronger randomness condition on z).
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A difference random failing
effective Lebesgue Density Theorem

There is a ML-random Z below the halting
problem such that

every effectively closed set containing Z has
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Thm. of Madison group + Myabe-N.-Zhang

The following are equivalent for a real z with binary
expansion 0.Z:

 zis ML-random and every effectively closed set
E containing z has density 1 at z (z is density
random)

e every left-c.e. betting strategy converges along Z

e f(z) exists for every function f that is the
variation of a computable function

* for each lower semicomputable integrable g we
have

g(z) = lim —/ gd) where Q ranges over
Q—z |Q) intervals containing z.

The Madison group (2012) consisted of Andrews, Diamondstone, Lempp,
Miller, and Ng. This theorem is published in M-N-Z 2016 BSL paper.



Diagram of randomness notions (growing)

density ____ difference ___, ML- _, betting

random random random  random
every effectively every effectively
closed set E closed set E
containing z has containing z has

density 1 at z positive density at z
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Tests given by effectively open sets

A subset N of [0,1] is a null set iff for each g, there
is an open set G containing N with A(G) < e.

A test is a descending sequence (Gm),,cn Of
sets that are effectively open uniformly in m,

such that lim,, A\(G,,) = 0.

Effectively open means:
union of an effective list of rational open intervals.



Left-c.e. tests and Martin-Lof test

Effectivise condition that lim,, A\(G,,) = 0.

Left-c.e. test: \(G,,) < B — Bm
where ((3,,) is computable sequence of rationals
with 8 = sup,, Bm < 1.

Martin-Lof test: ANGp) <27™,

zis...-random if z & ﬂGm for any test of this kind.



Diagram of randomness notions

(finished)
left c.e. density difference
random random random
ML- betting
random random

Is left-c.e. random = density random?
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Randomness

Lowness

New insights of analysis about randomness
help to study lowness.




Covering problem

Turing above each K-
trivial A, is there an incomplete ML-random Z?

K-trivial sets

33



Covering problem

Turing above each K-

trivial A, is there an incomplete ML-random Z?

This asked for a converse to

known result (Hirschfeldt et
al. 04):

If Ais c.e. and below a Turing
incomplete ML-random Z,
then A is K-trivial.

K-trivial sets
34



Covering problem

Turing above each K-trivial A,

is there an incomplete ML-random Z?

Day- Miller theorem on density, and the following two
results were needed to resolve the covering problem.

(1) Let Z be ML-random and not left-c.e.
random. Then Z is Turing above all the K-trivials.

(2) If Z is left-c.e. random, then Z is density
random.




Strong solution to the covering problem

Day and Miller showed
that some Turing
incomplete ML-random Z
is not density random.

Combining this with the
results of the OW group,
Z is not left-c.e. random,
\ so it is Turing above all
K.trivial sets the K-trivials.

Is left-c.e. random = density random?



Lowness

Concepts from analysis
parameterise lowness notions.




Parameterising

lowness notions I:

cost functions




Definition of cost function

A real B=0 is called left-computably enumerable
(left-c.e.) if B = sup, Bs for some computable
sequence of rationals (Bs),cx -

A cost function is a sequence (c(x)),y Of
uniformly left-c.e. reals that converges to 0.

Example:  cq(z) = Q — Q,.

Here ()., is the measure of U-computations
that have converged by stage x.



Obedience to cost functions

When building a computable approximation
A(x) = limg Ag(x), we view cg() as the
cost of changing A(x) at stage s.

A obeys c if for some approximation, the
changes over all stages s have a finite total
cost. (We only count the least change at each stage.)

23A 518A 2aA
1€ 20C 1.99 €
| | >
33A 1073A 32A

50¢ 2C 60¢C



Existence theorem

Recall: a set A obeys a cost function c if for some
computable approximation, the changes over all
stages s have a finite total cost.

Thm: For each cost function thereisac.e,,

noncomputable set that obeys

Proof idea: If at stage s we see an x> 2e in the e-th c.e. set W,
such that c¢(z,s) <27¢ put x into A.
Some “bookkeeping” is needed.
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Cost function characterisation of K-triviality
Recall: co(xr) =0 — Q.

Thm (N. 2011) : Ais K-trivial iff A obeys cq.

Earlier version 2005 with a different (less neat) cost function.



As a consequence, every K-trivial A is truth-
table below some c.e. K-trivial (N., 2005)

K-trivial sets



A dense hierarchy of ideals of K-trivials

Cost functions parameterise a dense hierarchy
of subideals of the K-trivials. For a positive
rational g< 1 let cqq(z) = (2 — Q).

Thm. (Greenberg, Miller and N. 2015)

Let g =k/n<1. Then a set A is Turing below
every k out of n “columns” of some ML-
random oracle Ziff A obeyscgq g -

Ideal given by ¢ 4 gets bigger as q increases.



Tests bounded by cost functions

Let ¢ be a cost function.
Atest (Gi),,cn is called a c-test if

Z is c-random if Z passes each c-test.

Left-c.e. random is the same as cq-random.
If A obeys cthen A is Turing below each
ML-random that fails to be c-random.



Smart sets for cost functions

Bienvenu et al. (now in JEMS, 2016) built a c.e. K-trivial A such that
no set Z above A is left-c.e. random. This was generalised to all
larger cost functions in place of Q) :

Thm. (Greenberg, Miller, N. and
Turetsky)

For each cost fcn ¢ > ¢cq
there is a c.e. set A obeying
c such that no set Z above A
is c-random.

not ¢-random

smart for ¢

The construction of A provides a
requirement-free solution to Post’s problem.

/

K-trivial sets



Parameterising
lowness notions Il:

Hausdorff distance to the
computable sets




The upper density of a bit sequence Z is
Z N |0,
n(Z) = lim sup | | n)|
n n

Besicovich pseudo-distance on Cantor space:
d(U, W) =n(UAW).
The Hausdorff distance between the Turing cone

below A and the computable sets measures how close
A is to computable.

let A={Y: Y <7 A} and R the computable sets.

dy(A,R) = sup inf d(Y, R)
YeA ReS
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Hausdorff distance gauges lowness of A

A={Y:Y <t A} R = computable

dy(A,R) = sup inf d(Y,S) Hausdorffdistance.
YeA SER

below A

computable
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Values: 0, 5, 1, and no others

L(A) =dg(A,R) = sup inf (Y, S)

L(A) < % iff L(A)=0 iff A is computable

L(A)= % is possible
L(A)= 1 is possible.
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Values: 0, 5, 1, and no others

L(A) =du(AR) = sup dnf d(Y, 5)

Monin, Nies, LICS 2015:
If every Schnorr test relative to A is passed by a

computable set, then L(A)= 7.
If A computes a function < 22" that is infinitely often

equal to each computable function, then L(A) =1
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Conclusion

Lowness and randomness interact in both
directions: lower means more random, K-trivials

Analysis can be used to study randomness (via
differentiability and density), and indirectly
lowness (solution to covering problem)

Analytic concepts can also be used to directly
calibrate lowness (cost functions, L(A) )
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