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Plan

I Algorithmic randomness connects to ergodic theory via an

effective study of “almost-everywhere” statements, such as

Birkhoff’s 1939 theorem:

Let (X,µ, T ) be a measure preserving system, and let f : X → R is

measurable. For µ-almost every x, the limit as N →∞ of the

averages of f ◦ T i(x) over 0 ≤ i < N , exists.

I We address these connections for the multiple recurrence

theorem due to Furstenberg (J. Analyse Math., 1977). So far we

only do this in the rather special case of shifts on Cantor space.
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Some important papers connecting

algorithmic randomness with ergodic theory

I V’yugin, TCS, 1999.

Shows that ML-randomness suffices for the effective Birkhoff

theorem. (Note that T : ⊆ X → X only needs to be defined

µ-a.e.)

I Franklin and Towsner, Moscow Math. J, recent.

Sharpness of V’yugin’s result.

I Gacs, Hoyrup, Rojas, 2009; Galatolo, Hoyrup, Rojas, 2011.

General theory of computable probability spaces and

computable measure preserving systems; Kolmogorov-Sinai

entropy, etc.
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Multiple recurrence

André Nies Multiple recurrence and algorithmic randomness CCR 2015 4 / 14



Classical theory
A measurable operator T on a probability space (X,B, µ) is

measure preserving if µT−1(A) = µA for each A ∈ B.

The following is Furstenberg’s multiple recurrence theorem (1977); see

Furstenberg’s book on recurrence, 2014 edition, Thm. 7.15.

Theorem
Let (X,B, µ) be a probability space. Let T1, . . . , Tk be commuting

measure preserving operators on X. For each P ∈ B with µP > 0,

there is n > 0 such that µ(
⋂

i T
−n
i (P )) > 0.

I In fact, he proves 0 < lim infN
1
N

∑N
n=1 µ(

⋂
i T
−n
i (P )).

I One can also strengthen to: a.e. z ∈ P ∃n [z ∈
⋂

i T
−n
i (P )] .
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Kurtz ⇒ k-recurrence in clopen P
In the following we work with X = {0, 1}N, and the shift operator

S : X → X that takes the first bit off a sequence.

Definition
Let P ⊆ {0, 1}N be measurable, and Z ∈ {0, 1}N. We say that Z is

k-recurrent in P if Sn(Z), S2n(Z), . . . , Skn(Z) ∈ P for some n ≥ 1,

i.e.

Z ∈
⋂

1≤i≤k S
−ni(P ).

Proposition

Let P ⊆ {0, 1}N be clopen, P 6= ∅.
Each Kurtz random Z is k-recurrent in P, for each k ≥ 1.
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Proposition (again)

Let P ⊆ {0, 1}N be clopen, P 6= ∅. Let Z be Kurtz random and

k ≥ 1.

There is n ≥ 1 such that Z ∈
⋂

1≤i≤k S
−ni(P ).

Suppose there is no such n. We define a null Π0
1 class Q containing Z.

I Let n0 be least such that P = [F ]≺ for some set F of strings of

length n0.

I Let nt = n0(k + 1)t for t ≥ 1.

I Let Q = {Y : ∀t [Y 6∈
⋂

1≤i≤k S
−int(P)]}. Then Z ∈ Q.

By definition of n0, the classes in the same intersection are independent,

so we have for each t

λ({0, 1}N −
⋂

1≤i≤k S
−int(P)) = 1− (λP)k < 1.

The Π0
1 class Q is the intersection of independent such classes ranging

over all t. Therefore Q is null.André Nies Multiple recurrence and algorithmic randomness CCR 2015 7 / 14



Schnorr ⇒ k-recurrence in

Π0
1 classes with positive computable measure

Theorem
Let P ⊆ {0, 1}N be a Π0

1 class with 0 < p = λP a computable real.

Each Schnorr random Z is k-recurrent in P, for each k ≥ 1.

This extends the previous argument. For each v we have an error

set Gv ⊆ {0, 1}N. We make the sequence 〈nt〉 grow much faster

than before:

Let n0 = 1. Let n = nt ≥ (k + 1)nt−1 be so large that

λ(Pn − P) ≤ 2−t−v−k.

