A unifying approach to the Gamma question

Benoit Monin

André Nies

LICS 2015, Kyoto
Lowness paradigms

Given a set $A \subseteq \mathbb{N}$. How close is A to being computable?

Several paradigms have been suggested and studied.

- A has little power as a Turing oracle.
- Many oracles compute A.

A recent paradigm: A is coarsely computable.
This means there is a computable set R such that the asymptotic density of $\{n: A(n) = R(n)\}$ equals 1.

The γ-value of a set $A \subseteq \mathbb{N}$

A computable set R tries to approximate a complicated set A:

$$A : 100100100100 000101001001 010101111010 101010100111$$
$$R : \underline{00001011}0111 \underline{01010100}0101 010001011010 101010100111$$

$\approx 1/2$ correct

$\approx 2/3$ correct

$\approx 3/4$ correct

$\approx 4/5$ correct

Take sup of the asymptotic correctness over all computable R's:

$$\gamma(A) = \sup_{R \text{ computable}} \rho\{n : A(n) = R(n)\}$$

where $\rho(Z) = \lim \inf_n \frac{|Z \cap [0, n)|}{n}$.
Some examples of values $\gamma(A)$

Recall

$$\gamma(A) = \sup_{R \text{ computable}} \rho\{n: A(n) = R(n)\}$$

where $\rho(Z) = \liminf_n \frac{|Z \cap [0, n]|}{n}$.

Some possible values

- A computable $\Rightarrow \gamma(A) = 1$
- A random $\Rightarrow \gamma(A) = 1/2$.
Andrews, Cai, Diamondstone, Jockusch and Lempp (2013) looked at Turing degrees, rather than sets. They defined

$$\Gamma(A) = \inf\{\gamma(B) : B \text{ has the same Turing degree as } A\}.$$

A smaller Γ value means that A is further away from computable.

Example

An oracle A is called computably dominated if every function that A computes is below a computable function. They show:

- If A is random and computably dominated, then $\Gamma(A) = 1/2$.
- If A is not computably dominated then $\Gamma(A) = 0$.
Fact (Hirschfeldt et al., 2013)

If $\Gamma(A) > 1/2$ then A is computable (so that $\Gamma(A) = 1$).

Idea:

- Obtain B of the same Turing degree as A by “padding”:
 - “Stretch” the value $A(n)$ over the whole interval $I_n = [(n - 1)!, n!]$.
- Since $\gamma(B) > 1/2$ there is a computable R agreeing with B on more than half of the bits in almost every interval I_n.
- So for almost all n, the bit $A(n)$ equals the majority of values $R(k)$ where $k \in I_n$.
The Γ-question

Question (Γ-question, Andrews et al., 2013)

Is there a set $A \subseteq \mathbb{N}$ such that $0 < \Gamma(A) < 1/2$?
New examples towards answering the question

Recall: Γ-question, Andrews et al., 2013

Is there a set $A \subseteq \mathbb{N}$ such that $0 < \Gamma(A) < 1/2$?

Summary of previously known examples:

<table>
<thead>
<tr>
<th>$\Gamma(A)$</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma(A) = 0$</td>
<td>A non computably dominated or A PA</td>
</tr>
<tr>
<td>$\Gamma(A) = 1/2$</td>
<td>A low for Schnorr; A random & comp. dominated</td>
</tr>
<tr>
<td>$\Gamma(A) = 1$</td>
<td>A computable</td>
</tr>
</tbody>
</table>

- Towards answering the question, we obtain natural classes of oracles with Γ value $1/2$, and with Γ value 0.
- This yields new examples for both cases.
Weakly Schnorr engulfing

- We view oracles as infinite bit sequences, that is, elements of Cantor space $2^\mathbb{N}$.
- A Σ^0_1 set has the form $\bigcup_i [\sigma_i]$ for an effective sequence $\langle \sigma_i \rangle_{i \in \mathbb{N}}$ of strings. $[\sigma]$ denotes the sequences extending σ.
- A Schnorr test is an effective sequence $(S_m)_{m \in \mathbb{N}}$ of Σ^0_1 sets in $2^\mathbb{N}$ such that
 - each λS_m is a computable real uniformly in m
 - $\lambda S_m \leq 2^{-m}$. (λ is the usual uniform measure on $2^\mathbb{N}$.)
- Fact: $\bigcap_m S_m$ fails to contain all computable sets.

We can relativize these notions to an oracle A.

We say that A is weakly Schnorr engulfing if A computes a Schnorr test containing all the computable sets.

This highness property of oracles was introduced by Rupprecht (2010), in analogy with 1980s work in set theory (cardinal characteristics).
Examples of \(A \) such that \(\Gamma(A) \geq 1/2 \)

- The two known properties of \(A \) implying \(\Gamma(A) \geq 1/2 \) were:
 1. Computably dominated random, and
 2. low for Schnorr test:
 every \(A \)-Schnorr test is covered by a plain Schnorr test.

