### Randomness and analysis: a tutorial

Part II: Lebesgue density and its applications to randomness

André Nies

#### CCC 2015, Kochel am See





#### Density

Let  $\lambda$  denote uniform (Lebesgue) measure.

#### Definition

Let *E* be a subset of [0, 1]. The *(lower) density* of *E* at a real *z* is

$$\underline{\rho}(E \mid z) = \liminf_{z \in J, \, |J| \to 0} \frac{\lambda(J \cap E)}{|J|},$$

where J ranges over intervals.

This gauges how much, at least, of E is in intervals that zoom in on z.

 $\rho(E \mid z)$  is the limit over intervals containing z. Clearly

 $\underline{\rho}(E \mid z) = 1 \leftrightarrow \rho(E \mid z) = 1.$ 

Lebesgue's Theorem: towards an effective version Recall:  $\underline{\rho}(E \mid z) = \liminf_{J \text{ interval}, z \in J, |J| \to 0} \lambda(J \cap E)/|J|.$ 

Theorem (Lebesgue Density Theorem, 1910) Let  $E \subseteq [0,1]$  be measurable. Then for almost every  $z \in [0,1]$ : if  $z \in E$ , then  $\rho(E \mid z) = 1$ .

- ▶ For open E, this is immediate, and actually holds for all  $z \in [0, 1]$ .
- For closed E, this is the simplest case where there is something to prove.

 $E \subseteq [0, 1]$  is effectively closed (or  $\Pi_1^0$ ) if there is an effective list of open intervals with rational endpoints that has union  $[0, 1] \setminus E$ .

#### Definition (Main)

We say that a real z is a density-one point if  $\underline{\rho}(E \mid z) = 1$  for every effectively closed  $E \ni z$ .

# Martin-Löf randomness and density

Does Martin-Löf randomness ensure that an effectively closed  $E \subseteq [0, 1]$  with  $z \in E$  has density one at z?

Answer: NO!

#### Example

- ▶ Let  $E \neq \emptyset$ ,  $E \subseteq [0, 1]$  be an effectively closed set containing only Martin-Löf randoms.
- ▶ E.g.,  $E = [0, 1] \setminus S_1$  where  $\langle S_r \rangle_{r \in \mathbb{N}}$  is a universal ML-test.
- ▶ Let  $z = \min(E)$ .
- ▶ Then  $\rho(E \mid z) = 0$  even though z is ML-random.

#### Density randomness

#### Definition

Let E be a measurable subset of  $2^{\mathbb{N}}$ . The *lower dyadic density* of E at  $Z \in 2^{\mathbb{N}}$  is

$$\underline{\rho}_2(E \mid Z) = \liminf_{n \to \infty} 2^n \lambda([Z \upharpoonright_n] \cap E).$$

#### Definition

We say that  $Z \subseteq \mathbb{N}$  is density random if Z is ML-random and  $\underline{\rho}_2(P \mid Z) = 1$  for each  $\Pi_1^0$  class  $P \in Z$ .

For ML-random Z, one can equivalently require the full density equals 1 in the setting of reals, by a result of Khan and Miller (2013).

# Three characterisations of density randomness

#### Theorem

The following are equivalent for  $Z \in 2^{\mathbb{N}}, z = 0.Z$ .

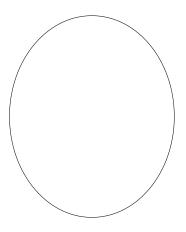
- $\blacktriangleright Z$  is density random
- ► [Madison group, 2012] Each left-c.e. martingale M converges:  $\lim_{n} M(Z \upharpoonright_{n})$  exists (M is left-c.e. if  $M(\sigma)$  is a left-c.e. real uniformly in string  $\sigma$ )

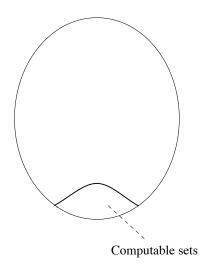
▶ [N., 2014] g'(z) exists for each interval-c.e. function g

▶ [Miyabe, N., Zhang 2013] For each integrable lower semicomputable function  $f: [0,1] \to \mathbb{R}^+$ , the "averaging" statement of the Lebesgue differentiation theorem holds at z.

