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Differentiability

Differentiability of a function f at a real z means that the rate
of change (“velocity”) at z is defined:
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Weierstrass proved in 1872 that some continuous function is
nowhere differentiable.
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Lebesgue’s measure

» In 1904 Lebesgue introduced his
measure on the real line R.

» It assigns a size A(C) € [0, 0] to all
reasonable subsets C' of R.

» One can now say that a property
holds for almost every real z: the set
of exceptions has measure 0.




“Almost everywhere” theorem (A)

Some important theorems in analysis assert a property of being
well-behaved for almost every real z.

For instance, in contrast to Weierstrass’ result, we have:

Theorem (Lebesgue, 1904)

Let f :]0,1] — R be non-decreasing.
Then the derivative f'(z) exists for almost every real z.



“Almost everywhere” theorem (B)

HENRI LEBESGUE, Sur [’ intégration des
fonctions discontinues, Annales scientifiques de
IE.N.S. 3e série, tome 27 (1910), p. 361-450; p. 407.

Raisonnant de méme sur la densité 3 gauche, on voit finalement que
la densité d’un ensemble mesurable est égale & un en presque tous les
points de cel ensemble.

Theorem (Lebesgue Density Theorem, 1910)
Let E C [0,1] be measurable. For almost every z € [0, 1]:
if z € E, then E has density 1 at z.

Intuitively, this means that as we “zoom in” on z, more and
more of the neighbourhood of z is in E.



Classically (A) implies (B)

(A) Let f:]0,1] — R be non-decreasing.
Then the derivative f’(z) exists for almost every real z.

(B) Let E C [0,1] be measurable. For almost every z € [0, 1]:
if z € F, then E has density 1 at z.

» Recall that A\(C') denotes the Lebesgue measure of C' C R.

» The non-decreasing function x — A([0,z] N E) is
differentiable at almost every x. Its derivative is the density
at x.

» By the regularity of Lebesgue measure, it is sufficient to
prove (B) for closed sets E. For such a set it is easy to see
that the upper density is 1 at almost every x € E. Hence
the full density is 1 for a.e. x € F.



Functions of bounded variation

A function f: [a,b] — R is of bounded variation if

—supr (ti1) — ()] < oo,

the sup taken over all collections ¢; <ty < ... <t, in [a,b].

Examples/Non-examples

BV: non-decreasing functions,
Lipschitz functions,
z?sin(1/z) (and 0 at = = 0).

Not BV: zsin(1/z) .



How to obtain the result for BV functions from the
result for non-decreasing functions

Theorem (Lebesgue, 1904, together with Jordan, 1879)

Let f: [0,1] — R be of bounded variation. Then f’(r) exists for
each 7 outside a set of measure 0 (which depends on f).

To see this, use Jordan’s theorem
(Cours d’analyse de 1’Ecole Polytechnique, 1882-7):

Each function f of bounded variation is of the form gy — g; for
nondecreasing functions gg, g1 -

go(z) is the variation of f 0,01, and g1 = go — [



History of constructive approaches to the result (1)
Bishop (1967) gives constructive version of the result that a BV
function is differentiable at almost every real. (Foundations of
constructive analysis, Thm. 7 on page 239.)

Theorem 7 Let f be a function of bounded variation defined on o full
subset S of R that vanishes outside some finite interval. Let 0 < ty < t; <
te <+ ¢ <'tm be real numbers. Let o and B be real numbers, with
0 < a < . For arbitrary integers i and j with 0 < 4, j < m let B(i,5)
be a measurable set, with

f@+t) —f@) — i <fle+4) —fx) — B4 (z € BG,j)

Then for almost all z in X the mazimum integer N = p(x) such that there
exist tntegers 0 < 4, < j; < -+ - < 4y <jv <L mmwith
N .. No1 o
z & M Blixj) n M Bliz1,d)
k=1 E=1
18 well defined, the function p is integrable, and
Jodu < (B — o)tV
where V is any positive constant such that
k=1
E {f@u) — fl@) — a@iyr —a)} <V

i=1

whenever T, < z2 < -+ + < 3 are points of S.;_‘



History of constructive approaches to the result (2)

Demuth (1975) proves the following. Suppose that f is Markov
computable: from a computable name for z we can obtain a
computable name for f(z). Then f is pseudo-differentiable at
each ITy number (in classical language: at each Martin-Lof
random).

