Objects of greatest complexity in their class

André Nies

Is there a most complex object in a class?

The following questions arises frequently in mathematics and theoretical computer science.

We are given a class of objects and a method to compare their complexity.

- ► Is there a most complex object in the class? If so, we call it a complete object for the class.
- ▶ What are the properties of a complete object?
- ▶ Is a complete object unique in some sense?

Two basic notions of computability

A function ψ defined on a subset of \mathbb{N} is called partially computable if there is a Turing machine that

- with n as an input, outputs $\psi(n)$ if defined,
- ▶ and doesn't stop otherwise.

$$n \longrightarrow$$
 Turing machine $M \longrightarrow \psi(n)$ if $\psi(n)$ defined

 $A \subseteq \mathbb{N}$ is called computably enumerable (c.e.) if

 $A = \{n: M(n) \text{ halts}\}$ for a Turing machine M.

The halting problem is m-complete for c.e. sets

Definition

Let $A, B \subseteq \mathbb{N}$. $B \leq_m A$ if $\exists f \colon \mathbb{N} \to \mathbb{N}$ computable such that $n \in B \leftrightarrow f(n) \in A$.

 M_0, M_1, \ldots effective listing of all Turing machines.

 $\mathcal{H} = \{ \langle e, n \rangle \colon M_e(n) \text{ halts} \}$ is the halting problem.

Theorem (Complete object exists; Turing 1936, Post, 1944) \mathcal{H} is \leq_m -complete for the class of c.e. sets.

Theorem (Uniqueness of complete object, Myhill, 1955) Let A and B be \leq_m -complete for the c.e. sets. Then there is a computable permutation ρ of \mathbb{N} such that $\rho(A) = B$.

The satisfiability problem SAT is complete for NP

- ▶ In complexity theory one studies sets of words over a finite alphabet.
- ▶ SAT is the set of satisfiable Boolean formulas (encoded by words). E.g. $(x \lor \neg y) \land (\neg x \lor y) \land (x \lor z) \in SAT$.
- ▶ NP is the class of problems of the form

 $\{w: \exists u [M(w \# u) \text{ accepts}]\},\$

for a Turing machine M that stops in polynomial time relative to |w|. (# is a separator symbol.)

Theorem (Cook 1971; Levin 1973)

SAT is polynomial time \leq_m -complete for NP. Hence $P \neq NP$ iff SAT $\notin P$.

The Berman-Hartmanis conjecture (dating from 1976) asks whether all *NP*-complete problems *A*, *B* are polynomial time isomorphic: $A = \rho(B)$, where ρ and ρ^{-1} are in PTIME.

Motivation

Suppose we are given a preordering \leq to compare the complexity of objects in the class C.

Why are we interested in complete objects S for a class C?

The answer depends on whether we focus on \mathcal{C} , or on S.

Focussing on the class \mathcal{C}

- ▶ The preordering is often (but not always) simple.
- Often it is "simpler" than the objects it is supposed to compare. Computable functions compare computably enumerable sets; polytime functions compare NP sets.
- Usually C is downward closed under \leq .
- ▶ So the single object S, together with the simple preordering \leq , describes the whole class C.

L'etat, c'est moi

Focussing on the complete object S

- A complete object S for C can be expected to be interesting.
- Reflecting Tao and others, one can ask the question: is S structured, or random?
- The halting problem and SAT are structured. Chaitin's Ω and the Rado graph are random.

The complexity of an object S can be determined by proving that S is complete for the canonical class C of objects it belongs to.

(How is the randomness content of S related to C?)

More recent example: Solovay completeness

Definition

 $\alpha \in \mathbb{R}$ is called c.e. from the left if

 $\{q\in\mathbb{Q}\colon\,q<\alpha\}$

is computably enumerable. Equivalent formulation: $\alpha = \sup_s p_s$ for an increasing computable sequence $\langle p_s \rangle_{s \in \mathbb{N}}$ of rationals.

Example: $\alpha = \sum_{n \in A} 2^{-n}$ for a c.e. set A.

