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André Nies (U of A) Computability and randomness LSE, 2015 1 / 1



A two-way interaction:

Randomness

interacts with

Computability
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Part 1: Studying randomness via computability

Main idea

Mathematical notions of randomness can be defined and studied using

algorithmic methods.

I In contrast to the setting of probability theory, it makes sense to

say that an individual object is random.

I There is no single “best” notion of algorithmic randomness.

Rather, randomness notions form a hierarchy.

I Randomness of a real z ∈ [0, 1] in a specific sense is equivalent to

differentiability at z of an appropriate kind of computable functions

f : [0, 1]→ R. Extensions to functions f defined on [0, 1]n.
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Part 2: Studying computational lowness via randomness

Intuitively speaking, an object (such as a real, a set of natural

numbers, or a function) is low if it is close to being computable.

Main idea

Lowness properties can be defined and studied via randomness.

For instance, in a sense to be specified,

being close to computable is equivalent to being far from random.
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Part I

Studying randomness via computability
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Basics of computability theory 1
A Turing machine in action looks like this:

finite 
control

...
tape

read-write head

1 0 0 11 1   

The finite control holds a Turing program.

A function F : N→ N is called computable if there is a Turing program

which, beginning with n in binary on the tape, ends with F (n) in

binary on the tape:

n // Turing program // F (n)
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Computable reals

In the definition of computable function, N can be replaced by domains

that are effectively encoded by natural numbers, such as the

rationals Q.

I A real r ∈ R is computable if there is a computable sequence

(qn)n∈N of rational numbers such that |r − qn| < 2−n−1 for each n.

I Examples of computable reals are
√

2, π, e, . . .
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Randomness via probability theory

Imagine we toss a fair coin repeatedly. This is modelled as follows.

I We have a sequence (Xn)n∈N of 0, 1-valued “random variables” on a

probability space (M,B, P ).

I The Xn are independent. We have P [Xn = 0] = 1/2 for each n.

I Each element w of the space determines a sequence of coin tosses,

where the n-th bit is Xn(w).

I To say that a property holds for a “random” sequence means that

the property holds with probability 1. Thus, the exceptions form a

null set. Random sequences are typical.

I An example of such a property is the law of large numbers: for a

random w, we have 1
n

∑
i<nXn(w)→ 1/2.
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The probability spaces

In the following, the probability space will be either

I Cantor space {0, 1}N with the product measure, where {0, 1} is

equipped with the measure such that both 0, 1 have probability

1/2, or

I the unit interval [0, 1] of reals, with Lebesgue measure.

Z ∈ {0, 1}N is an infinite sequence of bits. We identify Z with a subset

of N (and call Z a set).

The two spaces are equivalent (outside a co-countable set) via the

binary expansion of reals.
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Algorithmic randomness notions

The idea in algorithmic randomness

z is random ⇐⇒ z avoids each algorithmic null set.

I We have to specify what we mean by an algorithmic null set.

I For instance, having more than 3/4 zeros in arbitrarily long initial

segments will be an algorithmic null set in the sense of Martin-Löf.
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Algorithmic null sets in the sense of Martin-Löf (1966)

An open set U ⊆ [0, 1] is called computably enumerable if there is an

effective list I0, I1, . . . of open intervals with rational endpoints such

that U =
⋃
r Ir.

A sequence (Un)n∈N of open sets is called a Martin-Löf test if

the Un are computably

enumerable, where the listing

procedure has n as a

parameter, and

Un has measure at most 2−n

for each n.

0 1

...

U0
U1
U2
U3
U4
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Definition

We call
⋂
n Un an algorithmic null set in the sense of Martin-Löf.

A real r is Martin-Löf random if r 6∈
⋂
n Un for each ML-test (Un)n∈N.

No computable real r is ML-random:

if (qn)n∈N is a computable sequence of rational numbers such that

|r − qn| < 2−n−1 for each n, let

Un = (qn − 2−n−1, qn + 2−n−1).

Then (Un)n∈N is a ML-test such that r ∈
⋂
n Un.
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Functions of bounded variation...

A function f : [0, 1]→ R is of bounded variation if it doesn’t “wiggle”

too much:

V (f) = sup

n−1∑
i=1

|f(ti+1)− f(ti)| <∞,

where the sup is taken over all collections t1 ≤ t2 ≤ . . . ≤ tn in [0, 1].