Also, outside a certain null set, for each AJ real z, f/(x) is A9
and can be computed from zx.

See Thm. 4.1 in “Demuth’s path to
randomness” by Kucera, N. and Porter,
BSL 2015, arxiv.org/abs/1404.4449



arxiv.org/abs/1404.4449

Demuth’s original 1975 result on BV functions

Teopemu 3. IlycTe ¥  ¢ysxumMa, KoTopus He MoXeT He ONTh
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2. A brief introduction to
algorithmic randomness

10100111000101111010101000010101101111011000010111101010
10010101100011111010110001100111111101100000111001111000
00110011011110100011110100011100101011011001011100010110

01100110001111000010011001011101100100101000001110001111
11100100011000101111110100010111110011011100100110011010
00111111011010101101001101010110000011000001001101011100




Idea in algorithmic randomness

» One defines a notion of algorithmic null set on [0, 1], or the
Cantor space 2",

» A real z (bit sequence Z € 2V) is random in a particular
sense if it avoids all null sets of this kind.

» There are only countably many null sets of this kind. So
almost every z is random in that sense.

Randomness notions relevant in this first part of the tutorial:

Martin-Lof random = computably random = Schnorr random.

These implications are proper.



Betting on a bit sequence

Computable betting strategies (martingales) are computable
functions M from binary strings to the non-negative reals.

» Let Z be a sequence of bits (often called “set”, i.e. subset
of N). When the player has seen the string o of the first n
bits of Z, she can make a bet ¢, where 0 < g < M (o), on
what the next bit Z(n) is.

» If she is right, she gets ¢. Otherwise she loses q. Thus, we
have

M(00) + M(ol) =2M (o)
for each string o.

» She wins on Z if M is unbounded along Z. (These Z form

an algorithmic null set.)



Computable randomness for bit sequences

2.3

A betting strategy M %
1
0.

satisfies the “fairness 1.5
condition” that the

average of the values of

the children is the value at 0

the node.

7

We call a sequence of bits 1

computably random if no

computable betting 0.8
strategy (martingale) has ! 0 '
unbounded capital along /
the sequence. 0.5

1
0.2



Martin-Lof’s 1966 randomness notion for reals

» A Martin-Lof test is an effective
sequence (U, )men of open sets in
[0, 1] such that the Lebesgue
measure of U, is at most 27 0
(Schnorr rd: =27™).

» Intuitively, U,, is an attempt to

—_

approximate a real z with

accuracy 27",

C C C C C
AN

» Z passes the test if

~

Z is not in all U,,.

» 7 is called Martin-Lof random if it
passes all ML-tests.



Randomness via effective Vitali covers

Let (Gy)jen be a computable sequence of rational open
intervals with |G| — 0.
The set of points Vitali covered by (Gi) oy is

V(Gk)peny = {2: 2 is in infinitely many Gy’s}.

Martin-Lof and Schnorr randomness also can be defined via
effective Vitali covers.

» Martin-Lof random: not in any set V(G) ey Where
>k |G| < 00. (See Solovay tests.)

» Schnorr random: not in any set V(Gy) .oy Where >, |G| is
a computable real.



ML- and Schnorr randomness via martingales

An infinite sequence Z of bits can be “identified” with the real
number z = 0.7 in [0, 1] via the binary expansion. So we
already have a definition of ML-randomness for bit sequences.

Equivalently we can use martingales. A martingale L is called
left-c.e. (or lower semicomputable) if L(o) is a left-c.e. real
uniformly in o.

7 is ML-random <> no left-c.e. martingale succeeds on Z.

A martingale L succeeds strongly on Z if there is an order
function (i.e. computable, unbounded, nondecreasing) h such
that 3°n L(Z [,) > h(n).

Z is Schnorr-random <
no computable martingale succeeds strongly on Z.



The implications are proper (1)

=
Martin-Léf random < computably random

A set C is called high if (" <t C".
Equivalently, C' computes a function that dominates each
computable function (Martin, 1966).

