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Density

Let λ denote uniform (Lebesgue) measure.

Definition

Let E be a subset of [0, 1]. The (lower) density of E at a real z
is

ρ(E | z) = lim inf
z∈J , |J |→0

λ(J ∩ E)

|J | ,

where J ranges over intervals.

This gauges how much, at least, of E is in intervals that zoom
in on z.

ρ(E | z) is the limit over intervals containing z. Clearly

ρ(E | z) = 1↔ ρ(E | z) = 1.
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Lebesgue’s Theorem: towards an effective version
Recall: ρ(E | z) = lim infJ interval,z∈J,|J |→0 λ(J ∩ E)/|J |.

Theorem (Lebesgue Density Theorem, 1910)

Let E ⊆ [0, 1] be measurable. Then for almost every z ∈ [0, 1]:
if z ∈ E, then ρ(E | z) = 1.

I For open E, this is immediate, and actually holds for all
z ∈ [0, 1].

I For closed E, this is the simplest case where there is
something to prove.

E ⊆ [0, 1] is effectively closed (or Π0
1) if there is an effective list

of open intervals with rational endpoints that has union
[0, 1] \ E.

Definition (Main)

We say that a real z is a density-one point if ρ(E | z) = 1 for
every effectively closed E 3 z.
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Martin-Löf randomness and density

Does Martin-Löf randomness ensure that an effectively closed
E ⊆ [0, 1] with z ∈ E has density one at z?

Answer: NO!

Example

I Let E 6= ∅, E ⊆ [0, 1] be an effectively closed set containing
only Martin-Löf randoms.

I E.g., E = [0, 1] \ S1 where 〈Sr〉r∈N is a universal ML-test.

I Let z = min(E).

I Then ρ(E | z) = 0 even though z is ML-random.
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Density randomness

Definition

Let E be a measurable subset of 2N. The lower dyadic density
of E at Z ∈ 2N is

ρ
2
(E | Z) = lim inf

n→∞
2nλ([Z �n] ∩ E).

Definition

We say that Z ⊆ N is density random if Z is ML-random and
ρ
2
(P | Z) = 1 for each Π0

1 class P ∈ Z.

For ML-random Z, one can equivalently require the full density
equals 1 in the setting of reals, by a result of Khan and Miller
(2013).
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Three characterisations of density randomness

Theorem

The following are equivalent for Z ∈ 2N, z = 0.Z.

I Z is density random

I [Madison group, 2012] Each left-c.e. martingale M
converges: limnM(Z �n) exists (M is left-c.e. if M(σ) is a
left-c.e. real uniformly in string σ)

I [N., 2014] g′(z) exists for each interval-c.e. function g

I [Miyabe, N., Zhang 2013] For each integrable lower

semicomputable function f : [0, 1]→ R+
, the “averaging”

statement of the Lebesgue differentiation theorem holds
at z.

For background and complete proofs see Miyabe, N., Zhang
2013. The continuous interval-c.e. functions with g(0) = 0 are
precisely the variation functions of computable functions by
Freer et al. 2014.
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2. Anti-random sequences

000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000
000000000000000000000001000000000000000001111111111111
111111111111111111111111111111111111111111111100000000
000000000000000000111000000000000000000000000000000000 . . .
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Basic objects of computability theory

I The computable subsets
of N

I the halting problem ∅′

I Turing reducibility ≤T
I the ∆0

2 sets (A ≤T ∅′)

I the computably
enumerable sets
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Basic objects of computability theory

C.e. sets

Computable sets

∅'
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Adding the world of (anti-)randomness

Computable sets

I The Martin-Löf random
sets Z, such as Chaitin’s
halting probability Ω.
We have Ω ≡T ∅′.

I The antirandom (K-trivial)
sets.

If A is K-trivial, then there is c.e.
K-trivial set D ≥tt A. (N. 2005)
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Kučera’s theorem and the covering problem

Computable sets

Let Z be random with Z 6≥T ∅′.
Let A ≤T Z be c.e.

Then A is K-trivial.
(Hirschfeldt, N., Stephan, 2007)

Covering problem (Stephan, 2004)

Let A be a c.e. K-trivial set.
Is there a ML-random Z ≥T A

with Z 6≥T ∅′?

