
The Gamma question and
cardinal characteristics

André Nies
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The Gamma question and its variants



Lowness paradigms

Given a set A ⊆ ω. How close is A to being computable?

Several paradigms have been suggested.

I A has little power as a Turing oracle.
E.g. computably dominated: every function g ≤T A is dominated

by a computable function.

I Many oracles compute A.
E.g. base for randomness: there is an oracle Z, random in A,

such that Z ≥T A.

A recent paradigm: A is coarsely computable. This means there
is a computable set R such that the asymptotic density of
A↔ R equals 1. Here A↔ R := {n : A(n) = R(n)}.
Downey, Jockusch, and Schupp, Asymptotic density and computably

enumerable sets, Journal of Mathematical Logic, 13, No. 2 (2013)



The γ-value of a set A ⊆ ω

The lower density of Z ⊆ ω is a number in [0, 1], namely

ρ(Z) = lim inf
n

|Z ∩ [0, n]|
n

For the γ value, smaller means harder to compute:

γ(A) = sup
R computable

ρ(A↔ R).

I If γ(A) ≥ p one says that
A is coarsely computable at density p.

I A coarsely computable ⇒ γ(A) = 1.
Hirschfeldt et al. show that the converse fails.

Hirschfeldt, Jockusch, McNicholl, Schupp, Asymptotic density and the

coarse computability bound, preprint, 2013.



Possible γ values
A computable: 1. A random: 1/2
Any computable (in fact, left- Σ0

2) real in [0, 1] is a γ(A).

Fact

Let A be not computably dominated, i.e.
∃ g ≤T A not dominated by any computable function h.

There is B ≤T A such that γ(B) = 0.

Proof idea: for n > 0 let In = [(n− 1)!, n!).

I For a computable set R given by characteristic function Φe, let
h(n) be the time it takes Φe to converge on In.

I If h(n) < g(n), A sees this convergence in time, and can make B
different from R on all of In. This ensures

|(B ↔ R) ∩ [0, n!)|
n!

≤ 1/n.

I Do some bookkeeping to treat all the total Φe.

For such e there are infinitely many n with h(n) < g(n).



Γ-value of a Turing degree

Andrews et al. (2013) wanted to look at degrees, rather than
sets. So they defined

Γ(A) = inf{γ(B) : B ≡T A}.

One can as well take the inf over all B ≤T A.

I By previous fact, if A is not computably dominated then
Γ(A) = 0.

I They show: if A is random and computably dominated,
then Γ(A) = 1/2.

Andrews, Cai, Diamondstone, Jockusch and Lempp, Asymptotic

Density, computable traceability, and 1-randomness, preprint, 2013.



How about Γ values in (1/2, 1)?

Fact (Hirschfeldt et al.)

If Γ(A) > 1/2 then A is computable (so that Γ(A) = 1).

Proof idea: Again let In = [(n− 1)!, n!) for n > 0.

I Define B(k) = A(n) for k ∈ In. Then B ≡T A.

I Suppose that γ(R↔ B) > 1/2 for a computable R.

I Then for almost all n

(namely, all n with 1/n < Γ(A)− 1/2),

A(n) is the value of the majority of bits R(k) for k ∈ In.

I This we can compute.



Γ-question, Andrews et al., 2013

We have the Γ values 1/2, 1 and nothing properly in between.
We also have the value 0.
Is there any value properly in between 0 and 1?

Question (Γ-question)

Is there an A such that 0 < Γ(A) < 1/2?

I We won’t answer this.

I Rather, we use analogs of notions from cardinal
characteristics to obtain natural classes of oracles with Γ
value 1/2, and with Γ value 0.

I This yields new examples for both cases.

I It may help to solve the problem eventually, by providing
methods and a conceptual framework.



Variants of γ and Γ

Other bases: We can work in base b > 2 rather than 2, i.e.
A : ω → {0, . . . , b− 1}.
γb(A) and Γb(A) are defined as expected.
We have Γb(A) > 1/b⇒ A computable (now with a harder
proof). Values in (0, 1/b)?

