An analogy between cardinal characteristics and highness properties of oracles

André Nies

$\mathrm{CCR}\ 2014$

What would a new open questions paper on randomness contain?

Randomness connecting to other fields (1)

▶ ...to computable analysis

- ▶ A constructive bounded variation function is differentiable at each Martin-Löf random (Demuth, 1975; see upcoming BSL survey by Kučera, N and Porter).
- Similar result holds for computable nondecreasing functions and computable randomness (Brattka, Miller, N, TAMS to appear).
- ▶ Related result holds for weak Lebesgue points of L₁ computable functions, and Schnorr randomness (Pathak, 2009 ; Pathak, Rojas, Simpson 2014; Freer, Kjos-Hanssen, N, Stephan 2014).

▶ ... to reverse mathematics.

- ▶ Implicit in the analysis papers: study the strength of the system asserting that relative to any oracle, there is a random.
- ▶ A little of the connection is in Montalbán's BSL 2011 open questions paper on reverse math.

Randomness connecting to other fields (2)

▶ ... to ergodic theory.

- ▶ Birkhoff's ergodic theorem for L_1 -computable operator T and computable function f holds at each Martin-Löf random point (V'yugin 1997).
- ▶ Lots of recent work (e.g. Gács, Hoyrup and Rojas 2009; Franklin and Towsner ta).

▶ ... to set theory.

- ▶ Forcing with Borel sets of positive measure (Solovay 1970).
- Randomness via effective descriptive set theory (Hjorth, N 2006, recent work by Greenberg, Monin).
- ▶ Reimann and Slaman (2010) on "never continuously random"
- ▶ Recent work of Kihara

Cardinal characteristics and highness properties

New interaction of set theory and computability/randomness: A close analogy between cardinal characteristics of the continuum, and highness properties (indicating strength of a Turing oracle).

The unbounding number \mathfrak{b} is the least size of a set of functions on the natural numbers so that no single function dominates them all. This corresponds to the usual highness: the oracle A computes a function that dominates all computable functions. This correspondence was first studied explicitly by Nicholas Rupprecht, a student of A. Blass (Arch. of Math. Logic, 2010).

Joint work with Jörg Brendle (Kobe), Andrew Brooke-Taylor (Bristol) and Selwyn Ng (NTU). (The first two may sound unfamiliar to you, because they are set theorists.)

Domination, and slaloms (Bartoszyński, 1987)

- ► For $f, g \in {}^{\omega}\omega$, let $f \leq {}^{*}g \Leftrightarrow f(n) \leq g(n)$ for almost all n.
- A slalom is a function σ from ω the finite subsets of ω such that

$\forall n \, |\sigma(n)| \le n^2.$

• It traces f if $\forall^{\infty} n f(n) \in \sigma(n)$.

Picture in Bartoszyński's paper

Set theory versus computability

 $\mathfrak{b} = \mathfrak{b}(\leq^*)$: the least size of a set $F \subseteq {}^{\omega}\omega$ without a \leq^* upper bound.

 $\operatorname{cofin}(\mathcal{N})$: the least size of a collection of null sets covering all null sets.

 $\mathfrak{d}(\in^*)$: the least size of a set of slaloms tracing all functions.

Thm. [Bartoszyński '84] $\mathfrak{d}(\in^*) = \operatorname{cofin}(\mathcal{N}).$

there is $g \leq_{\mathrm{T}} A$ such that $f \leq^* g$ for each computable f.

 ${\cal A}$ is not low for Schnorr tests.

A is not computably traceable.

Thm. [Terw./Zamb. 2001] Comp. traceable \Leftrightarrow low for Schnorr tests Proofs of the Bartoszyński and Terwijn/Zambella theorems are similar (1)

```
Theorem (Bartoszyński '84)

\mathfrak{d}(\in^*) = \operatorname{cofin}(\mathcal{N}).
```

- \blacktriangleright Let ${\mathcal C}$ be the space of slaloms with the preorder of inclusion for almost every component.
- Let \mathcal{N} be the null sets with inclusion.

To prove the harder inequality " \leq ", one can use the following:

Lemma (Pawlikowski '85)

There is a function $\phi : \mathcal{C} \to \mathcal{N}$ such that the preimage of any set that is bounded above is again bounded above.

This relies on a coding of slaloms into sequences of open sets, and measure theoretic independence. Proofs of the Bartoszyński and Terwijn/Zambella theorems are similar (2)

- ► trace is the computable version of slalom (we still have the condition $|\sigma(n)| \le n^2$).
- ▶ A is computably traceable if each $f \leq_{\mathrm{T}} A$ has a trace.
- ► A is low for Schnorr tests if each A-Schnorr null set is contained in a plain Schnorr null set.

Theorem (Terwjn and Zambella, 2001)

 $A \subseteq \mathbb{N}$ is computably traceable $\Leftrightarrow A$ is low for Schnorr tests

Both implications use methods very similar to the ones above. In particular, the harder implication (\Leftarrow) uses coding of functions into sequences open sets, and measure theoretic independence.

Unbounding and domination numbers of relations

Let $R \subseteq X \times Y$ be a relation. Let

 $\mathfrak{b}(R) = \min\{|F|: F \subseteq X \land \forall y \in Y \exists x \in F \neg x R y\}$

 $\mathfrak{d}(R) = \min\{|G|: G \subseteq Y \land \forall x \in X \exists y \in G \ xRy\}.$

- ▶ $\mathfrak{b}(R)$ is called the unbounding number of R, and $\mathfrak{d}(R)$ the domination number.
- ▶ If *R* is a preordering without greatest element, then any set of covers is unbounded. So ZFC proves $\mathfrak{b}(R) \leq \mathfrak{d}(R)$.

