Lightface Π_3^0 -completeness of density sets under effective Wadge reducibility

Gemma Carotenuto and André Nies

June 2016

 $\mathrm{CiE}~2016$

Some definitions

- ▶ $2^{\mathbb{N}}$ is Cantor space, μ the uniform product measure.
- ▶ For a finite bit string s, by [s] we denote the clopen set in $2^{\mathbb{N}}$ consisting of all the extensions of s.
- ▶ For a measurable set $\mathcal{A} \subseteq 2^{\mathbb{N}}$, the local measure of \mathcal{A} above *s* is

$$\mu_s(\mathcal{A}) = \mu([s] \cap \mathcal{A})/2^{-|s|}.$$

• The density set of
$$\mathcal{A}$$
 is

$$D\mathcal{A} = \{Z \colon \lim_{n} \mu_{Z \upharpoonright n}(\mathcal{A}) = 1\}$$

- $D\mathcal{A} = \{Z : \forall \epsilon > 0 \exists k \forall n \ge k \, \mu_{Z \upharpoonright n}(\mathcal{A}) \ge 1 \epsilon\}$ so this set is Π_3^0 .
- ▶ Lebesgue density theorem (1904): $\mathcal{A} \triangle D\mathcal{A}$ is null.

Complexity analysis in descriptive set theory

Let $\mathcal{C}, \mathcal{D} \subseteq 2^{\mathbb{N}}$. One says that \mathcal{D} is Wadge below \mathcal{C} if $\mathcal{D} = F^{-1}(\mathcal{C})$ for a continuous function $F: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$.

Our main result is an analog in computability theory of the following recent theorem from descriptive set theory.

Theorem (Andretta-Camerlo, Advances in Math 2013)

Let $\mathcal{A} \subseteq 2^{\mathbb{N}}$ be measurable set with empty interior such that $\mu \mathcal{A} > 0$. The density set of \mathcal{A} is (boldface) Π_3^0 -complete for Wadge reductions.

The hypotheses are necessary: if e.g. $\mathcal{A} = 2^{\mathbb{N}}$ then $D\mathcal{A} = \mathcal{A}$; if $\mu \mathcal{A} = 0$ then $D\mathcal{A} = \emptyset$. Completeness for lightface point classes

Effective version of Wadge reducibility: for $\mathcal{C}, \mathcal{D} \subseteq 2^{\mathbb{N}}$, $\mathcal{D} \leq_m \mathcal{C} \Leftrightarrow \mathcal{D} = \Psi^{-1}(\mathcal{C})$ for some total Turing functional (i.e., truth table functional) Ψ .

Definition

Let Γ be a lightface point class in Cantor space, such as Π_2^0 or Π_3^0 . We say that $\mathcal{C} \in \Gamma$ is Γ -complete (for effective Wadge reductions) if for each $\mathcal{D} \in \Gamma$ we have $\mathcal{D} \leq_m \mathcal{C}$.

Examples of completeness

Proposition (Folklore)

The class C of all sequences with infinitely many 1's is Π_2^0 -complete.

- ► We effectively identify 2^N × 2^N with 2^N via a computable pairing function.
- ▶ We will need the following for our main result. It says that "every column is eventually 0" is Π_3^0 -complete.

Proposition

The set $\mathcal{E} = \{ Z \in 2^{\mathbb{N}} : \forall q \forall^{\infty} n Z(q, n) = 0 \}$ is Π_3^0 -complete.

$\Pi_3^0 \text{ completeness of the density set} \\ D\mathcal{A} = \{Z \colon \lim_n \mu_{Z \upharpoonright n}(\mathcal{A}) = 1\}. \text{ If } \mathcal{A} \text{ is closed then } D\mathcal{A} \subseteq \mathcal{A}.$

Theorem (Main)

Let $\mathcal{A} \subseteq 2^{\mathbb{N}}$ be a Π_1^0 set with empty interior such that $\mu \mathcal{A} > 0$ and $\mu \mathcal{A}$ is a computable real. Then $D\mathcal{A}$, the density set of \mathcal{A} , is Π_3^0 -complete for effective Wadge reductions.

Example of such \mathcal{A} : let $n_1 = 0$. For k > 0 let $n_{k+1} = n_k + k$.

 \mathbf{k}

$$\mathcal{A} = \{ Z \colon \forall k \left[Z \upharpoonright [n_k, n_{k+1}) \neq \overbrace{0 \dots 0}^{\sim} \right] \}.$$

 $0 < \mu \mathcal{A} = \prod_{k>0} (1 - 2^{-k})$ is computable. For $Z \in \mathcal{A}$ let

 $f_Z(k) = k -$ first position of a 1 in $[n_k, n_{k+1})$.

$$D\mathcal{A} = \{ Z \in \mathcal{A} \colon \lim_k f_Z(k) = \infty \}.$$

By the theorem, this density set is Π_3^0 complete.