Theorem (N., Stephan, Terwijn, 2005)

Every high set C' Turing computes a set Z that is computably
random.

» Let (Lc),cy be a list of all partial computable martingales,

» Define Z so that the martingale L = )" 27°L,. is bounded
along Z.

» Use highness of C' to deal with partiality.

19/1



The implications are proper (2)

On the other hand, if a computably enumerable set C' is Turing
above a random, then C' is Turing equivalent to the halting
problem (/' by the “Arslanov Completeness Critierion”.

There is a high computably enumerable set C' <7 @
Therefore Martin-Lof random #= computably random
Another way to separate the ML and computable randomness:

use the (prefix-free) Kolmogorov complexity of the initial
segments.

For ML-random Z we have K(Z |,) + O(1) > n.

There is a computably random Y such that K(Y [,) = O(logn).



The implications are proper (3)

=
computably random ¢ Schnorr random.

» First proved by Yongge Wang.

» It is shown by a direct construction (see e.g. N’s book
“Computability and Randomness”, Ch. 7).

» N., Stephan, Terwijn, 2005 separate the two notions in
each high degree.

Note that any separation has to occur within the high degrees:

Theorem (N., Stephan, Terwijn, 2005)
If Z is not high and Schnorr random, then Z is ML-random.



3. Effective versions of almost everywhere
theorems

The Devil's Staircase



Effective almost everywhere theorems and randomness

The “almost everywhere” theorems didn’t tell us whether the
given object is well-behaved at a particular real.

Now consider the case where the given object is algorithmic in
some sense.

» How strong an algorithmic randomness notion for a real z
is needed to make the theorem hold at 27

» Will the theorem in fact characterize the randomness
notion?

Once this is settled, we can provide “concrete” examples of
reals at which the nice behaviour occurs. For instance,
Chaitin’s © is ML-random.



Continuing the story of effective a.e. theorems, after
Bishop (1967) and Demuth (1975)

Recall Birkhoff’s 1939 theorem:

Let (X, u,T) be a measure preserving system, and let
f: X — R is measurable. For u-almost every x, the limit as
N — oo of the averages of f o T"(x) over 0 <1i < N, exists.

» V’yugin, 1999 (TCS) shows that ML-randomness suffices for
the effective Birkhoff theorem. (Note that 7: C X — X
only needs to be defined p-a.e.)

» He uses Bishop, Thm. 6 on page 236, which is closely
related to his result on BV (Thm. 7).

» Hoyrup, Rojas, Galatolo 2010-13 develop effective ergodic
theory.



Schnorr randomness and Li-computability

Pathak (2009), Pathak, Rojas, and Simpson (2012) proved an
effective version of another of Lebesgue’s theorem (but taking
into account only the existence of limits, not the value).

z € [0,1]¢ is Schnorr random <
for every Li-computable function g: [0,1]% — R,

1
lim ——— / g exists.
r—0+ )\(BT(Z)) By(2)

Implication < also due to Freer, Kjos-Hanssen, N., Stephan.



Effective form of the first Lebesgue theorem

A function f: [a,b] — R is of bounded variation if

n—1

V(f) = sup Z |f(tig1) = f(E:)] < o0,

the sup taken over all collections t; <ty < ... <t, in [a,b].

Theorem (Brattka, Miller, N; to appear in TAMS)
Let f:[0,1] — R be non-decreasing and computable. Then

z is computably random = f'(2) exists.

» Under the weaker hypothesis that f has bounded variation,
1'(2) exists for each Martin-Lof random real z, but not
necessarily for each computably random.

(Demuth, 1975; Brattka, Miller,N. ta).

» Some depth here that doesn’t show in classical analysis.
Jordan decomposition f = gy — g1 for nondecreasing g; is
not effective!



Functions-to-tests

To prove the first result: If f is computable nondecreasing, we
(uniformly in f) build a computable martingale M such that

1'(2) fails to exist = M succeeds on z.

(I will give detail later when I do the polynomial time
computable case.)

Corollary
Each computable nondecreasing function f is differentiable at a
(uniformly obtained) computable real.

PROOF: Each computable martingale fails on some computable
real, which can be obtained uniformly.