Complexity theory: Fix an alphabet Σ. For Z,A ⊆ Σ∗ let

ρ(Z) = lim inf
n

|Z ∩ Σ≤n|
|Σ≤n|

γpoly(A) = sup
R poly time computable

ρ(A↔ R)

Γpoly(A) = inf{γpoly(B) : B ≡pT A}.

Not much known here. Basic facts from computability don’t
carry over. Which Γpoly values exist?



Cardinal characteristics



Cardinal characteristics and highness properties

Recent interaction of set theory and computability:
A close analogy between cardinal characteristics of the
continuum, and highness properties (indicating strength of a
Turing oracle).

I The domination number d is the least size of a set of functions
on the natural numbers so that every function is dominated by
one of them.

I This corresponds to being not computably dominated: the oracle
A computes a function that is not dominated by any computable
function.

I This correspondence was first studied explicitly by Nicholas
Rupprecht, a student of A. Blass (thesis, article in Arch. of
Math. Logic, 2010).



Domination, and slaloms (Bartoszyński, 1987)

I For f, g ∈ ωω, let
f ≤∗ g ⇔ f(n) ≤ g(n)
for almost all n.

I A slalom is a function σ
from ω the finite subsets
of ω such that

∀n |σ(n)| ≤ n2.
I It traces f if
∀∞n f(n) ∈ σ(n).

Picture in Bartoszyński’s paper



Set theory versus computability

d = d(≤∗): the least size of a
set F ⊆ ωω dominating each
function.

cofin(N ): the least size of a
collection of null sets
covering all null sets.

d(∈∗): the least size of a set
of slaloms tracing all
functions.

Thm. [Bartoszyński 1984]
d(∈∗) = cofin(N ).

there is g ≤T A such that
g 6≤∗ f for each
computable f .

A is not low for Schnorr tests.

A is not computably
traceable.

Thm. [Terw./Zamb. 2001]
Computably traceable ⇔

low for Schnorr tests



Unbounding and domination numbers of relations

Let R ⊆ X × Y be a relation. Let

b(R) = min{|F | : F ⊆ X ∧ ∀y ∈ Y ∃x ∈ F ¬xRy}

d(R) = min{|G| : G ⊆ Y ∧ ∀x ∈ X ∃y ∈ G xRy}.

I b(R) is called the unbounding number of R, and d(R) the
domination number.

I If R is a preordering without greatest element, then any set
of covers is unbounded. So ZFC proves b(R) ≤ d(R).



Extended Cichoń diagram of cardinals (10 nodes)

b( 6=∗)

BJ, Th. 2.4.7

d(∈∗)

BJ, Th. 2.3.9

cover(N ) // non(M) // cofin(M) // cofin(N )

b(≤∗)

OO

// d(≤∗)

OO

add(N )

OO

// add(M)

OO

// cover(M)

OO

// non(N )

OO

b(∈∗)

BJ, Th. 2.3.9

d(6=∗)

BJ, Th. 2.4.1

M denotes “meager”, N is “null”. Going up or to the right means

the cardinal gets bigger and ZFC knows it. Each arrow can be made

strict in a suitable model of ZFC. BJ refers to Bartoszyński/Judah.



Uniform transfer to the setting of computability
Most of this was described in Rupprecht’s thesis in a more
informal way. Full detail in Brooks-T, Brendle, Ng, Nies
(BBNN) paper. Recall:

b(R) = min{|F | : F ⊆ X ∧ ∀y ∈ Y ∃x ∈ F ¬xRy}
d(R) = min{|G| : G ⊆ Y ∧ ∀x ∈ X ∃y ∈ GxRy}.

Suppose we have specified what it means for objects x in X, y
in Y to be computable in a Turing oracle A. Let the variable x
range over X, and let y range over Y . We define the highness
properties

B(R) = {A : ∃y ≤T A∀x computable [xRy]}
D(R) = {A : ∃x ≤T A∀y computable [¬xRy]}.

