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Differentiability
Differentiability of a function f at a real z means that the rate
of change (“velocity”) at z is defined:

f ′(z) = lim
h→0

f(z + h)− f(h)

h
.

Weierstrass proved in 1872 that some continuous function is
nowhere differentiable.
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Lebesgue’s measure

I In 1904 Lebesgue introduced his
measure on the real line R.

I It assigns a size λ(C) ∈ [0,∞] to all
reasonable subsets C of R.

I One can now say that a property
holds for almost every real z: the set
of exceptions has measure 0.
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“Almost everywhere” theorem (A)

Some important theorems in analysis assert a property of being
well-behaved for almost every real z.

For instance, in contrast to Weierstrass’ result, we have:

Theorem (Lebesgue, 1904)

Let f : [0, 1]→ R be non-decreasing.
Then the derivative f ′(z) exists for almost every real z.
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“Almost everywhere” theorem (B)

HENRI LEBESGUE, Sur l’ intégration des

fonctions discontinues, Annales scientifiques de

l’E.N.S. 3e série, tome 27 (1910), p. 361-450; p. 407.

SUR I/INTÉGRATION DES FONCTIONS DISCONTINUES. 4^7

à droite supérieure à - (donc différente de zéro puisque K est quel-
conque) forment un ensemble de mesure nulle.

Soient maintenant un ensemble quelconque A, E un ensemble
d'intervalles contenant A; les points extérieurs à E en lesquels A n'a
pas une densité à droite nulle forment un ensemble de mesure nul le;
et cela étant vrai quel que soit E contenant A est vrai aussi des points
extérieurs à A. Soit B le complémentaire de A par rapport à un certain
intervalle; les points de B en lesquels A n'a pas une densité à droite
nulle forment, on vient de le voir, un ensemble de mesure nulle.
Permutons A et B dans l'énoncé de ce résultat, il reste vrai; or A +• B
a une densité égale à i en tout point; donc, les points d'un ensemble
de mesure n u l l e étant exceptés, la densité à droite de A est égale à un
en tout point de A, égale à zéro en tout point de B.

Raisonnant de même sur la densité à gauche, on voit finalement que
la densité d'un ensemble mesurable est égaie à un en presque tous les
points de cet ensemble.

34. C'est-à-dire qu'il est démontré qu'une fonction est presque
partout la dérivée de son intégrale indéfinie, lorsqu'il s'agit d'une
fonction ne prenant que les valeurs o ou i.

Par suite, ce théorème s'en déduit quand il s'agit de fonctions ne
prenant qu'un nombre fini de valeurs différentes. Passons au cas
général et supposons qu'il s'agisse d'une fonction qui n'est jamais
négative/. Soit E^ l'ensemble des points en lesquels on a

p£^f<.(p -+-!)£ (P=0, I, ...);

£ est u n e quantité positive arbitraire. Soit y^ la fonction égale h p e
dans E^,, pour p = o, i, ..., n et égale a zéro ailleurs. Les nombres
dérivés de l'intégrale de/sont au moins égaux à ceux de l'intégrale
de y/,; donc, presque partout, les nombres dérivés de l'intégrale de/
sont égaux ou supérieurs à /.

Soit $ la fonction égale à (p 4- i) s dans chaque B^. Les nombres
dérivés de f fdx ne surpassant pas ceux de ^dx, il suffirait de
démontrer le théorème pour la fonction $. Or, si <&^ est la fonction
définie comme étant égale à zéro dans E^ 4- E ^ . . . + E^ et égale à <&

Theorem (Lebesgue Density Theorem, 1910)

Let E ⊆ [0, 1] be measurable. For almost every z ∈ [0, 1]:
if z ∈ E, then E has density 1 at z.

Intuitively, this means that as we “zoom in” on z, more and
more of the neighbourhood of z is in E.
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Classically (A) implies (B)

(A) Let f : [0, 1]→ R be non-decreasing.
Then the derivative f ′(z) exists for almost every real z.