Converses (tests-to-functions)

» Both the nondecreasing and the bounded variation cases
also have converses: if z is not random in the appropriate
sense, then some computable function of the respective
type fails to be differentiable at z (BMN, to appear).

» So one could take the differentiability properties for classes
of effective functions as definitions of randomness notions!

z is computably random <
each computable nondecreasing function is differentiable at z

z is Martin-Lof random <
each computable function of bd. variation differentiable at z.



A new proof of Demuth’s result

Here is the proof of Brattka/Miller/N. (TAMS, ta) of the result
of Demuth on BV function. We get a stronger form:

Let r be a Martin-L6f random real. Suppose f is uniformly
computable on the rationals, and f is of bounded variation.
Then f’(r) exists.

» By Jordan’s result,
f = hg — h; for some nondecreasing functions hg, hi.

» One can show that 7 is Martin-Lof random (hence
computably random) relative to some oracle set X encoding
such a pair hg, h1.

» By the previous theorem, relativized to X, the h; are both
differentiable at r. Thus f'(r) = h(r) — b (r) exists. O

29/1



The strength of the Jordan decomposition theorem

» Note that the pairs hg, hy with f = hg — h1 (not necessarily
continuous) can be seen as a I1Y class P.

» We obtain the decomposition because r is random in some
member of P (the “low for 7”7 basis theorem).

Results by Greenberg, N., Yokoyama, Slaman (see 2013 Logic
Blog and upcoming project report by Marcus Triplett) show:

» Jordan decomposition of any continuous BV f into
continuous functions hg, b1 is equivalent to ACA over RCA.

» Jordan decomposition of any continuous BV f into
nondecreasing functions hg, k1 is equivalent to WKL over RCA.



Randomness notions given by function classes (BMN ta)

Randomness notion

weakly 2-random

Martin-Lof random

computably random

Schnorr random

Class of functions

a.e. differentiable

.................. [—

bounded variation

AN

absolutely
continuous
monotonic I

monotonic &
Lipschitz

monotonic

monotonic &
Lipschitz

& computable
on rationals
OR
& com-
putable

& variation
computable



4. Polynomial time randomness and
differentiability



Special Cauchy names

» A Cauchy name is a sequence of rationals (p;);en such that
Vk > 1 ‘pi —pk| <274
» We represent a real x by a Cauchy name converging to z.

For feasible analysis, we use a compact set of Cauchy names:
the signed digit representation of a real. Such Cauchy names,
called special, have the form

A
bi = Z bk2_ka
k=0

where b, € {—1,0,1}. (Also, by = 0,b; = 1.)

So they are given by paths through {—1,0,1}*, something a
resource-bounded Turing machine can process.



Polynomial time computable functions

The following has been formulated in equivalent ways by
Ker-i-Ko (1989), Weihrauch (2000), Braverman (2008).

Definition

A function g¢: [0,1] — R is polynomial time computable if there
is a polynomial time TM turning every special Cauchy name for
x € [0, 1] into a special Cauchy name for g(x).

This means that the first n symbols of a special Cauchy name
for g(z) can be computed in time polynomially in n, thereby
using polynomially many symbols of the oracle tape that holds
a special Cauchy name for z.



Examples of polynomial time computable functions

» Functions such as e”,sin z are polynomial time computable.

» To see this one uses rapidly a converging approximation
sequence, such as e =" " /nl.

» As Braverman (2008) points out, e” is computable in time
O(n?).

» Namely, from O(n?) symbols of z we can in time O(n?)
compute an approximation of e” with error < 27",

» Better algorithms may exist (e.g. search the 1987 book J.
Borwein and P. Borwein, Pi and the AGM).

» Breutzman, Juedes and Lutz (MLQ, 2004) have given an
example of a polynomial time computable function that is
no-where differentiable. It is a variant of the Weierstrass
function ) 27" cos(5"mx).



Polynomial time randomness
Recall that a betting strategy, or martingale, is a function
M: 2<% — R{ such that
M(o0) + M(ol) =2M(o)
for each string o.

Definition

A betting strategy M : 2<% — R is called

polynomial time computable if from a string o and an 7 € N we
can, in time polynomial in || + 7, compute the i-th component
of a special Cauchy name for M (o).