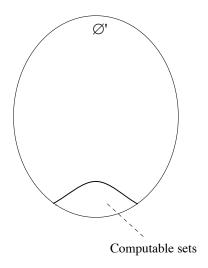
For background and complete proofs see Miyabe, N., Zhang 2013. The continuous interval-c.e. functions with g(0) = 0 are precisely the variation functions of computable functions by Freer et al. 2014.

### 2. Anti-random sequences

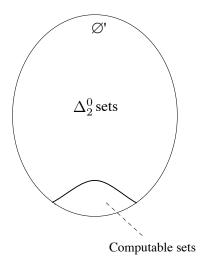




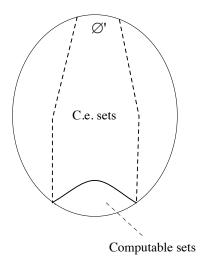
▶ The computable subsets of  $\mathbb{N}$ 



- ▶ The computable subsets of  $\mathbb{N}$
- ▶ the halting problem  $\emptyset'$

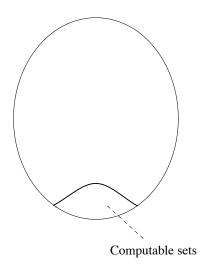


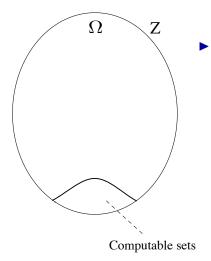
- ▶ The computable subsets of  $\mathbb{N}$
- ▶ the halting problem  $\emptyset'$
- ▶ Turing reducibility  $\leq_T$
- ▶ the  $\Delta_2^0$  sets  $(A \leq_{\mathrm{T}} \emptyset')$



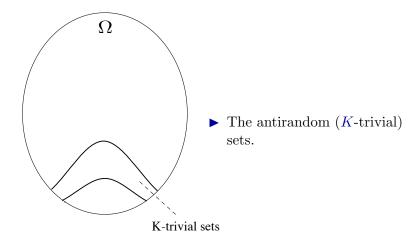
- ▶ The computable subsets of  $\mathbb{N}$
- ▶ the halting problem  $\emptyset'$
- ▶ Turing reducibility  $\leq_T$

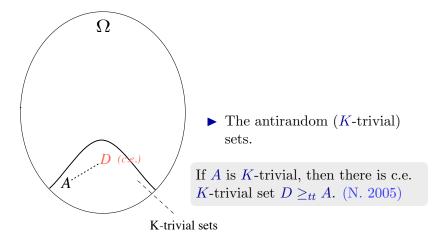
► the computably enumerable sets

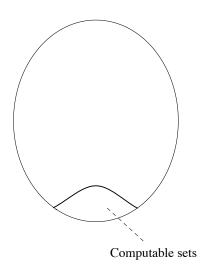


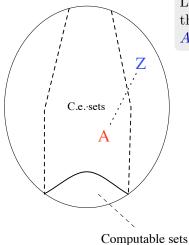


The Martin-Löf random sets Z, such as Chaitin's halting probability  $\Omega$ . We have  $\Omega \equiv_T \emptyset'$ .

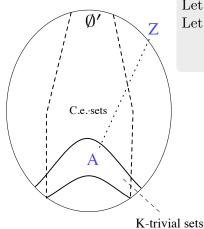




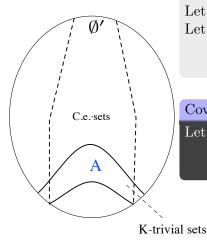




Let Z be a random  $\Delta_2^0$  set. Then there is a c.e., incomputable set  $A \leq_{\rm T} Z$ . (Kučera, 1986)



Let Z be random with  $Z \geq_T \emptyset'$ . Let  $A \leq_T Z$  be c.e. Then A is K-trivial. (Hirschfeldt, N., Stephan, 2007)

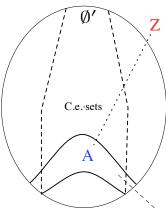


Let Z be random with  $Z \not\geq_T \emptyset'$ . Let  $A \leq_T Z$  be c.e. Then A is K-trivial. (Hirschfeldt, N., Stephan, 2007)

Covering problem (Stephan, 2004)

Let A be a c.e. K-trivial set.

10/24

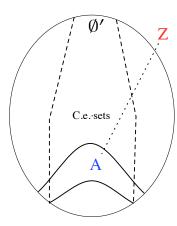


Let Z be random with  $Z \not\geq_T \emptyset'$ . Let  $A \leq_{\mathrm{T}} Z$  be c.e. Then A is K-trivial. (Hirschfeldt, N., Stephan, 2007)

Covering problem (Stephan, 2004)

Let A be a c.e. K-trivial set. Is there a ML-random  $Z \ge_T A$ with  $Z \ge_T \emptyset'$ ?