(B) Let E ⊆ [0, 1] be measurable. For almost every z ∈ [0, 1]:
if z ∈ E, then E has density 1 at z.

I Recall that λ(C) denotes the Lebesgue measure of C ⊆ R.

I The non-decreasing function x→ λ([0, x] ∩ E) is
differentiable at almost every x. Its derivative is the density
at x.

I By the regularity of Lebesgue measure, it is sufficient to
prove (B) for closed sets E. For such a set it is easy to see
that the upper density is 1 at almost every x ∈ E. Hence
the full density is 1 for a.e. x ∈ E.
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Functions of bounded variation

A function f : [a, b]→ R is of bounded variation if

V (f) = sup

n−1∑
i=1

|f(ti+1)− f(ti)| <∞,

the sup taken over all collections t1 ≤ t2 ≤ . . . ≤ tn in [a, b].

Examples/Non-examples

BV: non-decreasing functions,
Lipschitz functions,
x2 sin(1/x) (and 0 at x = 0).

Not BV: x sin(1/x) .
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How to obtain the result for BV functions from the
result for non-decreasing functions

Theorem (Lebesgue, 1904, together with Jordan, 1879)

Let f : [0, 1]→ R be of bounded variation. Then f ′(r) exists for
each r outside a set of measure 0 (which depends on f).

To see this, use Jordan’s theorem
(Cours d’analyse de l’Ecole Polytechnique, 1882-7):

Each function f of bounded variation is of the form g0 − g1 for
nondecreasing functions g0, g1.

g0(x) is the variation of f �[0,x], and g1 = g0 − f .
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History of constructive approaches to the result (1)
Bishop (1967) gives constructive version of the result that a BV

function is differentiable at almost every real. (Foundations of

constructive analysis, Thm. 7 on page 239.)
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History of constructive approaches to the result (2)

Demuth (1975) proves the following. Suppose that f is Markov
computable: from a computable name for x we can obtain a
computable name for f(x). Then f is pseudo-differentiable at
each Π2 number (in classical language: at each Martin-Löf
random).

Also, outside a certain null set, for each ∆0
2 real x, f ′(x) is ∆0

2

and can be computed from x.

See Thm. 4.1 in “Demuth’s path to
randomness” by Kučera, N. and Porter,
BSL 2015, arxiv.org/abs/1404.4449
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Demuth’s original 1975 result on BV functions
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2. A brief introduction to
algorithmic randomness

10100111000101111010101000010101101111011000010111101010
10010101100011111010110001100111111101100000111001111000
00110011011110100011110100011100101011011001011100010110
01100110001111000010011001011101100100101000001110001111
11100100011000101111110100010111110011011100100110011010
00111111011010101101001101010110000011000001001101011100
. . .
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Idea in algorithmic randomness

I One defines a notion of algorithmic null set on [0, 1], or the
Cantor space 2N.

I A real z (bit sequence Z ∈ 2N) is random in a particular
sense if it avoids all null sets of this kind.

I There are only countably many null sets of this kind. So
almost every z is random in that sense.

Randomness notions relevant in this first part of the tutorial:

Martin-Löf random ⇒ computably random ⇒ Schnorr random.

These implications are proper.
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Betting on a bit sequence

Computable betting strategies (martingales) are computable
functions M from binary strings to the non-negative reals.

I Let Z be a sequence of bits (often called “set”, i.e. subset
of N). When the player has seen the string σ of the first n
bits of Z, she can make a bet q, where 0 ≤ q ≤M(σ), on
what the next bit Z(n) is.

I If she is right, she gets q. Otherwise she loses q. Thus, we
have

M(σ0) +M(σ1) = 2M(σ)

for each string σ.

I She wins on Z if M is unbounded along Z. (These Z form
an algorithmic null set.)
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Computable randomness for bit sequences

A betting strategy M
satisfies the “fairness
condition” that the
average of the values of
the children is the value at
the node.