In this case we can compute a polynomial time martingale in
base 2 dominating M (Schnorr / Figueira-N).
Definition

We say Z € 2N is polynomial time random if no polynomial
time betting strategy succeeds on Z.

36/1



Polynomial time randomness

Definition

We say Z € 2N is polynomial time random if no polynomial
time betting strategy succeeds on Z.

» This was first studied in Yongge Wang’s 1992 thesis
(Uni Heidelberg).

» Figueira, N 2013 showed that the notion is base invariant:
it is about reals rather than sequences of digits for a fixed
base (such as 2).

Proposition (Existence in super polynomial time classes)

Suppose the function ¢(n) is time constructible and dominates
all polynomials. There is polynomial random Z computable in
time O(t(n)) (i.e. the language consisting of the initial segments
of Z is O(t)-computable).



Lebesgue’s Thm (A) and its converse in the polytime
setting

Theorem (N., STACS 2014)

The following are equivalent for a real z € [0, 1].

(I) z (written in binary expansion) is polynomial time random

(IT) f'(2) exists, for each non-decreasing function f that is
polynomial time computable.

» The same method works for
primitive recursive randomness/functions, and even
computable randomness/computable functions.

» So this also yields new proof of Brattka/Miller/Nies.



Proof of the easy direction (II) — (I)

Suppose that f’(z) exists, for each non-decreasing function f
that is polynomial time computable. We want to show that z is
polynomial time random.

Let S,(o) denote the slope of a
non-decreasing function g at the
basic dyadic interval given by
string o. This is a betting
strategy.

Essentially, each betting
strategy M is of the form S, for
nondecreasing g. If M is
polynomial time then so is g.

Since ¢'(z) exists, M is bounded
along z.

39/1



Slopes and their limits

For a function f: C R — R, for a pair a, b of distinct reals let
fla) = f(b)

a—b
For f defined on the rationals, the lower and upper
(pseudo-)derivatives are

S¢(a,b) =

Df(x) =liminf {Sf(a,b) | a<ax <bA 0<b—a<h},
~ h—0+
Df(z) = limsup {S¢(a,b) | a <z <bA 0<b—a<h}.
h—0*t
where a, b range over rationals in [0, 1].
Example: f(x) = zsin(1/x).
Df(0) = -1,Df(0) =1.
For f defined in a nbhd of x and continuous at x,

f'(x) exists iff Df(z) = Df(z) < co.

10/1



Slopes at basic dyadic intervals

The subscript 2 indicates restriction to basic dyadic intervals
[c], where o is a string, containing z:

Do f(z) = limsup {Sf(o) | = € [0]}.

|o|—o00

Recall: if f is non-decreasing then M (o) = S¢(o) is a betting

strategy. We say that M converges on z if lim,, M(Z [,) exists.

We have the following basic connections:

» M succeeds on z < Dy f(2) = .

» M converges on z < Dof(z) = Daf(2) < 00



Proof of the harder direction (I) — (II)

Now suppose that z = 0.Z € [0,1] is polynomial time random.

We want to show that f’(z2) exists, for each non-decreasing
function f that is polynomial time computable.
» Consider the polynomial time computable betting strategy
M(o) = S¢(0o) .
» lim, M(Z|,) exists and is finite for each polynomially

random Z. This is an efficient version of Doob’s martingale
convergence theorem.

» Therefore Dyf(2) = Dof(2) < co.



Porosity

Assume for a contradiction that f/(z) fails to exist. We have

oscillation of slopes of f at arbitrarily small intervals around z.

We want success of a betting strategy at basic dyadic intervals
corresponding to prefixes of Z.

» First suppose that ng(z) <p< lN)f(z).

» Since Dy f(z) < p there is a string o* < Z such that
Vo|Z =0 >=o0"= St(o) <pl.

» Choose k with p(1+27%1) < Df(=2).
Let = denote the prefix relation of strings. The next lemma
says that [0*] — (J{(0): 0 = 0" A Sf(0) > p} is porous at z.
Lemma (High slopes at dyadic intervals)

There are arbitrarily large n such that S¢(7,) > p for some
basic dyadic interval [r,,] of length 2~"~* which is contained in
[z — 27712 2 4 27712,



We may suppose o* is the empty string, i.e., S¢(o) < p for all
dyadic intervals [o] containing z.

