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Lebesgue’s measure

» In 1904 Lebesgue introduced his
measure on the real line R.

» It assigns a size to (all reasonable)
subsets of R.

» One can now say that a property
holds for almost every real z: the
set of exceptions has measure 0.



Differentiability

Differentiability of a function f at a real z means that the rate of
change (“velocity”) at z is defined:
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In contrast:

Theorem (Lebesgue, 1904)
Let f:[0,1] — R be non-decreasing.

Then the deriwative f'(z) exists for almost every real z.




The plan

Theorem (Recall)

Let f :]0,1] — R be non-decreasing.
Then the deriative f'(z) exists for almost every real z.

We study effective forms of Lebesgue’s result.

» We assume that the non-decreasing function f will be computable
in some sense.

» Then the exception set will consist of reals that fail an
appropriate test for randomness. (Such exception sets have
Lebesgue measure 0.)



Computable randomness

Can one bet on bits of this sequence to make an unbounded profit?

10100111000101111010101000010101101111011000010111101010
10010101100011111010110001100111111101100000111001111000
00110011011110100011110100011100101011011001011100010110
01100110001111000010011001011101100100101000001110001111
11100100011000101111110100010111110011011100100110011010
00111111011010101101001101010110000011000001001101011100
01001001001011010001010000110100010100011100001100000100
11000111110111001000011001011010100111101111010101111111

00000001010011110010000000011011001010011010101101000010 ...



A betting strategy M 1.5

satisfies the “fairness
condition” that the average 1
of the values of the children 0 0.7

is the value at the node.

We call a sequence of bits 1
computably random if no

computable betting strategy
(martingale) has unbounded

capital along the sequence. /




Computable randomness and differentiability

Brattka, Miller and N (2011) proved an effective version of Lebesgue’s
theorem.

We say that function f is uniformly computable on the rationals if
f(q) is a computable real, uniformly in a rational g € [0, 1].

Theorem (Brattka, Miller, Nies, 2011)

Let z € [0,1]. Then

z (in binary) is computably random <=
f'(2) exists, for each non-decreasing function f
that is uniformly computable on the rationals.

Note that in this effective setting, we have the converse “«<” as well.
The theorem also works for the slightly stronger computability
condition on f used in effective analysis.



First main theorem of the paper

For polynomial time computable non-decreasing functions, we obtain
an analog of the Brattka, Miller, N 2011 result.

Theorem

z € [0, 1] is polynomial time random <=
f'(z) exists, for each non-decreasing function f
that is polynomial time computable.




Second main theorem of the paper

Similar methods work for a class of non-decreasing functions larger
than computable.

> A real z is called left-c.e. if the left cut {g € Q: ¢ < z} is
computably enumerable.

» A non-decreasing function f is interval c.e. if f(0) = 0, and for
any rational ¢ > p, f(q) — f(p) is a uniformly left-c.e. real.

Theorem

Every uniformly left-c.e. betting strategy converges along z € [0, 1]
<= f/(z) exists for each interval-c.e. function f

The first condition is equivalent to:

z is Martin-Lof-random and every effectively closed set C 5 z has
Lebesgue density 1 at z. (Miller et al., 2012). J




Polynomial time computable functions

We represent a real z by an infinite string bg, by, ... over {—1,0,1}:
o0
z = Z bk27k.
k=0
The string bg, by, . .. is called a special Cauchy name for z.

The following has been formulated in equivalent forms by Ker-i-Ko
(1989), Weihrauch (2000), Braverman (2008), and others.

Definition

A function g: [0,1] — R is polynomial time computable if there is a
polynomial time TM turning every special Cauchy name for z € [0, 1]
into a special Cauchy name for g(z).

This means that the first n symbols of g(x) can be computed in time
poly(n), thereby using polynomially many symbols of the oracle tape
holding z.
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Examples of polynomial time computable functions

» Functions such as e*,sinz are polynomial time computable.

To see this one uses rapidly converging approximation sequences, such
as e” =3 a"/nl. As Braverman points out, e” is computable in time
O(n?). Namely, from O(n®) symbols of  we can in time O(n?)
compute an approximation of e* with error < 27",

» Breutzman, Juedes and Lutz (2001) give an example of a
polynomial time computable function that is nowhere
differentiable.



Polynomial time randomness

A betting strategy M: 2<“ — R is called polynomial time computable
if from string o and ¢ € N we can in time polynomial in |o| 4 @
compute the i-th component of a special Cauchy name for M (o).

Definition

We say Z is polynomial time random if no polynomial time betting
strategy succeeds on Z.

This was studied in Yongge Wang’s 1992 thesis, and more recently in
Figueira, N 2013. There we showed that the notion is base invariant,
and thus is about reals rather than bit sequences.

Theorem
The following are equivalent.
(I) z €]0,1] is polynomial time random

(IT) f'(z) exists, for each non-decreasing function f that is
polynomial time computable.




