Local compactness for computable Polish metric spaces is Π_1^1 -complete

André Nies and Slawomir Solecki

June 30, 2015

 $\mathrm{CiE}~2015$

Slides are on my web site under "talks".

THE UNIVERSITY OF AUCKLAND NEW ZEALAND

Goal

We are given a class \mathcal{C} of structures: countable abelian groups, countable Boolean algebras, Polish metric spaces,...

We consider isomorphism invariant properties of structures in \mathcal{C} , and similarity relations between objects in \mathcal{C} .

We study the complexity of such properties and relations. Often this is determined by being complete in its class of descriptive complexity.

Two settings:

Descriptive set theory: represent structure by a real.

Computability theory: only look at computable structures in C. Represent such a structure by a computable index.

Example: complexity of being torsion

A computable abelian group is given by a binary function ϕ_e on N describing +, and a number denoting the neutral element. It is Π_2^0 to say that for such a representation, ϕ_e is total and it describes an abelian group. Being torsion is also Π_2^0 .

Fact

Being torsion is Π_2^0 complete for computable abelian groups.

Proof

- ▶ Reduce the Π_2^0 complete problem $\{i: W_i = \mathbb{N}\}$ to being torsion.
- From i, n, we can compute a representation of a group G_n that is cyclic of order 2s if n enters W_i at stage s, and infinite cyclic otherwise.
- ▶ Let H_i be a computable representation of $\bigoplus_n G_n$. Then $W_i = \mathbb{N} \Leftrightarrow H_i$ is torsion.

Similarity relations

Let E, F be equivalence relations on \mathbb{N} . Computable reducibility:

 $E \preceq_c F$ if $\forall u \forall v Euv \leftrightarrow Fh(u)h(v)$

for a computable function $h \colon \mathbb{N} \to \mathbb{N}$.

Theorem (Friedman, Fokina, and N., 2012)

Computable isomorphism of computable Boolean algebras is complete for Σ^0_3 equivalence relations.

Theorem (follows from Camerlo/Gao 2000 and Friedman, Fokina +4)

Plain isomorphism of computable Boolean algebras is complete for Σ_1^1 equivalence relations.

FF+4 showed this for isomorphism of computable graphs. Camerlo/Gao had encoded countable graphs into Boolean algebras preserving isomorphism. Nies and Solecki observed that their construction is effective. In fact, Camerlo/Gao built Stone spaces. So we also have:

Homeomorphism of compact computable metric spaces is complete for Σ_1^1 equivalence relations.

Representing Polish metric spaces

Definition

- ► A Polish metric space \mathcal{M} is a complete metric space (M, d) together with a dense sequence $(p_i)_{i \in \mathbb{N}}$.
- ▶ The space is computable if $d(p_i, p_k)$ is a computable real, uniformly in i, k.
- ▶ In descriptive set theory one sees the representations of Polish metric spaces as a G_{δ} set $\mathcal{P} \subseteq \mathbb{R}^{\omega \times \omega}$. This is sometimes called the hyperspace of Polish spaces.
- ▶ The computable spaces can be seen as the computable points in this hyperspace.

In computability theory, we represent computable Polish metric spaces by an index e for the distance function:

 $\phi_e(i,k,n)$ is a rational approximating $d(p_i,p_k)$ up to error 2^{-n} .

Complexity of being compact

For complete metric spaces, compactness is equivalent to the existence of finite ϵ -nets for each rational $\epsilon > 0$:

$$\forall \epsilon > 0 \,\exists n \forall r \bigvee_{i < n} d(p_i, p_r) \le \epsilon.$$

This is Π_3^0 .

Proposition (Melnikov and N., CiE 2013)

The set of computable indices e for compact metric spaces \mathcal{M}_e is Π_3^0 complete.

They also showed that the complexity of isometry of compact spaces is merely Π_2^0 within that Π_3^0 set.

Complexity of being locally compact

Definition

A topological space is locally compact if

every point has a compact neighbourhood.

- ▶ For computable Polish metric spaces, this property is Π_1^1 :
- express that for every point x, there is a positive rational ϵ such that the closed ball of radius ϵ around x is compact.
- ▶ This is Π_3^0 in a Cauchy name for x by relativizing the condition for compactness above.