By the lemma, there are arbitrarily large n such that

S¢(7n) > p for some basic dyadic interval [r,] of length 27"~%
which is contained in [z — 2772 » 4 27" F2],

Good case: there are infinitely many n with n = Z [,,_4< 7.

Then the strategy that from such n on bets everything on the
strings of length n + k other than 7, gains a fixed factor

2F+4 /(2844 _ 1) on Z each time. Also, it never goes down on Z,
so it succeeds.

Bad case: for almost all n we have Z [,,_4A& 7.

This means 0.7, is on the left side of z. So the strategy can’t
use T, as it splits off from Z before 7 is read.



The shifting-by—1/3 trick

Fix m € N.
For k € 7Z consider an interval

I=[k27™ (k+1)27™].
For r» € Z consider an interval

J=1/34+[r27" (r+1)27"].

The distance between an endpoint of I and an endpoint of J is
at least 1/(3-2™).

To see this: assume that k27™ — (p2=™ + 1/3) < 1/(3-2™). This
yields (3k —3p —2™)/(3-2™) < 1/(3-2™), and hence 3]2™, a

contradiction.



Using this trick to finish the proof of (I) — (II)

We may assume that z > 1/2. In the “bad” case that
Z [n—a# Tn for almost all 7,,, we instead bet on the dyadic
expansion Y of z — 1/3.

» Given 1/ =Y [,,_4, look for an extension 7" = 1’ of length
n+ k+ 1, such that 1/3 + [7/] C [7] for a string [7] with
S¢(r) > p. (Then Y & [7'].)

» If it is found, bet everything on the other extensions of
of that length n + k + 1.

This strategy gains a fixed factor 22 /(285 — 1) on Y each
time n is as above. It never goes down on Y, so it succeeds.

So we get a polytime martingale that wins on z — 1/3. By
Figueira and N (2013), polytime randomness is base invariant,
so z — 1/3 is polynomially random. This yields a contradiction.
The case Df(z) < D2f(z) is analogous, using a “low dyadic
slopes” lemma instead.

16 /1



Shifted dyadic versus full differentiability

For a rational g let D, be the collection of intervals of the form
g+ k27" (k+1)27™]

where k € Z,m € N.

Question

Let f:[0,1] — R be continuous nondecreasing, and let
z € (0,1). Suppose that for each rational g,

li St(a,b
[a,b]€Dy, zél[le,b], b—a—0 f(a )

exists. Is f already differentiable at z?



5. Differentiability of Lipschitz functions



Computable randomness and Lipschitz functions

Recall that f is Lipschitz if |f(z) — f(y| < C(|x — y|) for some
CeN

Theorem (Freer, Kjos, N, Stephan, Computability, 2014)

A real z is computably random <—-
each computable Lipschitz function
f:[0,1] — R is differentiable at z.

= : Write f(z) = (f(z) + Cz) — Cz. Then f(x)+ Cx is
computable and non-decreasing.

From the monotone case (BMN), we obtain a test (martingale)
for this function. If f’(z) does not exists, then z fails this test.

<= : Turn success of a martingale on a real into oscillation of
the slopes, around the real, of a Lipschitz function.

19/1



Rademacher’s theorem

Theorem (Rademacher, 1920)

Let f :[0,1]™ — R be Lipschitz.
Then the derivative D f(z) (an element of R™)
exists for almost every vector z € [0, 1]™.

To define computable randomness of a vector z € [0, 1]":

» Take the binary expansion of the n components of z.

» We can bet on the corresponding sequence of blocks of n
bits.

Rute (2012) studies this notion, for instance invariance under
computable measure preserving operators.

50/1



Effective form of Rademacher

Theorem (Galicki and Turetsky, arxiv.org/abs/1410.8578)

z € [0,1]™ is computably random = every computable Lipschitz
function f : [0,1]" — R is differentiable at z.