We may omit the assumption that
A is c.e.: if not, replace A by a
c.e. K-trivial set D above A.
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Z

A

Let Z be a random ∆0
2 set. Then
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A strong solution to the covering problem

Z

K-trivial sets

∅�
Theorem 5 + 2 authors

There is a ML-random set Z <T ∅′
above all the K-trivials.

How random can Z be?

Answer: not much more than
Martin-Löf random.

How close to ∅′ must Z lie?

Answer: Z is very close to ∅′.
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Background on antirandom sets
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Descriptive string complexity K

Consider a partial computable function from binary strings to
binary strings (called machine). It is called prefix-free if its
domain is an antichain under the prefix relation of strings.

There is a universal prefix-free machine U:
for every prefix-free machine M ,

M(σ) = y implies U(τ) = y for some τ with |τ | ≤ |σ|+ dM ,

and the constant dM only depends on M .

The prefix-free Kolmogorov complexity of string y is the length
of a shortest U-description of y:

K(y) = min{|σ| : U(σ) = y}.
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Definition of K-triviality

In the following, we identify a natural number n with its binary
representation (as a string). For a string τ , up to additive const
we have K(|τ |) ≤ K(τ), since we can compute |τ | from τ .

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some b ∈ N,

∀n [K(A�n) ≤ K(n) + b],

namely, all its initial segments have minimal K-complexity.

It is not hard to see that K(n) ≤ 2 log2 n+O(1).

Z is random ⇔ ∀n [K(Z �n) > n −O(1)]
A is K-trivial ⇔ ∀n [K(A�n) ≤ K(n) +O(1)]

Thus, being K-trivial means being far from random.
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Connecting density and K-triviality

This is based on the following work:

[Oberwolfach] Bienvenu, Greenberg, Kučera, N. Turetsky 2012
JEMS, to appear

[Berkeley] Day and Miller 2012
Math. Research Letters, to appear

[Paris] Bienvenu, Miller, Hölzl and N. 2011
STACS 2012, JML 2014
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Turing incompleteness and positive density

Definition

We say that a real z is a positive density point if
ρ(E | z) > 0 for every effectively closed E 3 z.

For a real z 6∈ Q, let Z ∈ 2N denote its binary expansion:
z = 0.Z.

Theorem (Paris)

Let z be a Martin-Löf random real. Then
Z is NOT above the halting problem ∅′ ⇔

z is a positive density point.
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The main connection of density and K-trivials
Recall: ρ(E | z) = lim inf |J|→0,z∈J λ(J ∩ E)/|J |.

Definition (Recall)

We say that a real z is a density-one point if
ρ(E | z) = 1 for every effectively closed E 3 z.

In other words, z satisfies the Lebesgue Theorem for effectively closed

sets.

Z

K-trivial sets

∅�

Theorem (Oberwolfach)

Let z be a Martin-Löf random real.
Suppose z is NOT a density-one
point.

Then Z is above all the K-trivials.
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The main connection of density and K-trivials

Z

K-trivial sets

∅�

Theorem

Let z be a Martin-Löf random real.
Suppose z is not a density-one point.

Then Z is above all the K-trivials.

To solve the covering problem, we need to know:

Does Z as in the picture exist?
Where do we get a ML-random set Z 6≥T ∅′

that is not a density-one point?
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Why such a Z exists

Theorem (Berkeley, i.e., Day and Miller)

Let P be a nonempty Π0
1 class of ML-randoms. There is a ML-

random set Z 6≥T ∅′ such that ρ
2
(P | Z) ≤ 1/2.

[Paris] characterized difference randomness of a ML-random Z
via positive density:

Z 6≥T ∅′ iff Z is a positive density point.

Berkeley built a set Z that is a positive density point.

Note that, for the Day-Miller set Z, the local measure λσ(Z) for
σ ≺ Z oscillates between 1 (asymptotically), and a value ε with
0 < ε ≤ 1/2.
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Why such a Z exists

Theorem (Berkeley)

Let P be a nonempty Π0
1 class of ML-randoms. There is a ML-

random set Z 6≥T ∅′ such that ρ
2
(P | Z) ≤ 1/2.

Proof. Force with conditions of the form 〈σ,Q〉, where

I σ is a string, Q ⊆ P , [σ] ∩Q 6= ∅
I there is δ < 1/2 such that each string τ � σ has two options:

either [τ ] ∩Q = ∅, or λτ (Q) ≥ λτ (P )− δ.
(Q either loses all, or ≤ δ of P ’s local measure within [τ ].)