Define Gv so that 〈Gv〉v∈N is a Schnorr test. If Z 6∈ Gv for some v,

we can apply the independence argument used for Kurtz
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ML randomness ⇒ k-recurrence in Π0
1 classes

Theorem
Let P ⊆ {0, 1}N be a Π0

1 class with 0 < λP.
Each Martin-Löf random Z is k-recurrent in P, for each k ≥ 1.

Fix k. First we prove the assertion under the additional

assumption that P is large: 1− 1/k < λP .

For a string η and u ≤ |η|, we write Su(η) for the string η with the

first u bits removed.
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Each Martin-Löf random Z is k-recurrent in P
Let B ⊆ 2<ω be a prefix-free c.e. set such that [B]≺ = {0, 1}N −P .

We define a uniformly c.e. sequence 〈Cr〉 of prefix free sets.

Let C0 = {∅}.
Suppose r > 0 and σ is enumerated into Cr−1 at stage s (so

|σ| = s).

Stage t > (k + 1)s: look for η � σ a minimal string of length t such

that Ssi(η) ∈ Bt for some i ≤ k. Put η into Cr at stage t.

Let q = kλ[B]≺. Then q < 1 by hypothesis.

The local measure above σ of the η’s we put into Cr is at most q.

Inductively this implies:

For each r ≥ 0 we have λ[Cr]≺ ≤ qr.

If Z is not k-recurrent for P then Z ∈
⋂

r[C
r]≺, so not ML-random.
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General case

Theorem (again)

Let P ⊆ {0, 1}N be a Π0
1 class with 0 < p = λP.

Each Martin-Löf random Z is k-recurrent in P, for each k ≥ 1.

I If 1− 1/k ≥ λP (i.e., 1/k ≤ λ[B]≺ where [B]≺ is the

complement of P), then λ[Cr]≺ could easily be 1.

I To remedy this, we choose a finite set D ⊆ B such that the set

B̃ = B −D satisfies 1/k > λ[B̃]≺.

I We modify the argument for the Kurtz case, using the

complement of [D]≺ as the clopen set (called P there).

I If Z passes a ML-test corresponding to the Kurtz test before,

then the previous argument works with B̃.
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Recurrence for k shift operators

I The space is X = {0, 1}Nk

I For 1 ≤ i ≤ k, the operator Ti : X → X takes a row of bits off

in direction i.

I Z is recurrent in a class P ⊆ X if ∃n∀i [Z ∈ T−ni (P ))].

We can modify the methods above to show:

Theorem
Let P ⊆ X be a Π0

1 class with 0 < λP. Let Z ∈ X .
(a) Kurtz (b) Schnorr (c) ML-randomness of Z

implies that Z is recurrent in P if

(a) P is clopen (b) λP is computable (c) for any P.
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Recurrence for compact systems

An example of a computable compact system is rotation of Sd of

the unit circle C by 2πd, for a computable irrational d. (This is

ergodic and not weakly mixing.)

Question
Does multiple recurrence for powers of Sd hold for ML-random

z ∈ C and Π0
1 classes of positive measure?

This would mean: for each Π0
1 class P ⊆ C of positive measure,

for each k,

for a.e. z there is n such that Sdin(z) ∈ P for 1 ≤ i ≤ k.

Does it hold for computable compact systems in general?
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General Conjecture
It is likely that an effective multiple recurrence theorem holds in

full generality. If the system is not ergodic, as in the classic case,

we have to require that z ∈ P .

Conjecture

Let (X,µ) be a computable probability space. Let T1, . . . , Tn be

computable measure preserving transformation that commute

pairwise. Let P be a Π0
1 class with µP > 0.

If z ∈ P is ML-random then ∃n
∧

i T
n
i z ∈ P .

By the classic result this holds for weakly 2-random z. To get there for

ML-random z, climb the Furstenberg-Zimmer tower? Jason Rute has

pointed out that if µP is computable, then Schnorr randomness of z is

sufficient.

A draft of this work is available on the 2015 Logic Blog.
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