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What would a new open questions paper
on randomness contain?
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Randomness connecting to other fields (1)
I ...to computable analysis

I A constructive bounded variation function is
differentiable at each Martin-Löf random (Demuth,
1975; see upcoming BSL survey by Kučera, N and
Porter).

I Similar result holds for computable nondecreasing
functions and computable randomness (Brattka, Miller,
N, TAMS to appear).

I Related result holds for weak Lebesgue points of L1

computable functions, and Schnorr randomness
(Pathak, 2009 ; Pathak, Rojas, Simpson 2014; Freer,
Kjos-Hanssen, N, Stephan 2014).

I ... to reverse mathematics.

I Implicit in the analysis papers: study the strength of
the system asserting that relative to any oracle, there is
a random.

I A little of the connection is in Montalbán’s BSL 2011
open questions paper on reverse math.
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Randomness connecting to other fields (2)

I ... to ergodic theory.

I Birkhoff’s ergodic theorem for L1-computable
operator T and computable function f holds at each
Martin-Löf random point (V’yugin 1997).

I Lots of recent work (e.g. Gács, Hoyrup and Rojas 2009;
Franklin and Towsner ta).

I ... to set theory.

I Forcing with Borel sets of positive measure (Solovay
1970).

I Randomness via effective descriptive set theory (Hjorth,
N 2006, recent work by Greenberg, Monin).

I Reimann and Slaman (2010) on “never continuously
random”

I Recent work of Kihara
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Cardinal characteristics and highness properties

New interaction of set theory and computability/randomness:
A close analogy between cardinal characteristics of the
continuum, and highness properties (indicating strength of a
Turing oracle).

The unbounding number b is the least size of a set of functions on the

natural numbers so that no single function dominates them all. This

corresponds to the usual highness: the oracle A computes a function

that dominates all computable functions. This correspondence was

first studied explicitly by Nicholas Rupprecht, a student of A. Blass

(Arch. of Math. Logic, 2010).

Joint work with Jörg Brendle (Kobe), Andrew Brooke-Taylor
(Bristol) and Selwyn Ng (NTU). (The first two may sound
unfamiliar to you, because they are set theorists.)
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Domination, and slaloms (Bartoszyński, 1987)

I For f, g ∈ ωω, let
f ≤∗ g ⇔ f(n) ≤ g(n)
for almost all n.

I A slalom is a function σ
from ω the finite subsets
of ω such that

∀n |σ(n)| ≤ n2.
I It traces f if
∀∞n f(n) ∈ σ(n).

Picture in Bartoszyński’s paper
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Set theory versus computability

b = b(≤∗): the least size of a
set F ⊆ ωω without a ≤∗
upper bound.

cofin(N ): the least size of a
collection of null sets
covering all null sets.

d(∈∗): the least size of a set
of slaloms tracing all
functions.

Thm. [Bartoszyński ’84]
d(∈∗) = cofin(N ).

there is g ≤T A such that
f ≤∗ g for each
computable f .

A is not low for Schnorr tests.

A is not computably
traceable.

Thm. [Terw./Zamb. 2001]
Comp. traceable ⇔

low for Schnorr tests
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Proofs of the Bartoszyński and Terwijn/Zambella
theorems are similar (1)

Theorem (Bartoszyński ’84)

d(∈∗) = cofin(N ).

I Let C be the space of slaloms with the preorder of inclusion
for almost every component.

I Let N be the null sets with inclusion.

To prove the harder inequality “≤”, one can use the following:

Lemma (Pawlikowski ’85)

There is a function φ : C → N such that the preimage of any set
that is bounded above is again bounded above.

This relies on a coding of slaloms into sequences of open sets,
and measure theoretic independence.
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Proofs of the Bartoszyński and Terwijn/Zambella
theorems are similar (2)

I trace is the computable version of slalom (we still have the
condition |σ(n)| ≤ n2|).

I A is computably traceable if each f ≤T A has a trace.

I A is low for Schnorr tests if each A-Schnorr null set is
contained in a plain Schnorr null set.