We call a sequence of bits
computably random if no
computable betting
strategy (martingale) has
unbounded capital along
the sequence.
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Martin-Löf’s 1966 randomness notion for reals

I A Martin-Löf test is an effective
sequence (Um)m∈N of open sets in
[0, 1] such that the Lebesgue
measure of Um is at most 2−m

(Schnorr rd: = 2−m).

I Intuitively, Um is an attempt to
approximate a real z with
accuracy 2−m.

I Z passes the test if

Z is not in all Um.

I Z is called Martin-Löf random if it
passes all ML-tests.

0 1

...

U0
U1
U2
U3
U4
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Randomness via effective Vitali covers

Let 〈Gk〉k∈N be a computable sequence of rational open
intervals with |Gk| → 0.
The set of points Vitali covered by 〈Gk〉k∈N is

V〈Gk〉k∈N = {z : z is in infinitely many Gk’s}.

Martin-Löf and Schnorr randomness also can be defined via
effective Vitali covers.

I Martin-Löf random: not in any set V〈Gk〉k∈N where∑
k |Gk| <∞. (See Solovay tests.)

I Schnorr random: not in any set V〈Gk〉k∈N where
∑

k |Gk| is
a computable real.
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ML- and Schnorr randomness via martingales

An infinite sequence Z of bits can be “identified” with the real
number z = 0.Z in [0, 1] via the binary expansion. So we
already have a definition of ML-randomness for bit sequences.

Equivalently we can use martingales. A martingale L is called
left-c.e. (or lower semicomputable) if L(σ) is a left-c.e. real
uniformly in σ.

Z is ML-random ⇔ no left-c.e. martingale succeeds on Z.

A martingale L succeeds strongly on Z if there is an order
function (i.e. computable, unbounded, nondecreasing) h such
that ∃∞nL(Z �n) ≥ h(n).

Z is Schnorr-random ⇔
no computable martingale succeeds strongly on Z.
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The implications are proper (1)

Martin-Löf random
⇒
6⇐ computably random

A set C is called high if ∅′′ ≤T C
′.

Equivalently, C computes a function that dominates each
computable function (Martin, 1966).

Theorem (N., Stephan, Terwijn, 2005)

Every high set C Turing computes a set Z that is computably
random.

I Let 〈Le〉e∈N be a list of all partial computable martingales,

I Define Z so that the martingale L =
∑

e 2−eLe is bounded
along Z.

I Use highness of C to deal with partiality.
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The implications are proper (2)

On the other hand, if a computably enumerable set C is Turing
above a random, then C is Turing equivalent to the halting
problem ∅′ by the “Arslanov Completeness Critierion”.

There is a high computably enumerable set C <T ∅′.

Therefore Martin-Löf random 6⇐ computably random

Another way to separate the ML and computable randomness:
use the (prefix-free) Kolmogorov complexity of the initial
segments.

For ML-random Z we have K(Z �n) +O(1) ≥ n.
There is a computably random Y such that K(Y �n) = O(log n).
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The implications are proper (3)

computably random
⇒
6⇐ Schnorr random.

I First proved by Yongge Wang.

I It is shown by a direct construction (see e.g. N’s book
“Computability and Randomness”, Ch. 7).

I N., Stephan, Terwijn, 2005 separate the two notions in
each high degree.

Note that any separation has to occur within the high degrees:

Theorem (N., Stephan, Terwijn, 2005)

If Z is not high and Schnorr random, then Z is ML-random.
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3. Effective versions of almost everywhere
theorems
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Effective almost everywhere theorems and randomness

The “almost everywhere” theorems didn’t tell us whether the
given object is well-behaved at a particular real.
Now consider the case where the given object is algorithmic in
some sense.

I How strong an algorithmic randomness notion for a real z
is needed to make the theorem hold at z?

I Will the theorem in fact characterize the randomness
notion?

Once this is settled, we can provide “concrete” examples of
reals at which the nice behaviour occurs. For instance,
Chaitin’s Ω is ML-random.
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Continuing the story of effective a.e. theorems, after
Bishop (1967) and Demuth (1975)

Recall Birkhoff’s 1939 theorem:

Let (X,µ, T ) be a measure preserving system, and let
f : X → R is measurable. For µ-almost every x, the limit as
N →∞ of the averages of f ◦ T i(x) over 0 ≤ i < N , exists.

