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Lebesgue’s measure

I In 1904 Lebesgue introduced his
measure on the real line R.

I It assigns a size to (all reasonable)
subsets of R.

I One can now say that a property
holds for almost every real z: the
set of exceptions has measure 0.
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Differentiability
Differentiability of a function f at a real z means that the rate of
change (“velocity”) at z is defined:

f ′(z) = lim
h→0

f(z + h)− f(h)

h
.

Weierstrass proved in
1872 that some
continuous function is
nowhere differentiable.

In contrast:

Theorem (Lebesgue, 1904)

Let f : [0, 1]→ R be non-decreasing.
Then the derivative f ′(z) exists for almost every real z.

3/20



The plan

Theorem (Recall)

Let f : [0, 1]→ R be non-decreasing.
Then the derivative f ′(z) exists for almost every real z.

We study effective forms of Lebesgue’s result.

I We assume that the non-decreasing function f will be computable
in some sense.

I Then the exception set will consist of reals that fail an
appropriate test for randomness. (Such exception sets have
Lebesgue measure 0.)
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Computable randomness

Can one bet on bits of this sequence to make an unbounded profit?

10100111000101111010101000010101101111011000010111101010

10010101100011111010110001100111111101100000111001111000

00110011011110100011110100011100101011011001011100010110

01100110001111000010011001011101100100101000001110001111

11100100011000101111110100010111110011011100100110011010

00111111011010101101001101010110000011000001001101011100

01001001001011010001010000110100010100011100001100000100

11000111110111001000011001011010100111101111010101111111

00000001010011110010000000011011001010011010101101000010 . . .
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A betting strategy M
satisfies the “fairness
condition” that the average
of the values of the children
is the value at the node.

We call a sequence of bits
computably random if no
computable betting strategy
(martingale) has unbounded
capital along the sequence.
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Computable randomness and differentiability

Brattka, Miller and N (2011) proved an effective version of Lebesgue’s
theorem.

We say that function f is uniformly computable on the rationals if
f(q) is a computable real, uniformly in a rational q ∈ [0, 1].

Theorem (Brattka, Miller, Nies, 2011)

Let z ∈ [0, 1]. Then
z (in binary) is computably random ⇐⇒

f ′(z) exists, for each non-decreasing function f
that is uniformly computable on the rationals.

Note that in this effective setting, we have the converse “⇐” as well.
The theorem also works for the slightly stronger computability
condition on f used in effective analysis.
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First main theorem of the paper

For polynomial time computable non-decreasing functions, we obtain
an analog of the Brattka, Miller, N 2011 result.

Theorem

z ∈ [0, 1] is polynomial time random ⇐⇒
f ′(z) exists, for each non-decreasing function f

that is polynomial time computable.
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Second main theorem of the paper

Similar methods work for a class of non-decreasing functions larger
than computable.

I A real z is called left-c.e. if the left cut {q ∈ Q : q < z} is
computably enumerable.

I A non-decreasing function f is interval c.e. if f(0) = 0, and for
any rational q > p, f(q)− f(p) is a uniformly left-c.e. real.

Theorem

Every uniformly left-c.e. betting strategy converges along z ∈ [0, 1]
⇐⇒ f ′(z) exists for each interval-c.e. function f

The first condition is equivalent to:

z is Martin-Löf-random and every effectively closed set C 3 z has
Lebesgue density 1 at z. (Miller et al., 2012).
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Polynomial time computable functions

We represent a real z by an infinite string b0, b1, . . . over {−1, 0, 1}:

z =

∞∑
k=0

bk2−k.

The string b0, b1, . . . is called a special Cauchy name for z.

The following has been formulated in equivalent forms by Ker-i-Ko
(1989), Weihrauch (2000), Braverman (2008), and others.

Definition

A function g : [0, 1]→ R is polynomial time computable if there is a
polynomial time TM turning every special Cauchy name for x ∈ [0, 1]
into a special Cauchy name for g(x).

This means that the first n symbols of g(x) can be computed in time
poly(n), thereby using polynomially many symbols of the oracle tape
holding x.
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Examples of polynomial time computable functions

I Functions such as ex, sinx are polynomial time computable.

To see this one uses rapidly converging approximation sequences, such

as ex =
∑

n xn/n!. As Braverman points out, ex is computable in time

O(n3). Namely, from O(n3) symbols of x we can in time O(n3)

compute an approximation of ex with error ≤ 2−n.

I Breutzman, Juedes and Lutz (2001) give an example of a
polynomial time computable function that is nowhere
differentiable.
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Polynomial time randomness

A betting strategy M : 2<ω → R is called polynomial time computable
if from string σ and i ∈ N we can in time polynomial in |σ|+ i
compute the i-th component of a special Cauchy name for M(σ).

Definition

We say Z is polynomial time random if no polynomial time betting
strategy succeeds on Z.

This was studied in Yongge Wang’s 1992 thesis, and more recently in
Figueira, N 2013. There we showed that the notion is base invariant,
and thus is about reals rather than bit sequences.

Theorem

The following are equivalent.

(I) z ∈ [0, 1] is polynomial time random

(II) f ′(z) exists, for each non-decreasing function f that is
polynomial time computable.
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Proof of the easy direction (II) → (I)

Theorem

The following are equivalent.

(I) z ∈ [0, 1] is polynomial time random

(II) f ′(z) exists, for each non-decreasing function f that is
polynomial time computable.