Check that $D\mathcal{A}$ is Π_3^0

$$\mu_s(\mathcal{A}) = \mu([s] \cap \mathcal{A})/2^{-|s|}.$$

$$D\mathcal{A} = \{Z \colon \lim_n \mu_{Z \upharpoonright n}(\mathcal{A}) = 1\}.$$

Theorem (recall)

Let $\mathcal{A} \subseteq 2^{\mathbb{N}}$ be a Π_1^0 set with empty interior such that $\mu \mathcal{A} > 0$ and $\mu \mathcal{A}$ is a computable real. Then $D\mathcal{A}$, the density set of \mathcal{A} , is Π_3^0 -complete for effective Wadge reductions.

 $\triangleright \ Z \in D\mathcal{A} \leftrightarrow \forall \epsilon \in \mathbb{Q}^+ \exists n \forall k \ge n \ [\mu_{Z \upharpoonright k}(\mathcal{A}) \ge 1 - \epsilon].$

► Since \mathcal{A} is Π_1^0 , the statement $\mu_z(\mathcal{A}) \ge 1 - \epsilon$ is Π_1^0 uniformly in ϵ and a string z.

Proof sketch for the Π_3^0 completeness

 $L(s) = \mu_s(\mathcal{A})$ (that is, the local measure of \mathcal{A} in [s]).

 ${\cal L}$ is a computable betting strategy (martingale) in the sense of algorithmic randomness:

- $\blacktriangleright \forall s L(s0) + L(s1) = 2L(s)$
- ► $L(s) \ge 0$ is a computable real uniformly in s, since μA is computable

Also L(s) < 1 for each s because $[s] \not\subseteq \mathcal{A}$. We have $Z \in D\mathcal{A} \leftrightarrow \lim_{n} L(Z \upharpoonright n) = 1$.

Idea:

Oscillation of L along paths can be controlled sufficiently well in order to code the Π_3^0 -complete set \mathcal{E} into $D\mathcal{A}$.

• Recall
$$L(s) = \mu_s(\mathcal{A})$$
. For $p \in \mathbb{N}$ let $\delta_p = 1 - 3^{-p}$.
• Let $\theta(s) = \begin{cases} p & \text{if } \delta_{p-1} < L(s) < \delta_p \\ \uparrow & \text{if } \exists k L(s) = \delta_k \end{cases}$

 θ is partial computable. $\lim_{n \to \infty} \theta(X \upharpoonright n) = \infty \Rightarrow X \in D\mathcal{A}.$

Lemma (modifying Andretta/Camerlo)

- (i) (Increasing the value of L.) Let p < k and $\theta(s) = p$. There is $t \supset s$ such that $\theta(t) \ge k$ and $L(u) > \delta_{p-1}$ for each u with $s \subseteq u \subseteq t$.
- (ii) (Decreasing the value of L.) Let p > q and $\theta(s) = p$. There is $t \supset s$ such that $\theta(t) = q$ and $L(u) > \delta_{q-1}$ for each u with $s \subseteq u \subseteq t$.

L(x) is a computable real uniformly in string x. Hence all conditions in the Lemma are Σ_1^0 . So we can search for t.

Examples

(i) Increasing the value of L. Suppose $\theta(s) = p = 2$ and k = 4.

(ii) Decreasing the value of L. Suppose $\theta(s) = p = 4$ and q = 2.

Defining the tt-reduction ψ by recursion.

We want to show

 $\mathcal{E} = \{ Z \in 2^{\mathbb{N}} \mid \forall q \forall^{\infty} n [Z(q, n) = 0\} \leq_{m} D\mathcal{A} \text{ via } \psi.$

We may assume $\mu \mathcal{A} \leq 1/2$, so $\theta(\emptyset)$ is defined. Let $\psi(\emptyset) = \emptyset$. Given a matrix $b = \langle b_{i,j} \mid i, j < n+1 \rangle$, let $s = \psi(a)$ where $a = b \upharpoonright n \times n$. $p = \theta(s)$ is defined.

If there is a $q \leq n$ such that b(q, n) = 1, choose q least.

► If q < p, go down: Compute a string $t \supset s$ such that $\theta(t) = q$ and $L(u) > \delta_{q-1}$ for each u with $s \subseteq u \subseteq t$, and define $\psi(b) = t$.

• Otherwise go up: let $k = \max(p+1, n+1)$. Compute a string $t \supset s$ such that $\theta(t) \ge k$ and $L(u) > \delta_{p-1}$ for each u with $s \subseteq u \subseteq t$, and define $\psi(b) = t$.

This completes the recursion step.

Remarks and open questions

Fact

The hypothesis that $\mu \mathcal{A}$ be computable is needed to obtain the Π_3^0 -completeness of $D\mathcal{A}$.

For instance, take a nonempty Π_1^0 class \mathcal{A} of Martin-Löf randoms; \mathcal{A} has empty interior, but its measure $\mu \mathcal{A}$ is a ML-random real. ($D\mathcal{A}$ is complex in a sense- e.g each density random is in $D\mathcal{A}$, but the right-c.e. real min \mathcal{A} is not.) Note that \mathcal{E} contains computable sets, e.g. the empty set. Since \mathcal{A} and hence $D\mathcal{A}$ do not contain computable sets, we have $\mathcal{E} \not\leq_m D\mathcal{A}$.

Question

What is the complexity of $D\mathcal{B}$ for a Π_2^0 -class \mathcal{B} ?

Note that $D\mathcal{B}$ is Π_3^0 relative to \emptyset' .