I V’yugin, 1999 (TCS) shows that ML-randomness suffices for
the effective Birkhoff theorem. (Note that T : ⊆ X → X
only needs to be defined µ-a.e.)

I He uses Bishop, Thm. 6 on page 236, which is closely
related to his result on BV (Thm. 7).

I Hoyrup, Rojas, Galatolo 2010-13 develop effective ergodic
theory.
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Schnorr randomness and L1-computability

Pathak (2009), Pathak, Rojas, and Simpson (2012) proved an
effective version of another of Lebesgue’s theorem (but taking
into account only the existence of limits, not the value).

z ∈ [0, 1]d is Schnorr random ⇔
for every L1-computable function g : [0, 1]d → R,

lim
r→0+

1

λ(Br(z))

∫
Br(z)

g exists.

Implication ⇐ also due to Freer, Kjos-Hanssen, N., Stephan.
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Effective form of the first Lebesgue theorem
A function f : [a, b]→ R is of bounded variation if

V (f) = sup

n−1∑
i=1

|f(ti+1)− f(ti)| <∞,

the sup taken over all collections t1 ≤ t2 ≤ . . . ≤ tn in [a, b].

Theorem (Brattka, Miller, N; to appear in TAMS)

Let f : [0, 1]→ R be non-decreasing and computable. Then
z is computably random ⇒ f ′(z) exists.

I Under the weaker hypothesis that f has bounded variation,
f ′(z) exists for each Martin-Löf random real z, but not
necessarily for each computably random.

(Demuth, 1975; Brattka, Miller,N. ta).

I Some depth here that doesn’t show in classical analysis.
Jordan decomposition f = g0 − g1 for nondecreasing gi is
not effective!
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Functions-to-tests

To prove the first result: If f is computable nondecreasing, we
(uniformly in f) build a computable martingale M such that

f ′(z) fails to exist ⇒ M succeeds on z.

(I will give detail later when I do the polynomial time
computable case.)

Corollary

Each computable nondecreasing function f is differentiable at a
(uniformly obtained) computable real.

PROOF: Each computable martingale fails on some computable
real, which can be obtained uniformly.
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Converses (tests-to-functions)

I Both the nondecreasing and the bounded variation cases
also have converses: if z is not random in the appropriate
sense, then some computable function of the respective
type fails to be differentiable at z (BMN, to appear).

I So one could take the differentiability properties for classes
of effective functions as definitions of randomness notions!

z is computably random ⇔
each computable nondecreasing function is differentiable at z

z is Martin-Löf random ⇔
each computable function of bd. variation differentiable at z.
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A new proof of Demuth’s result

Here is the proof of Brattka/Miller/N. (TAMS, ta) of the result
of Demuth on BV function. We get a stronger form:

Let r be a Martin-Löf random real. Suppose f is uniformly
computable on the rationals, and f is of bounded variation.
Then f ′(r) exists.

I By Jordan’s result,

f = h0 − h1 for some nondecreasing functions h0, h1.

I One can show that r is Martin-Löf random (hence
computably random) relative to some oracle set X encoding
such a pair h0, h1.

I By the previous theorem, relativized to X, the hi are both
differentiable at r. Thus f ′(r) = h′0(r)− h′1(r) exists. �
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The strength of the Jordan decomposition theorem

I Note that the pairs h0, h1 with f = h0 − h1 (not necessarily
continuous) can be seen as a Π0

1 class P.

I We obtain the decomposition because r is random in some
member of P (the “low for r” basis theorem).

Results by Greenberg, N., Yokoyama, Slaman (see 2013 Logic
Blog and upcoming project report by Marcus Triplett) show:

I Jordan decomposition of any continuous BV f into
continuous functions h0, h1 is equivalent to ACA over RCA.