Let Sg(σ) denote the slope of a
non-decreasing function g at the
dyadic interval given by
string σ. This is a betting
strategy.
Essentially each betting strategy
M is of the form Sg. If M is
polynomial time then so is g.
Since g′(z) exists, M is bounded
along z.
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Slopes and their limits
For a function f : R→ R, for a pair a, b of distinct reals let

Sf (a, b) =
f(a)− f(b)

a− b
.

The lower and upper (pseudo-)derivatives are

D˜ f(x) = lim inf
h→0+

{Sf (a, b) | a ≤ x ≤ b ∧ 0 < b− a ≤ h},

D̃f(x) = lim sup
h→0+

{Sf (a, b) | a ≤ x ≤ b ∧ 0 < b− a ≤ h}.

where a, b range over rationals in [0, 1].
The subscript 2 indicate restriction to basic dyadic intervals [σ]
containing z:

D̃2f(x) = lim sup
|σ|→∞

{Sf (σ) | x ∈ [σ]}.

Recall: if f is non-decreasing then M(σ) = Sf (σ) is a betting
strategy. We have basic connections:

I M succeeds on z ⇔ D̃2f(z) =∞.

I M converges on z ⇔ D˜ 2f(z) = D̃2f(z) <∞
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Proof of the hard direction (I) → (II)

Theorem (Recall)

The following are equivalent.

(I) z ∈ [0, 1] is polynomial time random

(II) f ′(z) exists, for each non-decreasing function f that is
polynomial time computable.

Main problem in proving the hard direction: to get from slope
oscillation at arbitrary intervals around z to success of a betting
strategy at dyadic intervals corresponding to prefixes of z’s binary
expansion.

I Consider the polynomial time computable betting strategy

M(σ) = Sf (σ) .

I limnM(Z �n) exists and is finite for each polynomially random Z.
This is an effective version of Doob’s martingale convergence
theorem.

I Returning to the language of slopes, the convergence of M on Z
means that D˜ 2f(z) = D̃2f(z) <∞.
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(I) → (II): High dyadic slopes lemma

We say that a set C ⊆ R is porous at z via the porosity factor ε > 0 if
there exists arbitrarily small β > 0 such that (z − β, z + β) contains
an open interval of length εβ that is disjoint from C.

I Assume for a contradiction that f ′(z) fails to exist. First suppose
that

D̃2f(z) < p < D̃f(z).

I Since D̃2f(z) < p there is a string σ∗ ≺ Z such that
∀σ [Z � σ � σ∗ ⇒ Sf (σ) ≤ p].

I Choose k with p(1 + 2−k+1) < D̃f(z).

Lemma (High dyadic slopes)

The closed set

C = [σ∗]−
⋃
{(σ) : σ � σ∗ ∧ Sf (σ) > p}

contains z, but is porous at z via the factor ε = 2−k−2.
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(I) → (II): lucky and unlucky cases
Recall we are assuming that for a rational p

D̃2f(z) < p and p(1 + 2−k+1) < D̃f(z).

We may suppose Sf (σ) < p for all dyadic intervals [σ] containing z.

By the “high dyadic slopes” lemma, there exists arbitrarily large n
such that some basic dyadic interval [τn] of length 2−n−k has slope
> p and is contained in [z − 2−n+2, z + 2−n+2].
Let 0.Z = z where Z is a sequence of bits.
≺ denotes the prefix relation of strings.

Lucky case: there are infinitely many n with η = Z �n−4≺ τn. Then
the strategy that from such η on bets everything on the strings of
length n+ k other than τn gains a fixed factor 2k+4/(2k+4 − 1) each
time.

Unlucky case: for almost all n we have Z �n−4 6≺ τn.
This means 0.τn is on the left side of z, so the strategy can’t use it as
it splits off from Z before η is read.
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(I) → (II): 1/3- shifting trick

Fix m ∈ N. Consider an interval

I = [k2−m, (k + 1)2−m]

where k ∈ Z. Consider an interval

J = 1/3 + [r2−m, (r + 1)2−m]

where r ∈ Z.

The distance between an endpoint of I and an endpoint of J is at
least 1/(3 · 2m).
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(I) → (II): Using this trick to finish the proof

We may assume that z > 1/2. In the “unlucky” case that Z �n−4 6≺ τn
for almost all τn, we instead bet on the dyadic expansion Y of z− 1/3.

I Given η′ = Y �n−4, where n is as above, look for an extension
τ ′ � η′ of length n+ k + 1, such that 1/3 + [τ ′] ⊆ [τ ] for a string
[τ ] with Sf (τ) > p.

I If it is found, bet everything on the other extensions of η′ of that
length.

This strategy gains a fixed factor 2k+5/(2k+5 − 1) each time.

So we get a polytime martingale that wins on z − 1/3. By Figueira
and N (2013), polytime randomness is base invariant, so z − 1/3 is
polynomially random. So this gives a contradiction.

The case D˜ f(z) < D˜ 2f(z) is analogous, using a “low dyadic slopes”
lemma instead.
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Further directions

Rademacher’s theorem states that a Lipschitz function f on Rn is
differentiable at almost every vector.

Question

Let the Lipschitz function f be polytime computable and z be a
polynomial time random vector. Does f ′(z) exist?

Also, study Lebesgue density in feasible analysis.
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