Note we are negating the set theoretic definitions. Reason: to

“increase” a cardinal of the form min{|F | : φ(F )}, we need to

introduce via forcing objects y so that φ(F ) no longer holds in an

extension model. This forcing corresponding to the construction of a

powerful oracle computing a witness for ¬φ.



Analog of Cichoń’s diagram in computability theory (7 nodes)

high or DNR↔ B(6=∗)

BBNN

D(∈∗)↔ not
computably

traceable

Terw, Zambella

A ≥T a
Schnorr
random

// weakly
meager
engulf’g

//

not low for
weak 1-gen
(i.e. hyper-
immune or

DNR)

//
not low

for
Schnorr

tests

high

OO

// hyperimmune
degree

OO

Schnorr
en-

gulf’g

OO

Ruppr.

Ruppr.

meager
en-

gulf’g

Ruppr.

// weakly
1-gen.
degree

Ruppr. //
weakly
Schnorr

en-
gulf’g

OO

B(∈∗)

Ruppr.

D( 6=∗)

BBNN



Analog of non(N ): weakly Schnorr engulfing

non(N ) is the least size of a non-null set. (This is b(∈N ), where
∈N is the element relation between reals and null sets. )

Determine the analogous highness property in computability.

I A Schnorr test is an effective sequence (Sm)m∈N of Σ0
1 sets

in ω2 such that each λSm is a computable real uniformly in
m, and λSm ≤ 2−m. (λ is product measure on ω2.)

I A set F ⊆ ω2 is Schnorr null if F ⊆
⋂
m Sm for a Schnorr

test (Sm)m∈N.

I Each Schnorr null set fails to contain a computable set.

We say that A is weakly Schnorr engulfing (w.S.e.) if
A computes a Schnorr test containing all computable reals.
(This is the analog B(∈N ) of b(∈N ). Introduced by Rupprecht.)



Known examples of A such that Γ(A) ≥ 1/2

I The two known properties of A implying Γ(A) ≥ 1/2 were:

(1) Computably dominated random, and
(2) computably traceable (= low for Schnorr null sets: every

A-Schnorr null set is contained in a plain Schnorr null set).

I Both imply non-weakly Schnorr engulfing.
(1) was proved by Rupprecht.

(2) is trivial viewing the property as lowness for Schnorr null

sets.

I Recent result of Kjos-Hanssen, Stephan and Terwijn: there
is a non-w.S.e. without any of these properties. In fact it is
non-DNR, and not computably traceable.

So let’s show A non-w.S.e. implies that Γ(A) ≥ 1/2. This will
give a new type of example for such sets.



Theorem

Let A be not weakly Schnorr engulfing. Then Γ(A) ≥ 1/2.

Proof. Let B ≤T A. Have to show γ(B) ≥ 1/2.

I For each d ∈ N define a Schnorr test (Sm)m∈N relative to A such
that, for each set R not captured by this test, we have
ρ(B ↔ R) ≥ 1/2− 1/d.

I For each d, some computable set R passes the test. So this will
show that γ(B) ≥ 1/2.

Let I0 = ∅, I1 = {1}, I2 = {2, 3}, . . . .

I Given k, let Gk =

{Z : Z(i) 6= B(i) for a ratio of bits in Ik of at least 1/2 + 1/d}.

I Gk is a clopen set computed uniformly in k from A.

I Chernoff bounds: λGk ≤ e−2k/d
2

.

I Sm =
⋃

k≥md2 Gk defines a Schnorr test relative to A as required.



Characterization of w.S.e. via traces
An obvious question is whether conversely, Γ(A) ≥ 1/2 implies
that A is not weakly Schnorr engulfing. We studied w.S.e. in
the hope of getting somewhere near.

Let H : ω 7→ ω be computable with
∑

1/H(n) finite.
{Tn}n∈ω is a small computable H-trace if

I Tn is a uniformly computable finite set

I
∑

n |Tn|/H(n) is finite and computable.

