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Some definitions
I 2N is Cantor space, µ the uniform product measure.

I For a finite bit string s, by [s] we denote the clopen set
in 2N consisting of all the extensions of s.

I For a measurable set A ⊆ 2N, the local measure of A
above s is

µs(A) = µ([s] ∩ A)/2−|s|.

I The density set of A is

DA = {Z : lim
n
µZ�n(A) = 1}

I DA = {Z : ∀ε > 0∃k∀n ≥ k µZ�n(A) ≥ 1− ε} so this
set is Π0

3.

I Lebesgue density theorem (1904): A4DA is null.
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Complexity analysis in descriptive set theory

Let C,D ⊆ 2N. One says that D is Wadge below C if
D = F−1(C) for a continuous function F : 2N → 2N.

Our main result is an analog in computability theory of the
following recent theorem from descriptive set theory.

Theorem (Andretta-Camerlo, Advances in Math 2013)

Let A ⊆ 2N be measurable set with empty interior such that
µA > 0. The density set of A is (boldface) Π0

3-complete for
Wadge reductions.

The hypotheses are necessary:
if e.g. A = 2N then DA = A; if µA = 0 then DA = ∅.
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Completeness for lightface point classes

Effective version of Wadge reducibility: for C,D ⊆ 2N,
D ≤m C ⇔ D = Ψ−1(C) for some total Turing functional
(i.e., truth table functional) Ψ.

Definition

Let Γ be a lightface point class in Cantor space, such as Π0
2

or Π0
3. We say that C ∈ Γ is Γ-complete (for effective

Wadge reductions) if for each D ∈ Γ we have D ≤m C.
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Examples of completeness

Proposition (Folklore)

The class C of all sequences with infinitely many 1’s is
Π0

2-complete.

I We effectively identify 2N × 2N with 2N via a
computable pairing function.

I We will need the following for our main result. It says
that “every column is eventually 0” is Π0

3-complete.

Proposition

The set E = {Z ∈ 2N : ∀q∀∞nZ(q, n) = 0} is Π0
3-complete.

5/12



Π0
3 completeness of the density set
DA = {Z : limn µZ�n(A) = 1}. If A is closed then DA ⊆ A.

Theorem (Main)

Let A ⊆ 2N be a Π0
1 set with empty interior such that µA > 0

and µA is a computable real. Then DA, the density set of
A, is Π0

3-complete for effective Wadge reductions.

Example of such A: let n1 = 0. For k > 0 let nk+1 = nk + k.

A = {Z : ∀k [Z � [nk, nk+1) 6=
k︷ ︸︸ ︷

0 . . . 0 ]}.

0 < µA =
∏

k>0(1− 2−k) is computable. For Z ∈ A let

fZ(k) = k − first position of a 1 in [nk, nk+1).

DA = {Z ∈ A : limk fZ(k) =∞}.

By the theorem, this density set is Π0
3 complete.
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Check that DA is Π0
3

µs(A) = µ([s] ∩ A)/2−|s|.
DA = {Z : limn µZ�n(A) = 1}.

Theorem (recall)

Let A ⊆ 2N be a Π0
1 set with empty interior such that µA > 0

and µA is a computable real. Then DA, the density set of
A, is Π0

3-complete for effective Wadge reductions.

I Z ∈ DA ↔ ∀ε ∈ Q+∃n∀k ≥ n [µZ�k(A) ≥ 1− ε].
I Since A is Π0

1, the statement µz(A) ≥ 1− ε is Π0
1

uniformly in ε and a string z.
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Proof sketch for the Π0
3 completeness

L(s) = µs(A) (that is, the local measure of A in [s]).

L is a computable betting strategy (martingale) in the
sense of algorithmic randomness:

I ∀sL(s0) + L(s1) = 2L(s)

I L(s) ≥ 0 is a computable real uniformly in s,
since µA is computable

Also L(s) < 1 for each s because [s] 6⊆ A. We have
Z ∈ DA ↔ limn L(Z � n) = 1.

Idea:
Oscillation of L along paths can be controlled sufficiently
well in order to code the Π0

3-complete set E into DA.
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I Recall L(s) = µs(A). For p ∈ N let δp = 1− 3−p.

I Let θ(s) =

{
p if δp−1 < L(s) < δp

↑ if ∃k L(s) = δk

θ is partial computable. limn θ(X � n) =∞⇒ X ∈ DA.

Lemma (modifying Andretta/Camerlo)

(i) (Increasing the value of L.) Let p < k and θ(s) = p.
There is t ⊃ s such that θ(t) ≥ k and L(u) > δp−1 for
each u with s ⊆ u ⊆ t.

(ii) (Decreasing the value of L.) Let p > q and θ(s) = p.
There is t ⊃ s such that θ(t) = q and L(u) > δq−1 for
each u with s ⊆ u ⊆ t.

L(x) is a computable real uniformly in string x. Hence all
conditions in the Lemma are Σ0

1. So we can search for t.
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Examples
(i) Increasing the value of L.

Suppose θ(s) = p = 2 and k = 4.
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(ii) Decreasing the value of L.
Suppose θ(s) = p = 4 and q = 2.
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Defining the tt-reduction ψ by recursion.
We want to show

E = {Z ∈ 2N | ∀q∀∞n[Z(q, n) = 0} ≤m DA via ψ.

We may assume µA ≤ 1/2, so θ(∅) is defined. Let ψ(∅) = ∅.
Given a matrix b = 〈bi,j | i, j < n+ 1〉, let s = ψ(a) where
a = b � n× n. p = θ(s) is defined.
If there is a q ≤ n such that b(q, n) = 1, choose q least.

I If q < p, go down: Compute a string t ⊃ s such that

θ(t) = q and L(u) > δq−1 for each u with s ⊆ u ⊆ t,
and define ψ(b) = t.

I Otherwise go up: let k = max(p+ 1, n+ 1). Compute

a string t ⊃ s such that θ(t) ≥ k and L(u) > δp−1 for
each u with s ⊆ u ⊆ t, and define ψ(b) = t.

This completes the recursion step.
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Remarks and open questions

Fact

The hypothesis that µA be computable is needed to obtain
the Π0

3-completeness of DA.

For instance, take a nonempty Π0
1 class A of Martin-Löf

randoms; A has empty interior, but its measure µA is a
ML-random real. (DA is complex in a sense- e.g each
density random is in DA, but the right-c.e. real minA is
not. ) Note that E contains computable sets, e.g. the
empty set. Since A and hence DA do not contain
computable sets, we have E 6≤m DA.

Question

What is the complexity of DB for a Π0
2-class B?

Note that DB is Π0
3 relative to ∅′.
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