Theorem (Terwjn and Zambella, 2001)

A ⊆ N is computably traceable ⇔ A is low for Schnorr tests

Both implications use methods very similar to the ones above.
In particular, the harder implication (⇐) uses coding of
functions into sequences open sets, and measure theoretic
independence.
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Unbounding and domination numbers of relations

Let R ⊆ X × Y be a relation. Let

b(R) = min{|F | : F ⊆ X ∧ ∀y ∈ Y ∃x ∈ F ¬xRy}

d(R) = min{|G| : G ⊆ Y ∧ ∀x ∈ X ∃y ∈ G xRy}.

I b(R) is called the unbounding number of R, and d(R) the
domination number.

I If R is a preordering without greatest element, then any set
of covers is unbounded. So ZFC proves b(R) ≤ d(R).
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Inclusion, membership in a class S ⊆ P(R) of small sets
(such as null, meager)

Let ⊆S be inclusion on S.

add(S) := b(⊆S)

cofin(S) := d(⊆S)

Let ∈S be the membership relation on R× S.

non(S) := b(∈S) = min{|U | : U ⊆ R ∧ U /∈ S}
cover(S) := d(∈S) = min{|F| : F ⊆ S ∧

⋃
F = R}

In the diagrams, going up or to the right means the cardinal
gets bigger and ZFC knows it.

non(S) // cofin(S)

add(S)

OO

// cover(S)

OO
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Combinatorial Cichoń diagram

I f 6=∗ g ⇔ f(n) 6= g(n) for almost all n

I f ≤∗ g ⇔ f(n) ≤ g(n) for almost all n

I f ∈∗ σ ⇔ f(n) ∈ σ(n) for almost all n

ZFC knows that:
b(6=∗) // d(∈∗)

b(≤∗)

OO

// d(≤∗)

OO

b(∈∗)

OO

// d(6=∗)

OO
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Joining three diagrams yields...
M = meager sets, N = null sets

non(M) // cofin(M)

add(M)

OO

// cover(M)

OO

cover(N ) // cofin(N )

add(N )

OO

// non(N )

OO

b(6=∗) // d(∈∗)

b(≤∗)

OO

// d(≤∗)

77

b(∈∗)

77

// d(6=∗)

OO
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... the (extended) Cichoń diagram of cardinals

b( 6=∗)

BJ, Th. 2.4.7

d(∈∗)

BJ, Th. 2.3.9

cover(N ) // non(M) // cofin(M) // cofin(N )

b(≤∗)

OO

// d(≤∗)

OO

add(N )

OO

// add(M)

OO

// cover(M)

OO

// non(N )

OO

b(∈∗)

BJ, Th. 2.3.9

d(6=∗)

BJ, Th. 2.4.1

All are in [ω1, 2
ℵ0 ]. New arrows between N , M due to Rothberger

(1938); Pawlikowski (1985). BJ refers to Bartoszyński/Judah book.

Each arrow can be made strict in a suitable model of ZFC.
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Uniform transfer to the setting of computability (1)
Some of this was described in Rupprecht’s thesis in a more
informal way. Recall:

b(R) = min{|F | : F ⊆ X ∧ ∀y ∈ Y ∃x ∈ F ¬xRy}
d(R) = min{|G| : G ⊆ Y ∧ ∀x ∈ X ∃y ∈ GxRy}.

Suppose we have specified what it means for objects x in X, y
in Y to be computable in a Turing oracle A. Let the variable x
range over X, and let y range over Y . We define the highness
properties

B(R) = {A : ∃y ≤T A∀x computable [xRy]}
D(R) = {A : ∃x ≤T A∀y computable [¬xRy]}.

Note we are negating the set theoretic definitions. Reason: to
“increase” a cardinal of the form min{|F | : φ(F )}, we need to
introduce via forcing objects y so that φ(F ) no longer holds in
an extension model. This forcing corresponding to the
construction of a powerful oracle computing a witness for ¬φ.
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Uniform transfer to the setting of computability (2)

Recall:

B(R) = {A : ∃y ≤T A∀x computable [xRy]}
D(R) = {A : ∃x ≤T A∀y computable [¬xRy]}.

I A Schnorr test is an effective sequence (Gm)m∈N of Σ0
1 sets

such that each λGm ≤ 2−m is a computable real uniformly
in m.

I A set F ⊆ ω2 is Schnorr null if F ⊆
⋂
mGm for a Schnorr

test (Gm)m∈N.

