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Density

Let A denote uniform (Lebesgue) measure.

Definition

Let E be a subset of [0, 1]. The (lower) density of E at a real z
is

. ANJNE)
E = f ———=
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where J ranges over intervals.

This gauges how much, at least, of F is in intervals that zoom
in on z.

p(E | z) is the limit over intervals containing z. Clearly

pE|z)=1<p(E]|2)=1
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Lebesgue’s Theorem: towards an effective version

Recall: B(E | z) = lim ianinterval,zGJ,|J|—>O AJNE)/]J].

Theorem (Lebesgue Density Theorem, 1910)
Let E C [0,1] be measurable. Then for almost every z € [0,1]:

if z € E, then p(E | z) = 1.

» For open E, this is immediate, and actually holds for all
z €]0,1].
» For closed FE, this is the simplest case where there is
something to prove.
E C [0,1] is effectively closed (or I19) if there is an effective list

of open intervals with rational endpoints that has union
[0,1]\ E.

Definition (Main)

We say that a real z is a density-one point if p(E | z) =1 for
every effectively closed E 5 z.
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Martin-Lof randomness and density

Does Martin-Lof randomness ensure that an effectively closed
E C[0,1] with z € E has density one at 27

Answer: NO!

Example

» Let E# (), E C[0,1] be an effectively closed set containing
only Martin-Lo6f randoms.

» E.g., £ =[0,1]\ S1 where (S,),y is a universal ML-test.
» Let z = min(F).
» Then p(E | z) = 0 even though 2z is ML-random.

v



Density randomness

Definition

Let E be a measurable subset of 2. The lower dyadic density
of Eat Z e 2V is

po(E | Z) = liminf 2"A\([Z [,] N E).

n—00

Definition
We say that Z C N is density random if Z is ML-random and
po(P | Z) =1 for each 19 class P € Z.

For ML-random Z, one can equivalently require the full density
equals 1 in the setting of reals, by a result of Khan and Miller
(2013).



Three characterisations of density randomness

Theorem

The following are equivalent for Z € 2N, z = 0.Z.

» 7 is density random

» [Madison group, 2012] Each left-c.e. martingale M
converges: lim, M(Z [,) exists (M is left-c.e. if M (o) is a
left-c.e. real uniformly in string o)

» [N., 2014] ¢/(z) exists for each interval-c.e. function g

» [Miyabe, N., Zhang 2013] For each integrable lower
semicomputable function f: [0,1] — @t the “averaging”
statement of the Lebesgue differentiation theorem holds
at z.

For background and complete proofs see Miyabe, N., Zhang
2013. The continuous interval-c.e. functions with g(0) = 0 are
precisely the variation functions of computable functions by
Freer et al. 2014.



2. Anti-random sequences

000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000

000000000000000000000001000000000000000001111111111111
11111111111111711111111111171111111111111111111100000000
000000000000000000111000000000000000000000000000000000 . . .




Basic objects of computability theory
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Basic objects of computability theory

» The computable subsets
of N
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Basic objects of computability theory

Computable sets

» The computable subsets
of N

» the halting problem (/

» Turing reducibility <

» the computably
enumerable sets
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Adding the world of (anti-)randomness
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Adding the world of (anti-)randomness

» The Martin-Lo6f random
sets Z, such as Chaitin’s
halting probability €.
We have Q =7 (/.
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Adding the world of (anti-)randomness

» The antirandom (K-trivial)
sets.

K-trivial set D >4 A. (N. 2005)

K-trivial sets

If A is K-trivial, then there is c.e.



Kucera’s theorem and the covering problem
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Kucera’s theorem and the covering problem

Let Z be a random AY set. Then
there is a c.e., incomputable set
A<t Z. (Kucera, 1986)

Computable sets
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Kucera’s theorem and the covering problem

Let Z be random with Z 21 (.
Let A <1 Z be c.e.
Then A is K-trivial.
(Hirschfeldt, N., Stephan, 2007)

K-trivial sets

10/24



Kucera’s theorem and the covering problem

Let Z be random with Z 21 (.
Let A <1 Z be c.e.
Then A is K-trivial.
(Hirschfeldt, N., Stephan, 2007)

Covering problem (Stephan, 2004)

Let A be a c.e. K-trivial set.

