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Is there a most complex object in a class?

The following questions arises frequently in mathematics
and theoretical computer science.

We are given a class of objects and a method to compare their
complexity.

I Is there a most complex object in the class?
If so, we call it a complete object for the class.

I What are the properties of a complete object?

I Is a complete object unique in some sense?



Two basic notions of computability

A function ψ defined on a subset of N is called partially
computable if there is a Turing machine that

I with n as an input, outputs ψ(n) if defined,

I and doesn’t stop otherwise.

n // Turing machine M // ψ(n) if ψ(n) defined

A ⊆ N is called computably enumerable (c.e.) if

A = {n : M(n) halts} for a Turing machine M .



The halting problem is m-complete for c.e. sets

Definition

Let A,B ⊆ N.
B ≤m A if ∃f : N→ N computable such that n ∈ B ↔ f(n) ∈ A.

M0,M1, . . . effective listing of all Turing machines.

H = {〈e, n〉 : Me(n) halts} is the halting problem.

Theorem (Complete object exists; Turing 1936, Post, 1944)

H is ≤m-complete for the class of c.e. sets.

Theorem (Uniqueness of complete object, Myhill, 1955)

Let A and B be ≤m-complete for the c.e. sets. Then there is a
computable permutation ρ of N such that ρ(A) = B.



The satisfiability problem SAT is complete for NP

I In complexity theory one studies sets of words over a finite
alphabet.

I SAT is the set of satisfiable Boolean formulas (encoded by
words). E.g. (x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ z) ∈ SAT.

I NP is the class of problems of the form

{w : ∃u [M(w#u) accepts]},
for a Turing machine M that stops in polynomial time
relative to |w|. (# is a separator symbol.)

Theorem (Cook 1971; Levin 1973)

SAT is polynomial time ≤m-complete for NP .
Hence P 6= NP iff SAT 6∈ P .

The Berman-Hartmanis conjecture (dating from 1976) asks
whether all NP -complete problems A,B are polynomial time
isomorphic: A = ρ(B), where ρ and ρ−1 are in PTIME.



Motivation

Suppose we are given a preordering ≤ to compare the
complexity of objects in the class C.

Why are we interested in complete objects S for a class C?

The answer depends on whether we focus on C, or on S.



Focussing on the class C

I The preordering is often (but not
always) simple.

I Often it is “simpler” than the
objects it is supposed to compare.
Computable functions compare

computably enumerable sets;

polytime functions compare NP sets.

I Usually C is downward closed
under ≤.

I So the single object S, together
with the simple preordering ≤,
describes the whole class C. L’etat, c’est moi



Focussing on the complete object S

I A complete object S for C can be expected to be
interesting.

I Reflecting Tao and others, one can ask the question:
is S structured, or random?

I The halting problem and SAT are structured.
Chaitin’s Ω and the Rado graph are random.

The complexity of an object S can be determined by proving
that S is complete for the canonical class C of objects it
belongs to.
(How is the randomness content of S related to C?)



More recent example: Solovay completeness

Definition

α ∈ R is called c.e. from the left if

{q ∈ Q : q < α}

is computably enumerable. Equivalent formulation: α = sups ps for

an increasing computable sequence 〈ps〉s∈N of rationals.

Example: α =
∑

n∈A 2−n for a c.e. set A.



Solovay reducibility

Definition (Solovay-reducibility)

β ≤S α if β = sups qs for a computable sequence of rationals
such that β − qs = O(α− ps).

Theorem (Kučera and Slaman, 2001)

Let α ∈ [0, 1] be c.e. from the left. Then:

α is ≤S-complete ⇔ α is Martin-Löf random.

Examples of ≤S-complete reals:

I α =
∑

e 2−eαe, for an effective list 〈αe〉 of the c.e. from the
left reals;

I Chaitin’s Ω (the probability that a universal prefix-free
machine halts).



Random sets and K-trivial sets

An infinite bit sequence B = z1, z2, . . . is Martin-Löf random if
its initial segments z1, . . . , zn are only compressible by a
constant b:

∃b∀n [K(z1, . . . , zn) ≥ n− b],
where K denotes prefix-free Kolmogorov-complexity.

At the opposite end of initial segment compressibility, B is
called K-trivial (Chaitin/Solovay 1975) if

K(z1, . . . , zn) ≤ K(0n) + const.



Even more recent example: ML-completeness

Bienvenu, Greenberg, Kučera, N., Turetsky, JEMS ta, introduced the

following.

B ≤ML A (B is Martin-Löf reducible to A) if all Martin-Löf
random oracles that compute A also compute B.

(At present we don’t know if this is an arithmetical relation.)

Theorem

Some c.e. set A is ≤ML-complete for the class of c.e. sets B
such that B <ML H (the halting problem).

The c.e. sets B such that B ≤ML A are exactly the c.e.
K-trivials. A is called a “smart K-trivial”.
We can remove c.e. ness of B: by a result of Day and Miller, for each

non-K-trivial B there is ML-random Z 6≥T H that is not above B;

also they show that Z is not OW-random, and hence Z ≥T A.