Solovay reducibility

Definition (Solovay-reducibility)

 $\beta \leq_S \alpha$ if $\beta = \sup_s q_s$ for a computable sequence of rationals such that $\beta - q_s = O(\alpha - p_s)$.

Theorem (Kučera and Slaman, 2001)

Let $\alpha \in [0,1]$ be c.e. from the left. Then:

 α is \leq_S -complete $\Leftrightarrow \alpha$ is Martin-Löf random.

Examples of \leq_S -complete reals:

- $\alpha = \sum_{e} 2^{-e} \alpha_{e}$, for an effective list $\langle \alpha_{e} \rangle$ of the c.e. from the left reals;
- Chaitin's Ω (the probability that a universal prefix-free machine halts).

Random sets and K-trivial sets

An infinite bit sequence $B = z_1, z_2, \ldots$ is Martin-Löf random if its initial segments z_1, \ldots, z_n are only compressible by a constant b:

 $\exists b \,\forall n \, [K(z_1, \ldots, z_n) \geq n - b],$ where K denotes prefix-free Kolmogorov-complexity.

At the opposite end of initial segment compressibility, B is called K-trivial (Chaitin/Solovay 1975) if

 $K(z_1,\ldots,z_n) \leq K(0^n) + \text{const.}$

Even more recent example: ML-completeness

Bienvenu, Greenberg, Kučera, N., Turetsky, JEMS ta, introduced the following.

 $B \leq_{ML} A$ (*B* is Martin-Löf reducible to *A*) if all Martin-Löf random oracles that compute *A* also compute *B*.

(At present we don't know if this is an arithmetical relation.)

Theorem

Some c.e. set A is \leq_{ML} -complete for the class of c.e. sets B such that $B <_{ML} \mathcal{H}$ (the halting problem).

The c.e. sets B such that $B \leq_{ML} A$ are exactly the c.e. K-trivials. A is called a "smart K-trivial". We can remove c.e. ness of B: by a result of Day and Miller, for each non-K-trivial B there is ML-random $Z \geq_T \mathcal{H}$ that is not above B; also they show that Z is not OW-random, and hence $Z \geq_T A$.

Embedding relation among countable structures

Embedding of countable structures

Let \mathcal{C} be a class of countable structures. For instance:

- ▶ graphs,
- \blacktriangleright linear orders

- ▶ Abelian groups,
- ▶ all groups.

 $B \leq A$ if there is an injective $f: B \to A$ that preserves relations and functions in both directions. E.g. $\mathbb{Z} \leq \mathbb{Q}$ as abelian groups.

Question: Is there a \leq -complete countable structure?

▶ graphs yes
▶ Abelian groups yes
▶ linear orders yes
▶ all groups NO

An extra condition might ensure that a complete structure is unique: The Rado graph is the unique homogeneous \leq -complete countable graph. The same holds for the Fraisse limit of the finitely generated abelian groups.

Computable reducibility of structures

- ► The embedding relation ≤ is not necessarily simpler than the structures it is about.
- ► Suppose the domain of the structures is N (or an initial segment of N).

 $B \leq_{c,1} A$ if there is a computable injective $f: B \to A$ that preserves relations and functions in both directions. We still have $\mathbb{Z} \leq_{c,1} \mathbb{Q}$ as abelian groups.

For instance: let E, F be equivalence relations on \mathbb{N} . Define

 $E \preceq_{c,1} F$ if $\forall u \forall v Euv \leftrightarrow Fh(u)h(v)$

for a computable injective function $h: \mathbb{N} \to \mathbb{N}$.