I Jordan decomposition of any continuous BV f into
nondecreasing functions h0, h1 is equivalent to WKL over RCA.
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Randomness notions given by function classes (BMN ta)
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4. Polynomial time randomness and
differentiability
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Special Cauchy names

I A Cauchy name is a sequence of rationals (pi)i∈N such that
∀k > i |pi − pk| ≤ 2−i.

I We represent a real x by a Cauchy name converging to x.

For feasible analysis, we use a compact set of Cauchy names:
the signed digit representation of a real. Such Cauchy names,
called special, have the form

pi =
i∑

k=0

bk2
−k,

where bk ∈ {−1, 0, 1}. (Also, b0 = 0, b1 = 1.)

So they are given by paths through {−1, 0, 1}ω, something a
resource-bounded Turing machine can process.
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Polynomial time computable functions

The following has been formulated in equivalent ways by
Ker-i-Ko (1989), Weihrauch (2000), Braverman (2008).

Definition

A function g : [0, 1]→ R is polynomial time computable if there
is a polynomial time TM turning every special Cauchy name for
x ∈ [0, 1] into a special Cauchy name for g(x).

This means that the first n symbols of a special Cauchy name
for g(x) can be computed in time polynomially in n, thereby
using polynomially many symbols of the oracle tape that holds
a special Cauchy name for x.
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Examples of polynomial time computable functions

I Functions such as ex, sinx are polynomial time computable.

I To see this one uses rapidly a converging approximation
sequence, such as ex =

∑
n x

n/n!.
I As Braverman (2008) points out, ex is computable in time

O(n3).
I Namely, from O(n3) symbols of x we can in time O(n3)

compute an approximation of ex with error ≤ 2−n.
I Better algorithms may exist (e.g. search the 1987 book J.

Borwein and P. Borwein, Pi and the AGM).

I Breutzman, Juedes and Lutz (MLQ, 2004) have given an
example of a polynomial time computable function that is
no-where differentiable. It is a variant of the Weierstrass
function

∑
n 2−n cos(5nπx).
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Polynomial time randomness
Recall that a betting strategy, or martingale, is a function
M : 2<ω → R+

0 such that

M(σ0) +M(σ1) = 2M(σ)

for each string σ.

Definition

A betting strategy M : 2<ω → R is called
polynomial time computable if from a string σ and an i ∈ N we
can, in time polynomial in |σ|+ i, compute the i-th component
of a special Cauchy name for M(σ).

In this case we can compute a polynomial time martingale in
base 2 dominating M (Schnorr / Figueira-N).

Definition

We say Z ∈ 2N is polynomial time random if no polynomial
time betting strategy succeeds on Z.
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Polynomial time randomness

Definition

We say Z ∈ 2N is polynomial time random if no polynomial
time betting strategy succeeds on Z.

I This was first studied in Yongge Wang’s 1992 thesis
(Uni Heidelberg).

I Figueira, N 2013 showed that the notion is base invariant:

it is about reals rather than sequences of digits for a fixed
base (such as 2).

Proposition (Existence in super polynomial time classes)

Suppose the function t(n) is time constructible and dominates
all polynomials. There is polynomial random Z computable in
time O(t(n)) (i.e. the language consisting of the initial segments
of Z is O(t)-computable).
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Lebesgue’s Thm (A) and its converse in the polytime
setting

Theorem (N., STACS 2014)

The following are equivalent for a real z ∈ [0, 1].

(I) z (written in binary expansion) is polynomial time random

(II) f ′(z) exists, for each non-decreasing function f that is
polynomial time computable.

I The same method works for
primitive recursive randomness/functions, and even
computable randomness/computable functions.

I So this also yields new proof of Brattka/Miller/Nies.
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Proof of the easy direction (II) → (I)

Suppose that f ′(z) exists, for each non-decreasing function f
that is polynomial time computable. We want to show that z is
polynomial time random.

Let Sg(σ) denote the slope of a

non-decreasing function g at the

basic dyadic interval given by

string σ. This is a betting

strategy.