Examples:

I nondecreasing functions,

I Lipschitz functions

I x2 sin(1/x)

On the other hand x sin(1/x) is not of bounded variation.
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... are differentiable outside a null set

A function f of bounded variation is differentiable at a “random” real:

Theorem (Lebesgue,1904, using Jordan, 1879)

Let f : [0, 1]→ R be of bounded variation. Then

f ′(r) exists for each r outside a null set (depending on f).
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Complexity of the exception set

Theorem (Demuth 1975/Brattka, Miller, Nies, TAMS, 2015)

Let z ∈ [0, 1]. Then

z is Martin-Löf random ⇐⇒
f ′(z) exists, for each function f of bounded variation such that

f(q) is a computable real, uniformly for each rational q.

I The implication “⇒” is an algorithmic version of the classical

theorem.

I For the implication “⇐”, one builds a computable function f of

bounded variation that is only differentiable at the Martin-Löf

random reals.

How about the smaller class of nondecreasing functions?
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Randomness via betting strategies

Computable betting strategies (also called martingales) are certain

computable functions M from binary strings to the non-negative reals.

I Let Z be a sequence of bits. When the player has seen the string σ

of the first n bits of Z, she can bet q on what the next bit Z(n) is.

Need 0 ≤ q ≤M(σ)

I If she is right, she gets q. Otherwise she loses q. Fairness means

that

M(σ0) +M(σ1) = 2M(σ)

for each string σ.

I She wins on Z if M is unbounded along Z. We call a set Z

computably random if no computable betting strategy wins on Z.

Martin-Löf random ⇒ computably random, but not conversely.
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Upper and lower derivatives

Let f : [0, 1]→ R. We define

Df(z) = lim sup
h→0

f(z + h)− f(z)

h

Df(z) = lim inf
h→0

f(z + h)− f(z)

h

Then

f ′(z) exists ⇐⇒ Df(z) equals Df(z) and is finite.
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Computable randomness and differentiability

Theorem (Brattka, Miller, Nies, TAMS, 2015)

Let r ∈ [0, 1]. Then

r (written in binary) is computably random ⇐⇒
g′(r) exists, for each nondecreasing function g

that is uniformly computable on the rationals.

I Classically, we cannot distinguish the exception sets for

nondecreasing functions from the more general exception sets for

functions of bounded variation.

I Algorithmic randomness provides a finer view: to ensure a

computable function of bounded variation is differentiable at z,

one needs the stronger notion of Martin-Löf randomness of z.
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Nondecreasing functions versus betting strategies

r computably random ⇒ g′(r) exists.

We prove the contraposition. In the simplest case, suppose that the

lower derivative Dg(r) equals +∞. Then the following computable

betting strategy M succeeds on r: for a binary string σ, M(σ) is the

slope of g between the points 0.σ and 0.σ + 2−|σ|.

This is clearly a betting

strategy:

the picture shows,

for instance, that

2M(1) = M(10) +M(11). Slope = M(10)

Sl
op

e 
= 

M
(11

)

Slo
pe

 = 
M(1)

0.10 0.11 1.0
g

1
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Polynomial time randomness

Definition

I A martingale M : 2<ω → R is called polynomial time if for a

string σ, one can compute n bits of the real M(σ) in time

polynomial in |σ|+ n.

I A real z is polynomial time random if no polynomial time

martingale succeeds on its binary expansion.

Such a real exists in all time classes properly containing P , such as

DTIME(nlogn).
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Polynomial time functions g : (0, 1)→ R

I A sequence of rationals (pi)i∈N is called a Cauchy name if

∀k > i |pi − pk| ≤ 2−i

I In the efficient setting, one uses a compact set of Cauchy names to

represent reals.

I A sequence (ai)i∈N, where ai ∈ {−1, 0, 1}, a0 = 0, a1 = 1,

determines the real
∑

i∈N ai2
−i ∈ (0, 1).

I A function g : (0, 1)→ R is called polynomial time if there is a

polynomial time oracle Turing machine turning every such Cauchy

name for x into a Cauchy name for g(x).

Functions such as ex, x2, sinx are polynomial time.
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Turning a martingale test into a function

For a martingale M , the corresponding measure µM is given by

µM ([σ]) = 2−|σ|M(σ).

I M has the savings property if M(σ) ≥M(τ)− 2 whenever σ � τ .

Such martingales are sufficient for computable and polynomial

time randomness.

I This implies M(σ) = O(|σ|), so M grows slowly.

I In particular, µM has no atoms.

Let gM (x) = µM [0, x) be the (nondecreasing) distribution function.

If M succeeds on z then DgM (z) =∞, so g′M (z) fails to exist.

If M is computable and has the savings property, then f is computable.