K-trivial sets

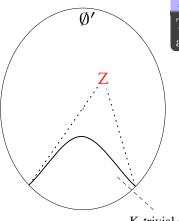


Let Z be random with  $Z \geq_T \emptyset'$ . Let  $A \leq_T Z$  be c.e. Then A is K-trivial. (Hirschfeldt, N., Stephan, 2007)

Covering problem (Stephan, 2004)

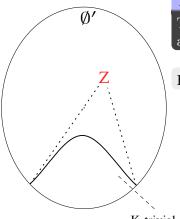
Let A be a c.e. K-trivial set. Is there a ML-random  $Z \ge_T A$ with  $Z \ge_T \emptyset'$ ?

We may omit the assumption that A is c.e.: if not, replace A by a c.e. K-trivial set D above A.





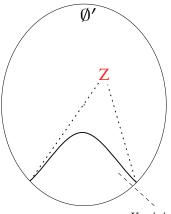
K-trivial sets





How random can Z be?

K-trivial sets

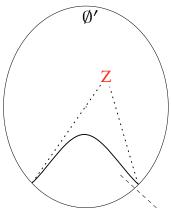




How random can Z be?

Answer: not much more than Martin-Löf random.

K-trivial sets



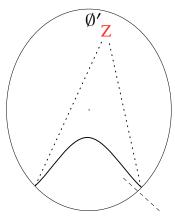
Theorem5+2 authorsThere is a ML-random set  $Z <_T \emptyset'$ above all the K-trivials.

How random can Z be?

Answer: not much more than Martin-Löf random.

How close to  $\emptyset'$  must Z lie?

K-trivial sets



Theorem5+2 authorsThere is a ML-random set  $Z <_T \emptyset'$ above all the K-trivials.

How random can Z be?

Answer: not much more than Martin-Löf random.

How close to  $\emptyset'$  must Z lie?

Answer: Z is very close to  $\emptyset'$ .

K-trivial sets

# Background on antirandom sets

### Descriptive string complexity K

Consider a partial computable function from binary strings to binary strings (called machine). It is called prefix-free if its domain is an antichain under the prefix relation of strings.

There is a universal prefix-free machine  $\mathbb{U}$ : for every prefix-free machine M,

 $M(\sigma) = y$  implies  $\mathbb{U}(\tau) = y$  for some  $\tau$  with  $|\tau| \leq |\sigma| + d_M$ ,

and the constant  $d_M$  only depends on M.

The prefix-free Kolmogorov complexity of string y is the length of a shortest U-description of y:

$$K(y) = \min\{|\sigma|: \mathbb{U}(\sigma) = y\}.$$

In the following, we identify a natural number n with its binary representation (as a string). For a string  $\tau$ , up to additive const we have  $K(|\tau|) \leq K(\tau)$ , since we can compute  $|\tau|$  from  $\tau$ .

In the following, we identify a natural number n with its binary representation (as a string). For a string  $\tau$ , up to additive const we have  $K(|\tau|) \leq K(\tau)$ , since we can compute  $|\tau|$  from  $\tau$ .

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some  $b \in \mathbb{N}$ ,

 $\forall n \left[ K(A \upharpoonright_n) \le K(n) + b \right],$ 

namely, all its initial segments have minimal K-complexity.

In the following, we identify a natural number n with its binary representation (as a string). For a string  $\tau$ , up to additive const we have  $K(|\tau|) \leq K(\tau)$ , since we can compute  $|\tau|$  from  $\tau$ .

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some  $b \in \mathbb{N}$ ,

 $\forall n \left[ K(A \upharpoonright_n) \le K(n) + b \right],$ 

namely, all its initial segments have minimal K-complexity.

It is not hard to see that  $K(n) \leq 2 \log_2 n + O(1)$ .

In the following, we identify a natural number n with its binary representation (as a string). For a string  $\tau$ , up to additive const we have  $K(|\tau|) \leq K(\tau)$ , since we can compute  $|\tau|$  from  $\tau$ .

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some  $b \in \mathbb{N}$ ,

 $\forall n \left[ K(A \upharpoonright_n) \le K(n) + b \right],$ 

namely, all its initial segments have minimal K-complexity.