Essentially, each betting

strategy M is of the form Sg for

nondecreasing g. If M is

polynomial time then so is g.

Since g′(z) exists, M is bounded

along z.

Slope = M(10)

Sl
op

e 
= 

M
(11

)

Slo
pe

 = 
M(1)

0.10 0.11 1.0
g

1

39/1



Slopes and their limits
For a function f : ⊆ R→ R, for a pair a, b of distinct reals let

Sf (a, b) =
f(a)− f(b)

a− b
.

For f defined on the rationals, the lower and upper
(pseudo-)derivatives are

D˜ f(x) = lim inf
h→0+

{Sf (a, b) | a ≤ x ≤ b ∧ 0 < b− a ≤ h},

D̃f(x) = lim sup
h→0+

{Sf (a, b) | a ≤ x ≤ b ∧ 0 < b− a ≤ h}.

where a, b range over rationals in [0, 1].

Example: f(x) = x sin(1/x).

D˜ f(0) = −1, D̃f(0) = 1.

For f defined in a nbhd of x and continuous at x,
f ′(x) exists iff D˜ f(x) = D̃f(x) <∞.
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Slopes at basic dyadic intervals

The subscript 2 indicates restriction to basic dyadic intervals
[σ], where σ is a string, containing z:

D̃2f(x) = lim sup
|σ|→∞

{Sf (σ) | x ∈ [σ]}.

Recall: if f is non-decreasing then M(σ) = Sf (σ) is a betting
strategy. We say that M converges on z if limnM(Z �n) exists.

We have the following basic connections:

I M succeeds on z ⇔ D̃2f(z) =∞.

I M converges on z ⇔ D˜ 2f(z) = D̃2f(z) <∞
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Proof of the harder direction (I) → (II)

Now suppose that z = 0.Z ∈ [0, 1] is polynomial time random.

We want to show that f ′(z) exists, for each non-decreasing
function f that is polynomial time computable.

I Consider the polynomial time computable betting strategy

M(σ) = Sf (σ) .

I limnM(Z �n) exists and is finite for each polynomially
random Z. This is an efficient version of Doob’s martingale
convergence theorem.

I Therefore D˜ 2f(z) = D̃2f(z) <∞.
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Porosity

Assume for a contradiction that f ′(z) fails to exist. We have
oscillation of slopes of f at arbitrarily small intervals around z.
We want success of a betting strategy at basic dyadic intervals
corresponding to prefixes of Z.

I First suppose that D̃2f(z) < p < D̃f(z).

I Since D̃2f(z) < p there is a string σ∗ ≺ Z such that
∀σ [Z � σ � σ∗ ⇒ Sf (σ) ≤ p].

I Choose k with p(1 + 2−k+1) < D̃f(z).

Let � denote the prefix relation of strings. The next lemma
says that [σ∗]−

⋃
{(σ) : σ � σ∗ ∧ Sf (σ) > p} is porous at z.

Lemma (High slopes at dyadic intervals)

There are arbitrarily large n such that Sf (τn) > p for some
basic dyadic interval [τn] of length 2−n−k which is contained in
[z − 2−n+2, z + 2−n+2].
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We may suppose σ∗ is the empty string, i.e., Sf (σ) ≤ p for all
dyadic intervals [σ] containing z.
By the lemma, there are arbitrarily large n such that
Sf (τn) > p for some basic dyadic interval [τn] of length 2−n−k

which is contained in [z − 2−n+2, z + 2−n+2].

Good case: there are infinitely many n with η = Z �n−4≺ τn.

Then the strategy that from such η on bets everything on the
strings of length n+ k other than τn gains a fixed factor
2k+4/(2k+4 − 1) on Z each time. Also, it never goes down on Z,
so it succeeds.

Bad case: for almost all n we have Z �n−4 6≺ τn.

This means 0.τn is on the left side of z. So the strategy can’t
use τn as it splits off from Z before η is read.
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The shifting–by–1/3 trick

Fix m ∈ N.
For k ∈ Z consider an interval

I = [k2−m, (k + 1)2−m].

