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Goal

We are given a class C of structures: countable abelian groups,
countable Boolean algebras, Polish metric spaces,...

We consider isomorphism invariant properties of structures in C, and
similarity relations between objects in C.

We study the complexity of such properties and relations. Often this
is determined by being complete in its class of descriptive complexity.

Two settings:

Descriptive set theory: represent structure by a real.

Computability theory: only look at computable structures in C.
Represent such a structure by a computable index.



Example: complexity of being torsion

A computable abelian group is given by a binary function φe on N
describing +, and a number denoting the neutral element.
It is Π0

2 to say that for such a representation, φe is total and it
describes an abelian group. Being torsion is also Π0

2.

Fact

Being torsion is Π0
2 complete for computable abelian groups.

Proof

I Reduce the Π0
2 complete problem {i : Wi = N} to being torsion.

I From i, n, we can compute a representation of a group Gn that is
cyclic of order 2s if n enters Wi at stage s, and infinite cyclic
otherwise.

I Let Hi be a computable representation of
⊕

nGn. Then
Wi = N⇔ Hi is torsion.



Similarity relations
Let E,F be equivalence relations on N. Computable reducibility:

E �c F if ∀u∀v Euv ↔ Fh(u)h(v)

for a computable function h : N→ N.

Theorem (Friedman, Fokina, and N., 2012)

Computable isomorphism of computable Boolean algebras
is complete for Σ0

3 equivalence relations.

Theorem (follows from Camerlo/Gao 2000 and Friedman, Fokina +4)

Plain isomorphism of computable Boolean algebras
is complete for Σ1

1 equivalence relations.

FF+4 showed this for isomorphism of computable graphs. Camerlo/Gao
had encoded countable graphs into Boolean algebras preserving
isomorphism. Nies and Solecki observed that their construction is effective.

In fact, Camerlo/Gao built Stone spaces. So we also have:

Homeomorphism of compact computable metric spaces
is complete for Σ1

1 equivalence relations.



Representing Polish metric spaces

Definition

I A Polish metric space M is a complete metric space (M,d)
together with a dense sequence (pi)i∈N.

I The space is computable if d(pi, pk) is a computable real,
uniformly in i, k.

I In descriptive set theory one sees the representations of Polish
metric spaces as a Gδ set P ⊆ Rω×ω. This is sometimes called
the hyperspace of Polish spaces.

I The computable spaces can be seen as the computable points in
this hyperspace.

In computability theory, we represent computable Polish metric
spaces by an index e for the distance function:

φe(i, k, n) is a rational approximating d(pi, pk) up to error 2−n.



Complexity of being compact

For complete metric spaces, compactness is equivalent to the existence
of finite ε-nets for each rational ε > 0:

∀ε > 0 ∃n∀r
∨
i<n d(pi, pr) ≤ ε.

This is Π0
3.

Proposition (Melnikov and N., CiE 2013)

The set of computable indices e for compact metric spaces Me is
Π0

3 complete.

They also showed that the complexity of isometry of compact spaces
is merely Π0

2 within that Π0
3 set.



Complexity of being locally compact

Definition

A topological space is locally compact if
every point has a compact neighbourhood.

I For computable Polish metric spaces, this property is Π1
1:

I express that for every point x, there is a positive rational ε such
that the closed ball of radius ε around x is compact.

I This is Π0
3 in a Cauchy name for x by relativizing the condition

for compactness above.

Theorem (N. and Solecki)

The set of computable indices for locally compact metric spaces
is Π1

1-complete.



Theorem (N. and Solecki)

The set of computable indices for locally compact metric spaces
is Π1

1-complete.

I Let IQ = [0, 1] ∩Q.

I By an index for a computable subset R of IQ we mean a number
e such that φe, interpreted as a function IQ → N, is the
characteristic function of R. We write R = Re.

I Let O ⊆ ω denote a Π1
1 complete set.

Example of a compact subset of IQ: {1/2} ∪ {1/2− 2−n : n > 0}.
Example of a closed, but non-compact subset of IQ: sequence of
rationals converging to π/4.

By the following, the set of indices for compact computable subsets of
IQ is Π1

1-complete. (Note that being closed for a set Re is merely Π0
3.)

Fact (by an ancient result of Hurewicz)

There is a computable function g such that Rg(e) is closed in IQ for
each e (with g(e) defined), and e ∈ O ↔ Rg(e) is compact.



Proof

Show that {i : Ri is compact } ≤m {e : Me locally compact}

where Me is the e-th computable metric space.

I Let 〈qk〉k∈N effectively list IQ without repetition.
Pick a computable metric dN on Baire space N = [0, 1]−Q.

I Given a closed R = Ri, let

Θ(R) = [0, 1] ∩ {qk − 2−m
√

2: qk ∈ R,m ≥ k}.
I Effectively list these points as 〈vj〉j∈N.

I Effectively obtain a computable index e for a distance matrix
dN (vi, vj), representing Me = ClosureN (Θ(R)).

Closure[0,1](Θ(R)) = R
·
∪ ClosureN (Θ(R)).

Claim

R is compact ⇔ ClosureN (Θ(R)) is locally compact.

Use: if Ȳ = X, X compact, then Y is locally compact ↔ Y is open.
Here X is the closure in [0, 1], and Y the closure in N .



Example for this proof

I Example of compact subset of IQ:

R = {1/2} ∪ {1/2− 2−n : n > 0}.
Then Θ(R) is discrete in N , hence locally compact.

I Example of closed, but non-compact subset of IQ:

R = members of a sequence of rationals 〈ar〉 converging to π/4.

– Then ClosureN (Θ(R)) contains π/4.

– Every nbhd of π/4 contains a tail of a sequence ar − 2−m
√

2
converging to an ar, but not ar itself.

– So this tail sequence has no convergent subsequence in
ClosureN (Θ(R)).



Ultrametric version

A metric space (M,d) is called ultrametric if

∀x, y, z ∈M [d(x, z) ≤ max{d(x, y), d(y, z)}].

I We can carry out the above proof in Cantor space 2N, with the
natural homeomorphic embedding of Baire space N = NN as the
sequences with infinitely many 1’s.

I This shows that the set of computable ultrametric locally
compact metric spaces is Π1

1-complete.



Some directions and open questions

Question (Computability)

Determine the descriptive complexity of being connected among
computable Polish metric spaces. (The trivial upper bound is Π1

2.)

Question (Descriptive set theory)

Is an the complete orbit equivalence relation Borel reducible to
isometry of locally compact Polish metric spaces?

Suggestions by T. Tsankov in descr. set theory:

I study the meaning of the Π1
1-rank for the class of locally compact

spaces.

I study the representation of locally compact m.s. as K − {x}, where K
is a compact metric space and x ∈ K.