The following is an analog of the (partial) combinatorial
characterisation of non(N ) in B/Judah book, Thm 2.5.15.
(They need the extra hypothesis that non(N ) > d(≤∗). No such thing

is needed in the computability analog.)

Theorem

A is weakly Schnorr engulfing iff for some computable function
H, there is an A-computable small H-trace capturing every
computable function bounded by H.



Cichoń’s diagram, again

b( 6=∗)

BJ, Th. 2.4.7

d(∈∗)

BJ, Th. 2.3.9

cover(N ) // non(M) // cofin(M) // cofin(N )

b(≤∗)

OO

// d(≤∗)

OO

add(N )

OO

// add(M)

OO

// cover(M)

OO

// non(N )

OO

b(∈∗)

BJ, Th. 2.3.9

d(6=∗)

BJ, Th. 2.4.1



Analog of cover(M): infinitely often equal
cover(M) is the least size of a collection of meager sets with union R.

This coincides with d(6=∗), the least size of a set of functions in ωω

such that for each function, some function in the set is a.e. different.

We now use this to develop a new example of Γ(A) = 0.

We say that A is infinitely often equal (i.o.e.) if there is g ≤T A
such that ∃∞nf(n) = g(n) for each computable function f .

This is easily seen to be equivalent to “A not computably dominated”.

And we already know this implies Γ(A) = 0. So what? Weaken it.

Let H : ω → ω. We say that A is H-infinitely often equal if
there is g ≤T A such that ∃∞nf(n) = g(n) for each computable
function f bounded by H.

(This appears to get harder for A as H grows faster. If H ≥ 2 is

constant, H-i.o.e is the same as non-computable. However, we don’t

know that there is a proper hierarchy for functions H with

∞ >
∑

n 1/H(n).)



New example of Γ(A) = 0

Let H : ω → ω. We say that A is H-infinitely often equal if there is

g ≤T A such that ∃∞nf(n) = g(n) for each computable function f

bounded by H.

Theorem

Let A be 2(α
n)-i.o.e. for some α > 1. Then Γ(A) = 0.

Previously known examples of sets A with Γ(A) = 0:

I not computably dominated, and

I degree of a completion of Peano arithmetic (PA for short).

Each property implies H-infinitely often equal for any given
computable H.
Using a construction of Rupprecht (2010), given a computable
H ≥ 2, we can build an H-i.o.e. set A that is computably
dominated, and not PA. So we have a new example of Γ(A) = 0.



New example of Γ(A) = 0

Theorem (again)

Let A be 2(α
n)-i.o.e. for some computable α > 1. Then

Γ(A) = 0.

First we prove that A is 2k
n
-i.o.e. for any k ∈ N.

Then we show that A 2k
n
-i.o.e. implies γ(A) ≤ 1/k.



A cardinal characteristic corresponding to Γ(A) ≤ p

This is somewhat speculative recent work with J. Brendle.

Let 0 ≤ p < 1. How many sets x ⊆ ω does one need so that:
each set y is asymptotically equal to some x on a fraction of
more than p bit positions?

κp = min{|F | : F ⊆ 2ω ∧ ∀y ∈ 2ω∃x ∈ F ρ(y ↔ x) > p}.

Fact

(i) p ≤ q ⇒ κp ≤ κq.
(ii) 1/2 < p ≤ q ⇒ κp = κq.

(i) is trivial.
(ii) uses the “stretching” argument employed earlier on.



A set theoretic analog of the Γ question

κp = min{|F | : F ⊆ 2ω ∧ ∀y ∈ 2ω∃x ∈ F ρ(y ↔ x) > p}.

For p < 1/2, we have

cover(M) ≤ κp ≤ non(N ),

via set theoretic versions of the computability proofs mentioned
earlier on.
E.g. for κp ≤ non(N ), let |F | < κp. Choose y such that
ρ(y ↔ x) ≤ p for each x ∈ F . The set of such x is null (for
almost every x, we must have ρ(y ↔ x) = 1/2).

Question (Set theoretic Γ question)

Is it consistent that κp < κq for some p < q?
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