For a vector v, the directional derivative D f (z;v) is the
derivative of the function ¢t — f(z + tv) at 0. The proof has
three steps:

» all partial derivatives exist at z

» all directional derivatives for computable directions exist

» Df(z;v) is linear on computable directions v
Since f is Lipschitz this show that f Gateaux-differentiable at
z: all directional derivatives exist, and the value is linear in the
direction.
Again since f is Lipschitz, this yields the full differentiability of
f at z. O


arxiv.org/abs/1410.8578

Other approaches to effective Lipschitz functions

The polynomial time case is open.

Question

Suppose z € [0,1]" is polynomially random. Is every polynomial
time Lipschitz function f : [0, 1]™ — R is differentiable at 2?7

» Abbas Edalat has developed an approach to
differentiability of effective Lipschitz functions using
domain theory. See his recent paper in TCS.

» It involves the Clarke gradient (a set-valued derivative) to
get around the measure 0 set where the function is not
classically differentiable.

o
o



6. Two more almost everywhere results:

Carleson-Hunt (1966/68) and Weyl (1916)



Carleson-Hunt Thm (suggested by Manfred Sauter)

Theorem (Carleson, 1966 for p = 2; improved by Hunt 1968)

Let f € LP[—7, x| be a periodic function. Then the Fourier
series cy(z) = X2, < f(n)e™* converges for almost every z.

Question

Suppose f is LP-computable for computable p > 1.
Which randomness property of z suffices to make the sequence
cn(z) converge?

» We say z is weakly 2-random if 2 is in no null 119 set. This
properly implies Martin-Lof randomness.

» As an easy consequence of Carleson-Hunt theorem, weak
2-randomness of z suffices. For fixed rationals o < 3, the
statement that, say, Re cy(z) oscillates between values < «
and > f is I139.



Effective Weyl Theorem

Theorem (Weyl, 1916)

Let (a;)ien be a sequence of distinct integers. Then for almost
every real z, the sequence a;z mod 1 is uniformly distributed in

[0, 1].

Suppose now (a;);en is computable. Avigad (2012) shows that

» Schnorr randomness of z suffices to make the conclusion of
Weyl’s theorem hold.

» There is a z satisfying the conclusion of the theorem which
is in some null effectively closed set (hence not even “Kurtz
random”).



7. Effective ergodic theory: multiple recurrence



Classical theory

A measurable operator T' on a probability space (X, B, ) is
measure preserving if uT~1(A) = pA for each A € B.

The following is Furstenberg’s multiple recurrence theorem (1977); see
Furstenberg’s book on recurrence, 2014 edition, Thm. 7.15.

Theorem

Let (X, B, 1) be a probability space. Let T1,...,T) be
commuting measure preserving operators on X.
For each P € B with uP > 0, there is n > 0 such that

(LT (P)) > 0.

With a little measure theory one can easily strengthen this to
an “almost-everywhere” type result:

ae. z€ P3n[ze ), T, "(P)].



k-recurrence in Cantor space

Let X = 2N with the shift operator S : X — X that takes the
first bit off a sequence.

Definition

Let P C 2 be measurable, and Z € 2. We say that Z is
k-recurrent in P if S*(Z), S?"(Z),...,S*(Z) € P for some
n>1,ie.

Z € Mi<i<k ST"(P).

Theorem (Downey, Nandakumar, N., in preparation)

Let P C 2% be a II{ class of positive measure.
Each Martin-Lof random Z is k-recurrent in P, for each k > 1.

Martin-Lof-randomness is necessary even for k = 1. If Z is not
ML-random, no “tail” S"(Z) is in the IIY class of positive measure

P={Y:WrKY]I,)>r—1}
by the Levin-Schnorr Theorem.



General Conjecture

It is likely that an effective multiple recurrence theorem holds in
full generality for ML-randomness and TI) sets.
Conjecture

Let (X, p) be a computable probability space. Let T1,...,T,, be
computable measure preserving transformation that commute
pairwise. Let P be a II{ class with uP > 0.

If Z € P is ML-random then In A\, 1"z € P.

» By the classical of Furstenberg, this holds for weakly 2-random
Z (i.e., in no null TI9 class).

» Jason Rute has pointed out that if 4P is computable, then
Schnorr randomness of Z is sufficient, also by the classical result.

A draft of this work is available on the 2015 Logic Blog.
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