If M is in fact polynomial time, then gM is polynomial time (Figueira

and N, 2013).
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Characterising polynomial time randomness

via differentiability

Theorem (N., STACS 2014)

A real z is polynomial time random ⇐⇒
g′(z) exists for every nondecreasing polynomial time function g.

We can develop the theory of martingales with bases b other than 2,

and define polynomial time randomness in base b.

We get the same connections with nondecreasing functions.

Since the right hand side of the theorem is base invariant, we obtain

Corollary (Figueira-Nies)

Polynomial time randomness of a real is base invariant.
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Randomness and differentiability in higher dimensions

Theorem (Galicki, N., Turetsky, 2013)

z ∈ [0, 1]n is in no null effective Gδ class ⇐⇒
every a.e. differentiable computable f : [0, 1]n → R is differentiable at z.
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Rademacher’s theorem

Theorem (Rademacher, 1920)

Let f : [0, 1]n → R be Lipschitz.

Then the derivative Df(z) (an element of Rn)

exists for almost every vector z ∈ [0, 1]n.

To define computable randomness of a vector z ∈ [0, 1]n:

I Take the binary expansion of the n components of z.

I We can bet on the corresponding sequence of blocks of n bits.

Effective form of Rademacher’s Theorem:

Theorem (Galicki, Turetsky, 2014)

z ∈ [0, 1]n is computably random ⇒
every computable Lipschitz function f : [0, 1]n → R is differentiable

at z.
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Monotone functions

The converse fails by the effective form of a result of Dore and Maleva

(2011): for n ≥ 2 there is an effectively closed null class P ⊆ [0, 1]n

that contains a point of differentiability of every computable Lipschitz

function.

f : [0, 1]n → Rn is monotone if 〈x− y, f(x)− f(y)〉 ≥ 0 for each x, y.

Theorem (Galicki)

If z ∈ [0, 1]n is not computably random, then some computable

monotone function f : [0, 1]n → Rn is not differentiable at z.

This uses the theory of optimal transport (Monge, Kantorevich, recent

books by Villani).

Version for Lipschitz functions in progress.
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Part II

Studying computability via randomness
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Basics of computability theory 2

A function ψ : N→ N is partial computable if there is a Turing

program which, with n on the input tape, outputs ψ(n) if defined, and

loops forever otherwise.

n // Turing program // ψ(n) if ψ(n) is defined

n // Turing program if ψ(n) is undefined

We say that A ⊆ N is computably enumerable (c.e.) if A is the domain

of a partial computable function. Equivalently, one can effectively

enumerate the elements of A in some order.
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Basics of computability theory 3

(We)e∈N is an effective listing of all the computably enumerable sets.

The halting problem is a universal computably enumerable set:

H = {〈x, e〉 : x ∈We}.
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Basics of computability theory 4

For sets X,Y ⊆ N, we write

X ≤T Y

(X is Turing below Y ) if an “oracle” Turing machine can compute X

by asking queries to Y on its oracle tape.

finite 
control

...

...

oracle tape containing Y
(read only)

input / work  tape

0 1 0 00 1 1 0

1 0 0 11 1   

0
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Prefix-free machines

A partial computable function from binary strings to binary strings is

called prefix-free machine if its domain is an anti-chain under the prefix

relation of strings.

There is a universal prefix-free machine U: for every prefix-free

machine M ,

M(σ) = y implies U(τ) = y,

for a string τ that is only by a constant dM longer than σ.
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Descriptive string complexity K

I The prefix-free Kolmogorov complexity is the length of a shortest

U-description of y:

K(y) = min{|σ| : U(σ) = y}.

I One can show that 2−K(y) is proportional to

λ{X ∈ 2N : U(σ) = y for some initial segment σ of X},
where λ denotes product measure in Cantor space 2N. Informally,

this is the probability that U prints y. This only works with

prefix-free machines.
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The Schnorr/Levin 1973 Theorem

We think of a string τ as random if it is incompressible: K(τ) > |τ | − b
for some “small” constant b.

For an infinite sequence of bits Z, let

Z �n = Z(0) . . . Z(n− 1).

An infinite sequence of bits Z is Martin-Löf random iff each of its

initial segments is random as a string:

Theorem (Schnorr 1973; Levin 1973)

Z is ML-random ⇐⇒
there is b ∈ N such that ∀n [K(Z �n) > n− b].

Chaitin’s halting probability is ML-random:

Ω =
∑
{2−|σ| : U halts on input σ}.
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Definition of K-triviality

In the following, we identify a natural number n with its binary

representation (as a string). For a string τ , up to additive const we

have K(|τ |) ≤ K(τ), since we can compute |τ | from τ .