K-trivial sets

10/24



Kucera’s theorem and the covering problem

Let Z be random with Z 21 (.
Z Let A <1 Z be c.e.
Then A is K-trivial.
(Hirschfeldt, N., Stephan, 2007)

Covering problem (Stephan, 2004)

Let A be a c.e. K-trivial set.
Is there a ML-random Z > A

with Z \ZT ‘Z)/?

K-trivial sets

10/24



Kucera’s theorem and the covering problem

Let Z be random with Z 21 (.
Let A <1 Z be c.e.
Then A is K-trivial.
(Hirschfeldt, N., Stephan, 2007)

Covering problem (Stephan, 2004)

Let A be a c.e. K-trivial set.
Is there a ML-random Z > A

W‘ith Z \ZT ‘Z)/?

We may omit the assumption that
A is c.e.: if not, replace A by a
c.e. K-trivial set D above A.
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A strong solution to the covering problem

Theorem 5 + 2 authors
There is a ML-random set Z <7 (I

above all the K-trivials.
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A strong solution to the covering problem

Theorem 5 + 2 authors
There is a ML-random set Z <7 (I

above all the K-trivials.

How random can Z be?

Answer: not much more than
Martin-Lof random.

How close to (' must Z lie?

Answer: Z is very close to (/.

K-trivial sets




Background on antirandom sets
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Descriptive string complexity K

Consider a partial computable function from binary strings to
binary strings (called machine). It is called prefix-free if its
domain is an antichain under the prefix relation of strings.

There is a universal prefix-free machine U:
for every prefix-free machine M,

M (o) = y implies U(7) = y for some 7 with |7| < |o| + dps,
and the constant d,; only depends on M.

The prefix-free Kolmogorov complexity of string y is the length
of a shortest U-description of y:

K(y) = min{lo|: U(o) = y}.
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representation (as a string). For a string 7, up to additive const
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Definition of K-triviality

In the following, we identify a natural number n with its binary
representation (as a string). For a string 7, up to additive const
we have K (|7|) < K(7), since we can compute |7| from 7.

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some b € N,
Vn|[K(Al,) < K(n)+ 1),
namely, all its initial segments have minimal K-complexity.

It is not hard to see that K(n) < 2logyn + O(1).

Zis random & Vn[K(Z1],) >n —0(1)]
Ais K-trivial & Vn[K(Al,) < K(n) +0(1)]

Thus, being K-trivial means being far from random.



Connecting density and K-triviality

This is based on the following work:

[Oberwolfach] Bienvenu, Greenberg, Kucera, N. Turetsky 2012
JEMS, to appear

[Berkeley] Day and Miller 2012
Math. Research Letters, to appear

[Paris] Bienvenu, Miller, Hélzl and N. 2011
STACS 2012, JML 2014



Turing incompleteness and positive density

Definition
We say that a real z is a positive density point if

p(E | z) > 0 for every effectively closed E > z.

For a real z ¢ Q, let Z € 2" denote its binary expansion:
z=0.Z2.

Theorem (Paris)

Let z be a Martin-Lof random real. Then

Z is NOT above the halting problem () <

z is a positive density point.

16/
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The main connection of density and K-trivials
Recall: p(E | z) = liminf| ;0.5 A(J N E)/|J].
Definition (Recall)
We say that a real z is a density-one point if

p(E | z) = 1 for every effectively closed E' > 2.

In other words, z satisfies the Lebesgue Theorem for effectively closed
sets.

Z

Theorem (Oberwolfach)

Let z be a Martin-Lof random real.
Suppose z is NOT a density-one

point.

Then Z is above all the K-trivials.