We can now study $\leq_{c,1}$ -completeness for classes of structures of a fixed descriptive complexity, such as computable, or Σ_3^0

Complete Σ_n^0 equivalence relations

We give natural examples of Σ_n^0 equivalence relations S that are $\preceq_{c,1}$ complete. I.e., $E \preceq_{c,1} S$ for each Σ_n^0 equivalence relation E.

n=1: Equivalence of sentences under PA (Kripke and Pour-El, 1966). This is the unique "precomplete" ER.

n=2: Polynomial time Turing equivalence on exponential time sets. (Ianovski, Miller, Ng and N., JSL 2014)

n=3: Computable isomorphism of computable Boolean algebras is complete for Σ_3^0 equivalence relations (Friedman, Fokina, and N., 2012). Another example: almost equality of c.e. sets.

 $\mathbf{n{=}4:}$ Turing equivalence on c.e. sets. (Ianovski, Miller, Ng and N., JSL 2014)

Completeness for Π_1^0 equivalence relations

For a binary function f let $xE_f y$ if $\forall u f(x, u) = f(y, u)$. If f is computable then E_f is Π_1^0 .

Theorem (Ianovski, Miller, Ng and N., JSL 2014)

There is polynomial time computable function f such that each E_f is $\leq_{c,1}$ -complete for Π_1^0 equivalence relations.

Fix a finite alphabet A of size > 1. A *tree* is a nonempty subset of \mathbb{A}^* closed under prefixes. Isomorphism of polynomial time trees is Π_1^0 by König's Lemma.

Given f from the theorem above, we code f(x, .) into a polytime tree T_x : If f(x, u) = k we add a leaf $1^u 0^k$ to the tree. This yields:

Corollary

Isomorphism of polynomial time trees is complete for Π_1^0 equivalence relations.

Completeness for Π_n^0 equivalence relations, $n \ge 2$

Theorem (Ianovski, Miller, Ng and N., 2014)

For $n \geq 2$ there is no Π_n^0 and no Δ_n^0 complete equivalence relation.

To prove the theorem for n = 2: given a Π_2^0 equivalence relation E, we build a Δ_2^0 equivalence relation L with classes of size ≤ 2 such that $L \not\leq_c E$.

Completeness in descriptive set theory and ergodic theory

\leq_B -completeness of orbit equivalence relations

For equivalence relations E, F on Polish spaces X, Y, $E \leq_B F$ if $Euv \leftrightarrow Fh(u)h(v)$ for a Borel measurable function $h: X \to Y$.

Let G Polish group, X Polish space, $G \curvearrowright X$ continuous action.

 $E_G^X=\{\langle x,y\rangle\colon\,\exists g\in G\,[g\cdot x=y]\}$ is the corresponding orbit equivalence relation.

Theorem (Gao-Kechris '01, Sabok '13, Zielinski '14)

The following equivalence relations are \leq_B complete for OER:

- ▶ Isometry of Polish metric spaces
- ▶ Affine homeomorphism of Choquet simplices
- ▶ Homeomorphism of compact metric spaces
- ▶ Isomorphism of separable C*-algebras (even restricted to the commutative ones).

Conjugacy of ergodic transformations

- ► Let MPT be the group of measure preserving transformations T of the unit interval with the Lebesgue-measure μ .
- ▶ MPT is a Polish group with the Halmos metric $d(S,T) = \sum_{n} 2^{-n-1} [\mu(S(E_n)\Delta T(E_n)) + \mu(S^{-1}(E_n)\Delta T^{-1}(E_n))],$ where $\langle E_n \rangle_{n \in \mathbb{N}}$ is an effective list of the rational intervals.
- ► T is called ergodic if all measurable sets A with $T^{-1}(A) = A$ are null or conull.
- ▶ Analytic sets are the continuous projections of Borel sets.

Theorem (Foreman, Rudolph und Weiss, Annals, 2011) Conjugacy of ergodic transformations in MPT is analytic complete.

Open question: Is it \leq_B complete for OER?

Conclusion

- Complete objects for a class occur in a wide variety of settings in logic and CS: for c.e. sets, left-c.e. reals, structures of various kinds, Π⁰₁ equivalence relations on N, orbit equivalence relations.
- ▶ We can study the class via the object, and the object via the class.
- ▶ Complete objects can be structured, or random.
- ▶ Recent results connect ML-reducibility and K-triviality.