Theorem (N. and Solecki)

The set of computable indices for locally compact metric spaces is $\Pi^1_1\text{-}\mathrm{complete}.$

Theorem (N. and Solecki)

The set of computable indices for locally compact metric spaces is $\Pi^1_1\text{-}\mathrm{complete.}$

- ▶ Let $I_{\mathbb{Q}} = [0,1] \cap \mathbb{Q}$.
- ▶ By an index for a computable subset R of $I_{\mathbb{Q}}$ we mean a number e such that ϕ_e , interpreted as a function $I_{\mathbb{Q}} \to \mathbb{N}$, is the characteristic function of R. We write $R = R_e$.
- ▶ Let $O \subseteq \omega$ denote a Π_1^1 complete set.

Example of a compact subset of $I_{\mathbb{Q}}$: $\{1/2\} \cup \{1/2 - 2^{-n} : n > 0\}$. Example of a closed, but non-compact subset of $I_{\mathbb{Q}}$: sequence of rationals converging to $\pi/4$.

By the following, the set of indices for compact computable subsets of $I_{\mathbb{Q}}$ is Π_1^1 -complete. (Note that being closed for a set R_e is merely Π_3^0 .)

Fact (by an ancient result of Hurewicz)

There is a computable function g such that $R_{g(e)}$ is closed in $I_{\mathbb{Q}}$ for each e (with g(e) defined), and $e \in O \leftrightarrow R_{g(e)}$ is compact.

Proof

Show that $\{i: R_i \text{ is compact}\} \leq_m \{e: M_e \text{ locally compact}\}\$

where M_e is the *e*-th computable metric space.

- ► Let $\langle q_k \rangle_{k \in \mathbb{N}}$ effectively list $I_{\mathbb{Q}}$ without repetition. Pick a computable metric $d_{\mathcal{N}}$ on Baire space $\mathcal{N} = [0, 1] - \mathbb{Q}$.
- ▶ Given a closed $R = R_i$, let

$$\Theta(R) = [0,1] \cap \{q_k - 2^{-m}\sqrt{2} \colon q_k \in R, m \ge k\}.$$

- Effectively list these points as $\langle v_j \rangle_{j \in \mathbb{N}}$.
- ► Effectively obtain a computable index e for a distance matrix $d_{\mathcal{N}}(v_i, v_j)$, representing $M_e = \text{Closure}_{\mathcal{N}}(\Theta(R))$.

 $\operatorname{Closure}_{[0,1]}(\Theta(R)) = R \cup \operatorname{Closure}_{\mathcal{N}}(\Theta(R)).$

Claim

R is compact \Leftrightarrow Closure_{\mathcal{N}}($\Theta(R)$) is locally compact.

Use: if $\overline{Y} = X$, X compact, then Y is locally compact \leftrightarrow Y is open. Here X is the closure in [0, 1], and Y the closure in \mathcal{N} .

Example for this proof

▶ Example of compact subset of $I_{\mathbb{Q}}$:

$$R=\{1/2\}\cup\{1/2-2^{-n}\colon\,n>0\}.$$

Then $\Theta(R)$ is discrete in \mathcal{N} , hence locally compact.

▶ Example of closed, but non-compact subset of I_Q :

R = members of a sequence of rationals $\langle a_r \rangle$ converging to $\pi/4$.

- Then $\operatorname{Closure}_{\mathcal{N}}(\Theta(R))$ contains $\pi/4$.
- Every nbhd of $\pi/4$ contains a tail of a sequence $a_r 2^{-m}\sqrt{2}$ converging to an a_r , but not a_r itself.
- So this tail sequence has no convergent subsequence in $\operatorname{Closure}_{\mathcal{N}}(\Theta(R)).$

Ultrametric version

A metric space (M, d) is called ultrametric if

 $\forall x, y, z \in M \left[d(x, z) \le \max\{ d(x, y), d(y, z) \} \right].$

- ▶ We can carry out the above proof in Cantor space $2^{\mathbb{N}}$, with the natural homeomorphic embedding of Baire space $\mathcal{N} = \mathbb{N}^{\mathbb{N}}$ as the sequences with infinitely many 1's.
- ▶ This shows that the set of computable ultrametric locally compact metric spaces is Π_1^1 -complete.

Some directions and open questions

Question (Computability)

Determine the descriptive complexity of being connected among computable Polish metric spaces. (The trivial upper bound is Π_2^1 .)

Question (Descriptive set theory)

Is an the complete orbit equivalence relation Borel reducible to isometry of locally compact Polish metric spaces?

Suggestions by T. Tsankov in descr. set theory:

- ▶ study the meaning of the Π_1^1 -rank for the class of locally compact spaces.
- ▶ study the representation of locally compact m.s. as $K \{x\}$, where K is a compact metric space and $x \in K$.