For r ∈ Z consider an interval

J = 1/3 + [r2−m, (r + 1)2−m].

The distance between an endpoint of I and an endpoint of J is
at least 1/(3 · 2m).

To see this: assume that k2−m − (p2−m + 1/3) < 1/(3 · 2m). This

yields (3k − 3p− 2m)/(3 · 2m) < 1/(3 · 2m), and hence 3|2m, a

contradiction.
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Using this trick to finish the proof of (I) → (II)

We may assume that z > 1/2. In the “bad” case that
Z �n−4 6≺ τn for almost all τn, we instead bet on the dyadic
expansion Y of z − 1/3.

I Given η′ = Y �n−4, look for an extension τ ′ � η′ of length
n+ k + 1, such that 1/3 + [τ ′] ⊆ [τ ] for a string [τ ] with
Sf (τ) > p. (Then Y 6∈ [τ ′].)

I If it is found, bet everything on the other extensions of η′

of that length n+ k + 1.

This strategy gains a fixed factor 2k+5/(2k+5 − 1) on Y each
time n is as above. It never goes down on Y , so it succeeds.

So we get a polytime martingale that wins on z − 1/3. By
Figueira and N (2013), polytime randomness is base invariant,
so z − 1/3 is polynomially random. This yields a contradiction.

The case D˜ f(z) < D˜ 2f(z) is analogous, using a “low dyadic
slopes” lemma instead.
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Shifted dyadic versus full differentiability

For a rational q let Dq be the collection of intervals of the form

q + [k2−m, (k + 1)2−m]

where k ∈ Z,m ∈ N.

Question

Let f : [0, 1]→ R be continuous nondecreasing, and let
z ∈ (0, 1). Suppose that for each rational q,

lim
[a,b]∈Dq , z∈[a,b], b−a→0

Sf (a, b)

exists. Is f already differentiable at z?
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5. Differentiability of Lipschitz functions
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Computable randomness and Lipschitz functions

Recall that f is Lipschitz if |f(x)− f(y| ≤ C(|x− y|) for some
C ∈ N.

Theorem (Freer, Kjos, N, Stephan, Computability, 2014)

A real z is computably random ⇐⇒
each computable Lipschitz function
f : [0, 1]→ R is differentiable at z.

=⇒ : Write f(x) = (f(x) + Cx)− Cx. Then f(x) + Cx is
computable and non-decreasing.
From the monotone case (BMN), we obtain a test (martingale)
for this function. If f ′(z) does not exists, then z fails this test.

⇐= : Turn success of a martingale on a real into oscillation of
the slopes, around the real, of a Lipschitz function.
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Rademacher’s theorem

Theorem (Rademacher, 1920)

Let f : [0, 1]n → R be Lipschitz.
Then the derivative Df(z) (an element of Rn)
exists for almost every vector z ∈ [0, 1]n.

To define computable randomness of a vector z ∈ [0, 1]n:

I Take the binary expansion of the n components of z.

I We can bet on the corresponding sequence of blocks of n
bits.

Rute (2012) studies this notion, for instance invariance under
computable measure preserving operators.
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Effective form of Rademacher

Theorem (Galicki and Turetsky, arxiv.org/abs/1410.8578)

z ∈ [0, 1]n is computably random ⇒ every computable Lipschitz
function f : [0, 1]n → R is differentiable at z.

For a vector v, the directional derivative Df (z; v) is the
derivative of the function t→ f(z + tv) at 0. The proof has
three steps:

I all partial derivatives exist at z

I all directional derivatives for computable directions exist

I Df (z; v) is linear on computable directions v

Since f is Lipschitz this show that f Gâteaux-differentiable at
z: all directional derivatives exist, and the value is linear in the
direction.
Again since f is Lipschitz, this yields the full differentiability of
f at z. �
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Other approaches to effective Lipschitz functions

The polynomial time case is open.

Question

Suppose z ∈ [0, 1]n is polynomially random. Is every polynomial
time Lipschitz function f : [0, 1]n → R is differentiable at z?