- Both properties imply non-weakly Schnorr engulfing.

- There is a non-weakly Schnorr engulfing set without any of these properties. (Kjos-Hanssen, Stephan and Terwijn, 2015).

So the following result yields new examples, answering Question 5.1 in Andrews et al.

Theorem

Let \(A \) be not weakly Schnorr engulfing. Then \(\Gamma(A) \geq 1/2 \).

Proof: Given \(B \leq_T A \) and rational \(\epsilon > 0 \), build an \(A \)-Schnorr test so that any set \(R \) passing it approximates \(B \) with asymptotic correctness \(\geq 1/2 - \epsilon \). This uses Chernoff bounds.
Characterization of w.S.e. via traces

An obvious question is whether conversely, $\Gamma(A) \geq 1/2$ implies that A is not weakly Schnorr engulfing. We characterised w.S.e. towards obtaining an answer. Again this is analogous to earlier work in cardinal characteristics.

Let $H : \mathbb{N} \mapsto \mathbb{N}$ be computable with $\sum 1/H(n)$ finite.

$\{T_n\}_{n \in \omega}$ is a small computable H-trace if

- T_n is a uniformly computable finite set
- $\sum_n |T_n|/H(n)$ is finite and computable.

Theorem

A is weakly Schnorr engulfing iff for some computable function H, there is an A-computable small H-trace capturing every computable function bounded by H.
Version of Γ in computational complexity

Fix an alphabet Σ. For $Z, A \subseteq \Sigma^*$ let

$$\rho(Z) = \liminf_n \frac{|Z \cap \Sigma^{\leq n}|}{|\Sigma^{\leq n}|}$$

$$\gamma_{\text{poly}}(A) = \sup_{R \text{ poly time computable}} \rho(\{w : A(w) = R(w)\})$$

$$\Gamma_{\text{poly}}(A) = \inf \{ \gamma_{\text{poly}}(B) : B \equiv_T^p A \}.$$

- The basic facts from computability used above need to be re-examined in the context of complexity theory.
- We only know at present that the values $\Gamma_{\text{poly}}(A)$ can be each of $0, \frac{1}{|\Sigma|}, 1$.
Examples of $\Gamma(A) = 0$: infinitely often equal

We know that $A \subseteq \mathbb{N}$ not computably dominated implies $\Gamma(A) = 0$.

- We say $g : \mathbb{N} \to \mathbb{N}$ is infinitely often equal (i.o.e.) if $\exists \infty n \ f(n) = g(n)$ for each computable function $f : \mathbb{N} \to \mathbb{N}$.
- We say that $A \subseteq \mathbb{N}$ is i.o.e. if A computes function g that is i.o.e.

Surprising fact: A is i.o.e. $\iff A$ not computably dominated.

\Rightarrow Suppose A computes a function g that equals infinitely often to every computable function. Then no computable function bounds g.

\Leftarrow Idea. Suppose A computes a function g that is dominated by no computable function. Then g is infinitely often above the halting time of any computable total function.
New Examples of $\Gamma(A) = 0$: weaken infinitely often equal

We know A not computably dominated implies $\Gamma(A) = 0$.

Recall

We say that A is infinitely often equal (i.o.e.) if A computes a function g such that $\exists^\infty n \ f(n) = g(n)$ for each computable function $f : \mathbb{N} \to \mathbb{N}$.

We can weaken this:

Let $H : \mathbb{N} \to \mathbb{N}$ be computable. We say that A is H-infinitely often equal if A computes a function g such that $\exists^\infty n \ f(n) = g(n)$ for each computable function f bounded by H.

This appears to get harder for A the faster H grows.
New example of $\Gamma(A) = 0$

Let $H : \mathbb{N} \to \mathbb{N}$ be computable. We say that $A \subseteq \mathbb{N}$ is H-infinitely often equal if A computes a function g such that $\exists^\infty n f(n) = g(n)$ for each computable function f bounded by H.

Theorem

Let A be $2^{(\alpha^n)}$-i.o.e. for some $\alpha > 1$. Then $\Gamma(A) = 0$.

Previously known examples of sets A with $\Gamma(A) = 0$:

- not computably dominated, and
- degree of a completion of Peano arithmetic (PA for short).

If A is in one of these classes, for any computable bound H, A can compute an H-i.o.e. function.

Given a computable $H \geq 2$, we can build an H-i.o.e. set A that is computably dominated, and not PA. So we have a new example of $\Gamma(A) = 0$ (using Rupprecht (2010)).
New example of $\Gamma(A) = 0$

(Recall: A is H-infinitely often equal if A computes a function g such that $\exists \infty nf(n) = g(n)$ for each computable function f bounded by H.)

Theorem

Let A be $2^{(\alpha^n)}$-i.o.e. for some computable $\alpha > 1$. Then $\Gamma(A) = 0$.