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some b ∈ N,

∀n [K(A�n) ≤ K(n) + b],

namely, all its initial segments have minimal K-complexity.

It is not hard to see that K(n) ≤ 2 log2 n+O(1).

Z is random ⇐⇒ ∀n [K(Z �n) > n −O(1)]

A is K-trivial ⇐⇒ ∀n [K(A�n) ≤ K(n) +O(1)]

Thus, being K-trivial means being far from random.
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Background on the K-trivials1

I Chaitin (1975) proved that for each constant b there are only O(2b)

K-trivials. From this he derived that each K-trivial set is Turing

below the halting problem H.

I Solovay (1976) built a non-computable K-trivial set.

I This was improved to a computably enumerable example by

Downey, Hirschfeldt, Nies, and Stephan (2002).

I They also showed that no K-trivial set is Turing equivalent to the

halting problem H.

1Trivium: an introductory curriculum at a medieval university involving the study

of grammar, rhetoric, and logic. Compare with Quadrivium.
André Nies (U of A) Computability and randomness LSE, 2015 35 / 1



Lowness for Martin-Löf randomness

The following specifies a sense in which a set A is computationally

weak when used as an oracle: it doesn’t derandomize sequences of bits.

Definition

A is low for Martin-Löf randomness if every ML-random set Z is

already ML-random with oracle A.

I This property was introduced by Zambella (1990).

I Kučera and Terwijn (1999) built a c.e. non-computable set of this

kind.

I In contrast,

Low for computably random ⇒ computable (Nies, 2005).

André Nies (U of A) Computability and randomness LSE, 2015 36 / 1



Far from random = close to computable

I An oracle A ⊆ N is low for Martin-Löf randomness if every random

set is already random with oracle A.

I That is, A cannot “derandomize” any random set.

I This means that A is very close to computable.

The following says that far from random = close to computable.

Theorem (Advances in Mathematics, 2005)

Let A ⊆ N. Then

A is K-trivial ⇐⇒ A is low for Martin-Löf randomness.
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Lowness paradigms

Paradigms for computational lowness of a set A:

I Inertness: A can be computably approximated with a finite total of

changes (in the sense of cost functions). This is true for the

K-trivials

I Oracle weakness: A is not very useful as an oracle (e.g., lowness for

Martin-Löf randomness).

I It is easy for oracles to compute A. In some sense, “many oracles”

compute A.
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An instance of the “easy-to-compute” paradigm

A is ML-coverable (Hirschfeldt, Nies, Stephan 2004) if A ≤T Y for

some ML-random Y that is not above the halting problem.

I For c.e. sets A, ML-coverable ⇒ K-trivial (ibd.).

I Frank Stephan 2004 asked whether the converse implication holds.

This became a main open question in the area, known as the

covering problem.

I It defines K-triviality of c.e. sets directly from ML-randomness

and Turing reducibility.
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Recent solution of the covering problem (1)

Let P be a subset of Cantor space {0, 1}N. The notion of lower density

of P at a point Y goes back to Lebesgue:

ρ(P | Y ) = inf
m
λ(P ∩ [Y �m])/2−m.

I This quantity between 0 and 1 tells us “how much” of P is close to

the point Y as we zoom in on Y .

I The Lebesgue density theorem says that at almost every point

Y ∈ P, the lower density of P is 1.
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Recent solution of the covering problem (2)

Theorem [Bienvenu, Greenberg, Kučera, N. Turetsky, J. European Math.

Soc, in press]

Suppose some effectively closed (i.e., Π0
1) class P ⊆ {0, 1}N has lower

density < 1 at some ML-random set Y ∈ P.

Then Y is Turing above each K-trivial set.

Theorem [Day and Miller, Math. Research Letters, in press]

There is an effectively closed class P and a ML-random set Y ∈ P
strictly Turing below the halting problem such that P has lower density

< 1 at Y .

I Thus, there is a single Turing incomplete ML-random ∆0
2 set Y

above all the K-trivials!

I BGKNT also showed that this Y must be close to the halting

problem.
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Summary

I Randomness can be studied via computability.

I Algorithmic methods lead to a hierarchy of randomness notions for

infinite sequences of bist.

I Martin-Löf randomness and computable randomness of reals can be

characterized through differentiability of computable functions on

the unit interval. In higher dimensions interesting new phenomena.

I Lowness can be studied via randomness.

I Far from random = close to computable.

I Randomness leads to three lowness paradigms: oracle-weakness,

inertness, and being easy to compute. Notions introduced via

different paradigms often coincide.

I Covering problem recently solved using the analytic notion of

density.
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