I Abbas Edalat has developed an approach to
differentiability of effective Lipschitz functions using
domain theory. See his recent paper in TCS.

I It involves the Clarke gradient (a set-valued derivative) to
get around the measure 0 set where the function is not
classically differentiable.
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6. Two more almost everywhere results:

Carleson-Hunt (1966/68) and Weyl (1916)
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Carleson-Hunt Thm (suggested by Manfred Sauter)

Theorem (Carleson, 1966 for p = 2; improved by Hunt 1968)

Let f ∈ Lp[−π, π] be a periodic function. Then the Fourier
series cN (z) =

∑
|n|≤N f̂(n)einz converges for almost every z.

Question

Suppose f is Lp-computable for computable p > 1.
Which randomness property of z suffices to make the sequence
cN (z) converge?

I We say z is weakly 2-random if z is in no null Π0
2 set. This

properly implies Martin-Löf randomness.

I As an easy consequence of Carleson-Hunt theorem, weak
2-randomness of z suffices. For fixed rationals α < β, the
statement that, say, Re cN (z) oscillates between values < α
and > β is Π0

2.
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Effective Weyl Theorem

Theorem (Weyl, 1916)

Let (ai)i∈N be a sequence of distinct integers. Then for almost
every real z, the sequence aiz mod 1 is uniformly distributed in
[0, 1].

Suppose now (ai)i∈N is computable. Avigad (2012) shows that

I Schnorr randomness of z suffices to make the conclusion of
Weyl’s theorem hold.

I There is a z satisfying the conclusion of the theorem which
is in some null effectively closed set (hence not even “Kurtz
random”).
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7. Effective ergodic theory: multiple recurrence
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Classical theory

A measurable operator T on a probability space (X,B, µ) is
measure preserving if µT−1(A) = µA for each A ∈ B.

The following is Furstenberg’s multiple recurrence theorem (1977); see

Furstenberg’s book on recurrence, 2014 edition, Thm. 7.15.

Theorem

Let (X,B, µ) be a probability space. Let T1, . . . , Tk be
commuting measure preserving operators on X.
For each P ∈ B with µP > 0, there is n > 0 such that
µ(
⋂
i T
−n
i (P )) > 0.

With a little measure theory one can easily strengthen this to
an “almost-everywhere” type result:

a.e. z ∈ P ∃n [z ∈
⋂
i T
−n
i (P )].
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k-recurrence in Cantor space
Let X = 2N with the shift operator S : X → X that takes the
first bit off a sequence.

Definition

Let P ⊆ 2N be measurable, and Z ∈ 2N. We say that Z is
k-recurrent in P if Sn(Z), S2n(Z), . . . , Skn(Z) ∈ P for some
n ≥ 1, i.e.

Z ∈
⋂

1≤i≤k S
−ni(P ).

Theorem (Downey, Nandakumar, N., in preparation)

Let P ⊆ 2N be a Π0
1 class of positive measure.

Each Martin-Löf random Z is k-recurrent in P, for each k ≥ 1.

Martin-Löf-randomness is necessary even for k = 1. If Z is not
ML-random, no “tail” Sn(Z) is in the Π0

1 class of positive measure

P = {Y : ∀rK(Y �r) ≥ r − 1}

by the Levin-Schnorr Theorem.
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General Conjecture

It is likely that an effective multiple recurrence theorem holds in
full generality for ML-randomness and Π0

1 sets.

Conjecture

Let (X,µ) be a computable probability space. Let T1, . . . , Tn be
computable measure preserving transformation that commute
pairwise. Let P be a Π0

1 class with µP > 0.

If Z ∈ P is ML-random then ∃n
∧
i T

n
i z ∈ P.

I By the classical of Furstenberg, this holds for weakly 2-random
Z (i.e., in no null Π0

2 class).

I Jason Rute has pointed out that if µP is computable, then
Schnorr randomness of Z is sufficient, also by the classical result.

A draft of this work is available on the 2015 Logic Blog.
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