Proof of the easy direction (II) — (I)

Theorem
The following are equivalent.
(I) z €]0,1] is polynomial time random

(IT) f'(z) exists, for each non-decreasing function f that is
polynomial time computable.

Let Sy(0) denote the slope of a
non-decreasing function g at the
dyadic interval given by

string . This is a betting
strategy.

Essentially each betting strategy
M is of the form S,. If M is
polynomial time then so is g.
Since ¢'(z) exists, M is bounded g
along z.
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Slopes and their limits
For a function f: R — R, for a pair a, b of distinct reals let

fla) = f(b)
a—b

The lower and upper (pseudo-)derivatives are

S¢(a,b) =

Df(z) =liminf {Sy(a,b) | a <z <b A 0<b—a<h},
~ h—0+

Df(z) = limsup {Sf(a,b) | a <z <bA 0<b—a<h}.
h—0+
where a, b range over rationals in [0, 1].
The subscript 2 indicate restriction to basic dyadic intervals [o]
containing z:
D, f(z) = limsup {St(o) | = € [o]}.
|o|—o00
Recall: if f is non-decreasing then M (o) = Sy(o) is a betting
strategy. We have basic connections:
» M succeeds on z < Dy f(z) = 0.
» M converges on z < Daf(z) = Daf(z) < 00
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Proof of the hard direction (I) — (II)
Theorem (Recall)

The following are equivalent.
(I) z €]0,1] is polynomial time random

(IT) f'(z) exists, for each non-decreasing function f that is
polynomial time computable.

Main problem in proving the hard direction: to get from slope
oscillation at arbitrary intervals around z to success of a betting
strategy at dyadic intervals corresponding to prefixes of z’s binary
expansion.

» Consider the polynomial time computable betting strategy
M(o) = Sy(o) .

» lim, M(Z[,) exists and is finite for each polynomially random Z.

This is an effective version of Doob’s martingale convergence
theorem.

» Returning to the language of slopes, the convergence of M on Z
means that Do f(2) = Do f(2) < 0.



(I) — (II): High dyadic slopes lemma

We say that a set C C R is porous at z via the porosity factor € > 0 if
there exists arbitrarily small 8 > 0 such that (z — 8,z + ) contains
an open interval of length 3 that is disjoint from C.

» Assume for a contradiction that f’(z) fails to exist. First suppose
that

Daf(z) <p < Df(2).

» Since Dy f(z) < p there is a string o* < Z such that
Vo |Z =0 »=oc*= Si(o) <pl.

» Choose k with p(1 +27%1) < Df(2).

Lemma (High dyadic slopes)
The closed set

C=[o"]— U{(o): ox=oc" AN Sf(o) > p}

contains z, but is porous at z via the factor € = 27%=2.




(I) — (II): lucky and unlucky cases

Recall we are assuming that for a rational p
Dy f(2) < p and p(1 4 27%1) < Df(z).

We may suppose Sy(o) < p for all dyadic intervals [o] containing z.

By the “high dyadic slopes” lemma, there exists arbitrarily large n
such that some basic dyadic interval [1,,] of length 27" ~F has slope
> p and is contained in [z — 272 2 4 27" F2],

Let 0.Z = z where Z is a sequence of bits.

=< denotes the prefix relation of strings.

Lucky case: there are infinitely many n with n = Z[,,_4< 7,. Then
the strategy that from such 7 on bets everything on the strings of
length n + k other than 7,, gains a fixed factor 2¥+4/(25+4 — 1) each
time.

Unlucky case: for almost all n we have Z [,,_4A& 7.
This means 0.7, is on the left side of z, so the strategy can’t use it as
it splits off from Z before 7 is read.




(I) — (II): 1/3- shifting trick

Fix m € N. Consider an interval
I=[k27" (E+1)27™]
where k € Z. Consider an interval
J=1/3+[r27™, (r+1)27™
where r € Z.

The distance between an endpoint of I and an endpoint of J is at
least 1/(3-2™). J
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(I) — (II): Using this trick to finish the proof

We may assume that z > 1/2. In the “unlucky” case that Z[,_4#& 7,
for almost all 7,,, we instead bet on the dyadic expansion Y of z — 1/3.

» Given ' =Y |,_4, where n is as above, look for an extension
7/ > n' of length n + k + 1, such that 1/3 4 [7'] C [7] for a string
[7] with Sy(7) > p.

» If it is found, bet everything on the other extensions of 1 of that
length.

This strategy gains a fixed factor 282 /(2k+5 — 1) each time.
So we get a polytime martingale that wins on z — 1/3. By Figueira
and N (2013), polytime randomness is base invariant, so z — 1/3 is

polynomially random. So this gives a contradiction.

The case Df(z) < D2f(z) is analogous, using a “low dyadic slopes”
lemma instead.
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Further directions

Rademacher’s theorem states that a Lipschitz function f on R™ is
differentiable at almost every vector.

Question

Let the Lipschitz function f be polytime computable and z be a
polynomial time random vector. Does f’(z) exist?

Also, study Lebesgue density in feasible analysis.
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