〈σ′, Q′〉 extends 〈σ,Q〉 if σ′ � σ and Q′ ⊆ Q.
We have an initial condition 〈∅, P 〉 (via δ = 0).

If G is a sufficiently generic filter, then ZG =
⋃{σ : 〈σ,Q〉 ∈ G}

is a ML-random positive density point, and ρ2(P | Z) ≤ 1/2.
Then by Bienvenu et al., Z 6≥T ∅′.
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The strongest answer to the covering question
Berkeley’s careful effectvization of the forcing yields a ∆0

2 set Z.

Theorem (Oberwolfach + Berkeley)

There is a ML-random set Z <T ∅′
above all the K-trivials.
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Questions on density randomness

Question (Turetsky)

Is density randomness closed downward within the
ML-randoms?

This is known for most randomness notions stronger than

Martin-Löf’s, including for OW-randomness (by the results above).

Question (Franklin)

Is density randomness equivalent to being a Birkhoff point for
each computable measure preserving operator and
semicomputable function?
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Book references for background

My book
“Computability and Randomness”,
Oxford University Press, 447 pages, Feb. 2009;
Paperback version Mar. 2012.

Theory and Applications of Computability

Books published in this series will be of interest to the research community  
and graduate students, with a unique focus on issues of computability.  
The perspective of the series is multidisciplinary, recapturing the spirit of 
Turing by linking theoretical and real-world concerns from computer science, 
 mathematics, biology, physics, and the philosophy of science. 

The series includes research monographs, advanced and graduate texts, 
and books that offer an original and informative view of computability and 
 computational paradigms.

In cooperation with the 
Computability in Europe 
association

Algorithm
ic Random

ness 
and Com

plexity

Downey · Hirschfeldt

Algorithmic Randomness  
and Complexity
Intuitively, a sequence such as 101010101010101010… does not seem random, whereas 101101011101010100…, 
obtained using coin tosses, does. How can we reconcile this intuition with the fact that both are statistically  
equally likely? What does it mean to say that an individual mathematical object such as a real number is random, or 
to say that one real is more random than another? And what is the relationship between randomness and  
computational power?

 The theory of algorithmic randomness uses tools from computability theory and algorithmic information theory to 
address questions such as these. Much of this theory can be seen as exploring the relationships between three  
fundamental concepts: relative computability, as measured by notions such as Turing reducibility; information 
content, as measured by notions such as Kolmogorov complexity; and randomness of individual objects, as first  
successfully defined by Martin-Löf. Although algorithmic randomness has been studied for several decades,  
a dramatic upsurge of interest in the area, starting in the late 1990s, has led to significant advances.

 This is the first comprehensive treatment of this important field, designed to be both a reference tool for experts 
and a guide for newcomers. It surveys a broad section of work in the area, and presents most of its major results 
and techniques in depth. Its organization is designed to guide the reader through this large body of work, providing 
context for its many concepts and theorems, discussing their significance, and highlighting their interactions.  
It includes a discussion of effective dimension, which allows us to assign concepts like Hausdorff dimension to 
individual reals, and a focused but detailed introduction to computability theory. It will be of interest to researchers 
and students in computability theory, algorithmic information theory, and theoretical computer science.

 springer.com

 ISBN 978-0-387-95567-4

D
ow

ney · H
irschfeldt

Rodney G. Downey · Denis R. Hirschfeldt

Algorithmic Randomness 
and Complexity

Book by Downey and Hirschfeldt:
“Algorithmic Randomness and Complexity”,
Springer, > 800 pages, Dec. 2010;
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Paper and preprint references for Part II

[Everyone] Bienvenu, Day, Greenberg, Kučera, Miller, N., Turetsky
Computing K-trivial sets by incomplete random sets
Bulletin of Symbolic Logic, 20, March 2014, pp 80-90.

[Oberwolfach] Bienvenu, Greenberg, Kučera, N., Turetsky
Coherent randomness tests and computing
the K-trivial sets.. JEMS, to appear 2016.

[Berkeley] Day and Miller
Density, forcing and the covering problem
MRL, to appear.

[Paris] Bienvenu, Miller, Hölzl and N.
The Denjoy alternative for computable functions
STACS 2012, 543 - 554.
Demuth, Denjoy, and Density .
J. Math. Logic 1 (2014) 1450004 (35 pages)
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