It is not hard to see that  $K(n) \leq 2 \log_2 n + O(1)$ .

Z is random  $\Leftrightarrow \forall n [K(Z \upharpoonright_n) > n \quad -O(1)]$ 

In the following, we identify a natural number n with its binary representation (as a string). For a string  $\tau$ , up to additive const we have  $K(|\tau|) \leq K(\tau)$ , since we can compute  $|\tau|$  from  $\tau$ .

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some  $b \in \mathbb{N}$ ,

 $\forall n \left[ K(A \upharpoonright_n) \le K(n) + b \right],$ 

namely, all its initial segments have minimal K-complexity.

It is not hard to see that  $K(n) \leq 2\log_2 n + O(1)$ .

A is K-trivial  $\Leftrightarrow \forall n [K(A \upharpoonright_n) \leq K(n) + O(1)]$ 

In the following, we identify a natural number n with its binary representation (as a string). For a string  $\tau$ , up to additive const we have  $K(|\tau|) \leq K(\tau)$ , since we can compute  $|\tau|$  from  $\tau$ .

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some  $b \in \mathbb{N}$ ,

 $\forall n \left[ K(A \upharpoonright_n) \le K(n) + b \right],$ 

namely, all its initial segments have minimal K-complexity.

It is not hard to see that  $K(n) \leq 2 \log_2 n + O(1)$ .

 $\begin{array}{lll} Z \text{ is random} & \Leftrightarrow & \forall n \left[ K(Z \upharpoonright_n) > n & -O(1) \right] \\ A \text{ is } & K \text{-trivial} & \Leftrightarrow & \forall n \left[ K(A \upharpoonright_n) \leq K(n) & +O(1) \right] \end{array}$ 

Thus, being K-trivial means being far from random.

#### Connecting density and K-triviality

#### This is based on the following work:

[Oberwolfach] Bienvenu, Greenberg, Kučera, N. Turetsky 2012 JEMS, to appear

[Berkeley] Day and Miller 2012 Math. Research Letters, to appear

[Paris] Bienvenu, Miller, Hölzl and N. 2011 STACS 2012, JML 2014 Turing incompleteness and positive density

#### Definition

We say that a real z is a positive density point if  $\underline{\rho}(E \mid z) > 0$  for every effectively closed  $E \ni z$ .

For a real  $z \notin \mathbb{Q}$ , let  $Z \in 2^{\mathbb{N}}$  denote its binary expansion: z = 0.Z.

Theorem (Paris)

Let z be a Martin-Löf random real. Then Z is NOT above the halting problem  $\emptyset' \Leftrightarrow$ 

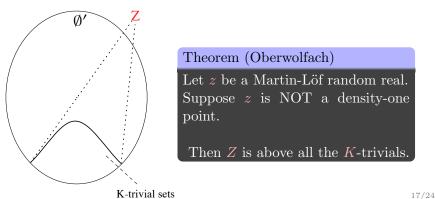
z is a positive density point.

The main connection of density and K-trivials Recall:  $\underline{\rho}(E \mid z) = \liminf_{|J| \to 0, z \in J} \lambda(J \cap E)/|J|.$ 

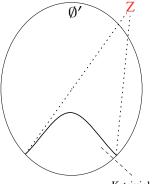
#### Definition (Recall)

We say that a real z is a density-one point if  $\rho(E \mid z) = 1$  for every effectively closed  $E \ni z$ .

In other words, z satisfies the Lebesgue Theorem for effectively closed sets.



### The main connection of density and K-trivials



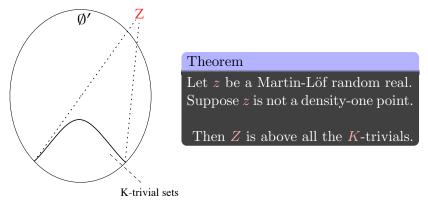
Theorem

Let z be a Martin-Löf random real. Suppose z is not a density-one point.

Then Z is above all the K-trivials.

K-trivial sets

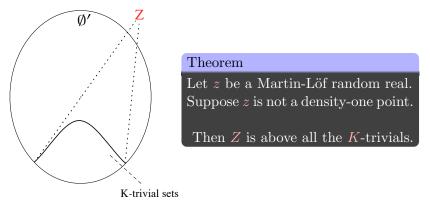
### The main connection of density and K-trivials



To solve the covering problem, we need to know:

Does Z as in the picture exist?