Proof sketch. First step: Let f be $2^{(\alpha^n)}$-i.o.e. Then for any $k \in \mathbb{N}$, f computes a function g that is $2^{(k^n)}$-i.o.e.

$$f(0) \ f(1) \ f(2) \ f(3) \ f(4) \ f(5) \ldots \text{ i.o.e. every comp. funct. } \leq 2^{(\alpha^n)}$$

$$\rightarrow f(0)f(2)f(4) \ldots \text{ i.o.e. every comp. funct. } \leq n \mapsto 2^{(\alpha^{2n})}$$

or

$$f(1)f(3)f(5) \ldots \text{ i.o.e. every comp. funct. } \leq n \mapsto 2^{(\alpha^{2n+1})}$$

Iterating this $\rightarrow f \geq_T g$ which i.o.e. every comp. funct. $\leq 2^{(k^n)}$
Proof sketch. Second step: \(g \) is \(2^{(k^n)} \)-i.o.e. implies \(g \geq_T Z \) with \(\Gamma(Z) \leq 1/k \).

\[
\begin{align*}
g(0) & \quad g(1) & \quad \ldots & \quad g(n) & \quad \ldots \\
= & \quad = & \quad \ldots & \quad = & \quad \ldots \\
Z : \quad \underbrace{\sigma_0} & \quad \underbrace{\sigma_1} & \quad \ldots & \quad \underbrace{\sigma_n} & \quad \ldots \\
|\sigma_0| = k^0 & \quad |\sigma_1| = k^1 & \quad & \quad |\sigma_n| = k^n
\end{align*}
\]

Computable \(R \):

\[
\begin{align*}
\tau_0 & \quad \tau_1 & \quad \ldots & \quad \tau_n & \quad \ldots \\
\downarrow & \quad (\text{bit flip}) & \quad & \quad & \quad \\
\overline{R} : \quad \overline{\tau_0} & \quad \overline{\tau_1} & \quad \ldots & \quad \overline{\tau_n} & \quad \ldots \\
= & \quad = & \quad = & \quad = \\
\end{align*}
\]

\(j \) equals \(g \) infinitely often. Then for infinitely many \(n \), \(\tau_n(i) \neq \sigma_n(i) \) everywhere. We have

\[
|\tau_n| \geq (k - 1) \sum_{i < n} |\tau_i|
\]

Then the \(\lim \inf \) of fraction of places where \(R \) agrees with \(Z \) is bounded by \(1/k \).
Infinitely often equal: hierarchy

It is interesting to study infinite often equality for its own sake.

Question

Let H be a computable bound. Can we always find $H' \gg H$ such that some f is H-i.o.e. but f computes no function that is H'-i.o.e.?

First step: What about H-i.o.e. for H constant?

- X computable \rightarrow X not 2-i.o.e. \rightarrow X not c-i.o.e. for $c \in \mathbb{N}$
- X not 2-i.o.e. \rightarrow X computable.
- X not 3-i.o.e. \rightarrow ?

\[
\begin{align*}
Z \in 2^\mathbb{N}: & \quad 0010101000100100101 \\
R \text{ computable}: & \quad 1101010111011011010 \\
\hline
Z \in 3^\mathbb{N}: & \quad 0210122002100102122 \\
R \text{ computable}: & \quad 1102010111011211210
\end{align*}
\]
Infinitely often equal: constant bound

For any \(c \in \mathbb{N} \), we can show \(X \) not \(c \text{-i.o.e.} \) \(\rightarrow X \) computable. Let \(c = 3 \).

For \(Z \in 2^\omega \), let \(\#_2^Z : \omega^2 \rightarrow \omega \) the function which on \(a, b \in \mathbb{N} \) returns \(|Z \cap \{a, b\}| \). Note that \(\#_2^Z \) can take three different values: \(0, 1 \) and \(2 \).

Theorem (Kummer)

Suppose \(Z \) is an oracle such that \(\#_3^Z \) is traceable via some trace \(\{T_n\}_{n \in \omega} \), where each \(T_n \) is c.e. uniformly in \(n \) and \(|T_n| \leq 3 \). Then \(Z \) is computable.

Example:

\[
\begin{align*}
Z &= 0 1 0 0 1 1 0 1 \cdots \\
\#_3^Z(2, 3) &\in \{0, 2\} \\
\#_3^Z(1, 4) &\in \{1, 2\} \\
\#_3^Z(3, 7) &\in \{0, 1\} \\
\end{align*}
\]
Infinitely often equal: implications

Known implications:

\[c \text{-i.o.e. for } c \geq 2 \leftarrow H(n)\text{-i.o.e with } H \text{ computable order function s.t. } \sum_n \frac{1}{H(n)} = \infty \]

\[\uparrow \uparrow \]

not computable \[H(n)\text{-i.o.e with } H \text{ computable order function s.t. } \sum_n \frac{1}{H(n)} < \infty \]

We don’t know that there is a proper hierarchy for functions \(H \) with \(\infty > \sum_n 1/H(n) \).
References

- These slides on Nies’ web page.