Embedding relation among countable structures



Embedding of countable structures

Let C be a class of countable structures. For instance:

I graphs,

I linear orders

I Abelian groups,

I all groups.

B � A if there is an injective f : B → A that preserves relations
and functions in both directions. E.g. Z � Q as abelian groups.

Question: Is there a �-complete countable structure?

I graphs yes

I linear orders yes

I Abelian groups yes

I all groups NO

An extra condition might ensure that a complete structure is unique:

The Rado graph is the unique homogeneous �–complete countable

graph. The same holds for the Fraisse limit of the finitely generated

abelian groups.



Computable reducibility of structures

I The embedding relation � is not necessarily simpler than
the structures it is about.

I Suppose the domain of the structures is N (or an initial
segment of N).

B �c,1 A if there is a computable injective f : B → A that
preserves relations and functions in both directions.
We still have Z �c,1 Q as abelian groups.

For instance: let E,F be equivalence relations on N. Define

E �c,1 F if ∀u∀v Euv ↔ Fh(u)h(v)

for a computable injective function h : N→ N.

We can now study �c,1-completeness for classes of structures of
a fixed descriptive complexity, such as computable, or Σ0

3



Complete Σ0
n equivalence relations

We give natural examples of Σ0
n equivalence relations S that are

�c,1 complete. I.e., E �c,1 S for each Σ0
n equivalence relation E.

n=1: Equivalence of sentences under PA (Kripke and Pour-El,
1966). This is the unique ”precomplete” ER.

n=2: Polynomial time Turing equivalence on exponential time
sets. (Ianovski, Miller, Ng and N., JSL 2014)

n=3: Computable isomorphism of computable Boolean algebras
is complete for Σ0

3 equivalence relations (Friedman, Fokina, and
N., 2012). Another example: almost equality of c.e. sets.

n=4: Turing equivalence on c.e. sets. (Ianovski, Miller, Ng and
N., JSL 2014)



Completeness for Π0
1 equivalence relations

For a binary function f let xEfy if ∀u f(x, u) = f(y, u).
If f is computable then Ef is Π0

1.

Theorem (Ianovski, Miller, Ng and N., JSL 2014)

There is polynomial time computable function f such that each
Ef is �c,1-complete for Π0

1 equivalence relations.

Fix a finite alphabet A of size > 1. A tree is a nonempty subset
of A∗ closed under prefixes. Isomorphism of polynomial time
trees is Π0

1 by König’s Lemma.

Given f from the theorem above, we code f(x, .) into a
polytime tree Tx: If f(x, u) = k we add a leaf 1u0k to the tree.
This yields:

Corollary

Isomorphism of polynomial time trees is complete for Π0
1

equivalence relations.



Completeness for Π0
n equivalence relations, n ≥ 2

Theorem (Ianovski, Miller, Ng and N., 2014)

For n ≥ 2 there is no Π0
n and no ∆0

n complete equivalence
relation.

To prove the theorem for n = 2:
given a Π0

2 equivalence relation E, we build a ∆0
2 equivalence

relation L with classes of size ≤ 2 such that L 6≤c E.



Completeness in descriptive set theory
and ergodic theory



≤B-completeness of orbit equivalence relations

For equivalence relations E,F on Polish spaces X,Y ,
E ≤B F if Euv ↔ Fh(u)h(v) for a Borel measurable function
h : X → Y .

Let G Polish group, X Polish space, Gy X continuous action.

EX
G = {〈x, y〉 : ∃g ∈ G [g · x = y]} is the corresponding orbit

equivalence relation.

Theorem (Gao-Kechris ’01, Sabok ’13, Zielinski ’14)

The following equivalence relations are ≤B complete for OER:

I Isometry of Polish metric spaces

I Affine homeomorphism of Choquet simplices

I Homeomorphism of compact metric spaces

I Isomorphism of separable C∗-algebras (even restricted to
the commutative ones).



Conjugacy of ergodic transformations

I Let MPT be the group of measure preserving
transformations T of the unit interval with the
Lebesgue-measure µ.

I MPT is a Polish group with the Halmos metric d(S, T ) =∑
n 2−n−1[µ(S(En)∆T (En)) + µ(S−1(En)∆T−1(En))],

where 〈En〉n∈N is an effective list of the rational intervals.

I T is called ergodic if all measurable sets A with
T−1(A) = A are null or conull.

I Analytic sets are the continuous projections of Borel sets.

Theorem (Foreman, Rudolph und Weiss, Annals, 2011)

Conjugacy of ergodic transformations in MPT is analytic
complete.

Open question: Is it ≤B complete for OER?



Conclusion

I Complete objects for a class occur in a wide variety of
settings in logic and CS:
for c.e. sets, left-c.e. reals, structures of various kinds, Π0

1

equivalence relations on N, orbit equivalence relations.

I We can study the class via the object, and the object via
the class.

I Complete objects can be structured, or random.

I Recent results connect ML-reducibility and K-triviality.