### The main connection of density and K-trivials



To solve the covering problem, we need to know:

Does Z as in the picture exist? Where do we get a ML-random set  $Z \geq_T \emptyset'$ that is not a density-one point?

### Why such a Z exists

Theorem (Berkeley, i.e., Day and Miller)

Let P be a nonempty  $\Pi_1^0$  class of ML-randoms. There is a ML-random set  $Z \geq_T \emptyset'$  such that  $\rho_2(P \mid Z) \leq 1/2$ .

[Paris] characterized difference randomness of a ML-random  ${\cal Z}$  via positive density:

 $Z \geq_T \emptyset'$  iff Z is a positive density point.

Berkeley built a set Z that is a positive density point.

Note that, for the Day-Miller set Z, the local measure  $\lambda_{\sigma}(Z)$  for  $\sigma \prec Z$  oscillates between 1 (asymptotically), and a value  $\epsilon$  with  $0 < \epsilon \leq 1/2$ .

## Why such a Z exists

### Theorem (Berkeley)

Let P be a nonempty  $\Pi_1^0$  class of ML-randoms. There is a ML-random set  $Z \geq_T \emptyset'$  such that  $\underline{\rho}_2(P \mid Z) \leq 1/2$ .

Proof. Force with conditions of the form  $\langle \sigma, Q \rangle$ , where

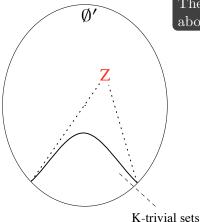
- ▶  $\sigma$  is a string,  $Q \subseteq P$ ,  $[\sigma] \cap Q \neq \emptyset$
- ▶ there is  $\delta < 1/2$  such that each string  $\tau \succeq \sigma$  has two options:

either  $[\tau] \cap Q = \emptyset$ , or  $\lambda_{\tau}(Q) \ge \lambda_{\tau}(P) - \delta$ .

(*Q* either loses all, or  $\leq \delta$  of *P*'s local measure within  $[\tau]$ .)

 $\langle \sigma', Q' \rangle$  extends  $\langle \sigma, Q \rangle$  if  $\sigma' \succeq \sigma$  and  $Q' \subseteq Q$ . We have an initial condition  $\langle \emptyset, P \rangle$  (via  $\delta = 0$ ).

If G is a sufficiently generic filter, then  $Z_G = \bigcup \{ \sigma \colon \langle \sigma, Q \rangle \in G \}$ is a ML-random positive density point, and  $\rho_2(P \mid Z) \leq 1/2$ . Then by Bienvenu et al.,  $Z \geq_T \emptyset'$ . The strongest answer to the covering question Berkeley's careful effectivization of the forcing yields a  $\Delta_2^0$  set Z. The strongest answer to the covering question Berkeley's careful effectivization of the forcing yields a  $\Delta_2^0$  set Z.



Theorem (Oberwolfach + Berkeley)

There is a ML-random set  $Z <_T \emptyset'$  above all the K-trivials.

21/24

# Questions on density randomness

### Question (Turetsky)

Is density randomness closed downward within the ML-randoms?

This is known for most randomness notions stronger than Martin-Löf's, including for OW-randomness (by the results above).

### Question (Franklin)

Is density randomness equivalent to being a Birkhoff point for each computable measure preserving operator and semicomputable function?

## Book references for background



My book "Computability and Randomness", Oxford University Press, 447 pages, Feb. 2009; Paperback version Mar. 2012.



Book by Downey and Hirschfeldt: "Algorithmic Randomness and Complexity", Springer, > 800 pages, Dec. 2010;

### Paper and preprint references for Part II

[Everyone] Bienvenu, Day, Greenberg, Kučera, Miller, N., Turetsky Computing K-trivial sets by incomplete random sets Bulletin of Symbolic Logic, 20, March 2014, pp 80-90.

[Oberwolfach] Bienvenu, Greenberg, Kučera, N., Turetsky Coherent randomness tests and computing the K-trivial sets.. JEMS, to appear 2016.

[Berkeley] Day and Miller Density, forcing and the covering problem MRL, to appear.

[Paris] Bienvenu, Miller, Hölzl and N. The Denjoy alternative for computable functions STACS 2012, 543 - 554.
Demuth, Denjoy, and Density .
J. Math. Logic 1 (2014) 1450004 (35 pages)