N
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The main connection of density and K-trivials

£

Theorem

K-trivial sets

Let z be a Martin-Lof random real.
Suppose z is not a density-one point.

Then Z is above all the K-trivials.
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The main connection of density and K-trivials

£

Theorem

N

N

K-trivial sets

To solve the covering problem, we need to know:

Does Z as in the picture exist?

Let z be a Martin-Lof random real.
Suppose z is not a density-one point.

Then Z is above all the K-trivials.
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The main connection of density and K-trivials

£

Theorem

N

K-trivial sets
To solve the covering problem, we need to know:
Does Z as in the picture exist?

Where do we get a ML-random set Z Zp (/
that is not a density-one point?

Let z be a Martin-Lof random real.
Suppose z is not a density-one point.

Then Z is above all the K-trivials.
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Why such a Z exists
Theorem (Berkeley, i.e., Day and Miller)

Let P be a nonempty 11} class of ML-randoms. There is a ML-

random set Z 77 (' such that p (P | Z) < 1/2.

[Paris] characterized difference randomness of a ML-random Z
via positive density:

Z Fr 0" iff Z is a positive density point.

Berkeley built a set Z that is a positive density point.

Note that, for the Day-Miller set Z, the local measure \,(Z) for
o < Z oscillates between 1 (asymptotically), and a value € with
0<e<l1/2
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Why such a Z exists
Theorem (Berkeley)

Let P be a nonempty I1{ class of ML-randoms. There is a ML-

random set Z Z7 () such that p (P | Z) < 1/2.

Proof. Force with conditions of the form (o, @), where
» oisastring, Q C P, [0]NQ #0
» there is § < 1/2 such that each string 7 = o has two options:

either [7] N Q =0, or A\-(Q) > \-(P) — 6.
(Q either loses all, or < § of P’s local measure within [7].)

(0!, Q") extends (0,Q) if 0/ = o and Q' C Q.
We have an initial condition (0, P) (via § = 0).

If G is a sufficiently generic filter, then Zg = (J{o: (0,Q) € G}
is a ML-random positive density point, and po(P | Z) < 1/2.
Then by Bienvenu et al., Z 21 (V.
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The strongest answer to the covering question
Berkeley’s careful effectvization of the forcing yields a AJ set Z.



The strongest answer to the covering question
Berkeley’s careful effectvization of the forcing yields a AJ set Z.

Theorem (Oberwolfach + Berkeley)

There is a ML-random set Z <7 ('

above all the K-trivials.

K-trivial sets




Questions on density randomness

Question (Turetsky)
Is density randomness closed downward within the
ML-randoms?

This is known for most randomness notions stronger than
Martin-Lof’s, including for OW-randomness (by the results above).

Question (Franklin)

Is density randomness equivalent to being a Birkhoff point for
each computable measure preserving operator and
semicomputable function?
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Book references for background

My book

“Computability and Randomness”,

Oxford University Press, 447 pages, Feb. 2009;
Paperback version Mar. 2012.

Computability

and Randomness

Book by Downey and Hirschfeldt:
“Algorithmic Randomness and Complexity”,
Springer, > 800 pages, Dec. 2010;
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Paper and preprint references for Part 11

[Everyone]

[Oberwolfach]

[Berkeley]

[Paris]

Bienvenu, Day, Greenberg, Kucera, Miller, N., Turetsk
Computing K-trivial sets by incomplete random sets
Bulletin of Symbolic Logic, 20, March 2014, pp 80-90.

Bienvenu, Greenberg, Kucera, N., Turetsky
Coherent randomness tests and computing
the K-trivial sets.. JEMS, to appear 2016.

Day and Miller
Density, forcing and the covering problem
MRL, to appear.

Bienvenu, Miller, Holzl and N.

The Denjoy alternative for computable functions
STACS 2012, 543 - 554.

Demuth, Denjoy, and Density .

J. Math. Logic 1 (2014) 1450004 (35 pages)