X = Y = class of null sets N , R is inclusion ⊆N .

I B(R) says that A computes a Schnorr test covering all
plain Schnorr tests (“Schnorr engulfing”) and D(R) says
that A is not low for Schnorr tests.
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Basic diagram for null sets in computability

I B(⊆N ) says that A computes a Schnorr test covering all
plain Schnorr tests (“Schnorr engulfing”), and D(⊆N ) says
that A is not low for Schnorr tests.

I D(∈N ) says that A computes a Schnorr random, and
B(∈N ) says that A computes a Schnorr test containing all
computable reals (“weakly Schnorr engulfing”, already
studied by Rupprecht).

We obtain a diagram where upwards and right arrows mean
implication of highness properties.

D(∈N ) // D(⊆N )

B(⊆N )

OO

// B(∈N )

OO
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Uniform transfer to the setting of computability (3)

Recall:

B(R) = {A : ∃y ≤T A∀x computable [xRy]}
D(R) = {A : ∃x ≤T A∀y computable [¬xRy]}.

I An effective Fσ class has the form
⋃
m Cm, where the Cm

are uniformly Π0
1.

I A set F ⊆ ω2 is called effectively meager if it is contained
in such a class

⋃
m Cm where each Cm is nowhere dense.

Let X = Y = meager sets, R = inclusion.

I B(R) says that A computes a meager set covering all
effectively meager sets (“meager engulfing”)

I D(R) says that A is not low for meager sets.
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The set-theoretic diagram in terms of
unbounding/domination numbers

b( 6=∗) d(∈∗)

d(∈N ) // b(∈M) // d(⊆M) // d(⊆N )

b(≤∗)

OO

// d(≤∗)

OO

b(⊆N )

OO

// b(⊆M)

OO

// d(∈M)

OO

// b(∈N )

OO

b(∈∗) d( 6=∗)
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high or DNR↔ B(6=∗)

BBNN

D(∈∗)↔ not
computably

traceable

Terw, Zambella

A ≥T a
Schnorr
random

// weakly
meager
engulf’g

//

not low for
weak 1-gen
(i.e. hyper-
immune or

DNR)

//
not low

for
Schnorr

tests

high

OO

// hyperimmune
degree

OO

Schnorr
en-

gulf’g

OO

Ruppr.

Ruppr.

meager
en-

gulf’g

Ruppr.

// weakly
1-gen.
degree

Ruppr. //
weakly
Schnorr

en-
gulf’g

OO

B(∈∗)

Ruppr.

D( 6=∗)

BBNN
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Meager engulfing
We discuss some new equalities in the diagram.
A is meager engulfing (Rupprecht) if A computes a meager set
containing all plain meager sets. (This is the analog of
add(M).)

Theorem (Rupprecht’s thesis; short proof in BBNN)

A is high ⇔ A is meager engulfing.

A is weakly meager engulfing if A computes a meager set
containing all computable sets. (This is the analog of non(M).)
We show equivalence with B(6=∗).

Theorem (BBNN)

There is f ≤T A that eventually disagrees with each
computable function ⇔ A is weakly meager engulfing.

The property on the left is known to be equivalent to [high or
DNR].
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Further directions (1): set theory to computability

Study analogs of further cardinal characteristics.

I The splitting number s is the least size of a subset S of
P(ω) such that every infinite set is split by a set in S into
two infinite parts.

I The analog in computability theory: an infinite set A ⊆ ω
is r-cohesive if it cannot be split into two infinite parts by a
computable set.

Also: unreaping number and being of bi-immune free degree.
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Further directions (2): set theory to computability

What happens when x ≤T A is replaced by some other form of
relative definability? For instance, by hyperarithmetical
definability.

Disjoint work of Kihara and Monin shows that we have less
collapsing.

I As before, every hyp-dominating is higher Schnorr engulfing.

I But hyperimmune is weaker than computing a weakly 1-generic.

How about arithmetical definability?

Understand the connection of forcing and constructions of
powerful oracles.
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Further directions (3): randomness to set theory

Is low for tests = low for randomness notion relevant in set
theory?

Do some cardinal characteristics correspond to highness
properties related to Martin-Löf randomness?
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