Inclusion, membership in a class $S \subseteq \mathcal{P}(\mathbb{R})$ of small sets (such as null, meager)

Let $\subseteq_{\mathcal{S}}$ be inclusion on \mathcal{S} .

 $\operatorname{add}(\mathcal{S}) := \mathfrak{b}(\subseteq_{\mathcal{S}})$ $\operatorname{cofin}(\mathcal{S}) := \mathfrak{d}(\subseteq_{\mathcal{S}})$

Let $\in_{\mathcal{S}}$ be the membership relation on $\mathbb{R} \times \mathcal{S}$.

 $non(\mathcal{S}) := \mathfrak{b}(\in_{\mathcal{S}}) = min\{|U| : U \subseteq \mathbb{R} \land U \notin \mathcal{S}\}$ $cover(\mathcal{S}) := \mathfrak{d}(\in_{\mathcal{S}}) = min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{S} \land \bigcup \mathcal{F} = \mathbb{R}\}$

In the diagrams, going up or to the right means the cardinal gets bigger and ZFC knows it.

$$\operatorname{non}(\mathcal{S}) \longrightarrow \operatorname{cofin}(\mathcal{S})$$

$$\uparrow \qquad \qquad \uparrow$$

$$\operatorname{add}(\mathcal{S}) \longrightarrow \operatorname{cover}(\mathcal{S})$$

11/1013

Combinatorial Cichoń diagram

f ≠* g ⇔ f(n) ≠ g(n) for almost all n
f ≤* g ⇔ f(n) ≤ g(n) for almost all n
f ∈* σ ⇔ f(n) ∈ σ(n) for almost all n

ZFC knows that:

Joining three diagrams yields... $\mathcal{M} = \text{meager sets}, \ \mathcal{N} = \text{null sets}$ $\operatorname{non}(\mathcal{M}) \longrightarrow \operatorname{cofin}(\mathcal{M})$

... the (extended) Cichoń diagram of cardinals

All are in $[\omega_1, 2^{\aleph_0}]$. New arrows between \mathcal{N} , \mathcal{M} due to Rothberger (1938); Pawlikowski (1985). BJ refers to Bartoszyński/Judah book. Each arrow can be made strict in a suitable model of ZFC. Uniform transfer to the setting of computability (1) Some of this was described in Rupprecht's thesis in a more informal way. Recall:

$$\begin{split} \mathfrak{b}(R) &= \min\{|F|: F \subseteq X \land \forall y \in Y \exists x \in F \neg x R y \} \\ \mathfrak{d}(R) &= \min\{|G|: G \subseteq Y \land \forall x \in X \exists y \in G x R y \}. \end{split}$$

Suppose we have specified what it means for objects x in X, y in Y to be computable in a Turing oracle A. Let the variable x range over X, and let y range over Y. We define the highness properties

 $\begin{aligned} \mathcal{B}(R) &= \{A : \exists y \leq_{\mathrm{T}} A \,\forall x \text{ computable } [xRy] \} \\ \mathcal{D}(R) &= \{A : \exists x \leq_{\mathrm{T}} A \,\forall y \text{ computable } [\neg xRy] \}. \end{aligned}$

Note we are negating the set theoretic definitions. Reason: to "increase" a cardinal of the form $\min\{|F|: \phi(F)\}$, we need to introduce via forcing objects y so that $\phi(F)$ no longer holds in an extension model. This forcing corresponding to the construction of a powerful oracle computing a witness for $\neg \phi$.

15/1013

Uniform transfer to the setting of computability (2) Recall:

$$\begin{aligned} \mathcal{B}(R) &= \{A : \exists y \leq_{\mathrm{T}} A \,\forall x \text{ computable } [xRy] \} \\ \mathcal{D}(R) &= \{A : \exists x \leq_{\mathrm{T}} A \,\forall y \text{ computable } [\neg xRy] \} \end{aligned}$$

- ► A Schnorr test is an effective sequence $(G_m)_{m \in \mathbb{N}}$ of Σ_1^0 sets such that each $\lambda G_m \leq 2^{-m}$ is a computable real uniformly in m.
- ▶ A set $\mathcal{F} \subseteq {}^{\omega}2$ is Schnorr null if $\mathcal{F} \subseteq \bigcap_m G_m$ for a Schnorr test $(G_m)_{m \in \mathbb{N}}$.
- X = Y =class of null sets \mathcal{N}, R is inclusion $\subseteq_{\mathcal{N}}$.
 - ▶ $\mathcal{B}(R)$ says that A computes a Schnorr test covering all plain Schnorr tests ("Schnorr engulfing") and $\mathcal{D}(R)$ says that A is not low for Schnorr tests.

Basic diagram for null sets in computability

- ▶ $\mathcal{B}(\subseteq_{\mathcal{N}})$ says that A computes a Schnorr test covering all plain Schnorr tests ("Schnorr engulfing"), and $\mathcal{D}(\subseteq_{\mathcal{N}})$ says that A is not low for Schnorr tests.
- D(∈_N) says that A computes a Schnorr random, and B(∈_N) says that A computes a Schnorr test containing all computable reals ("weakly Schnorr engulfing", already studied by Rupprecht).

We obtain a diagram where upwards and right arrows mean implication of highness properties.

Uniform transfer to the setting of computability (3) Recall:

$$\begin{aligned} \mathcal{B}(R) &= \{A : \exists y \leq_{\mathrm{T}} A \,\forall x \text{ computable } [xRy] \} \\ \mathcal{D}(R) &= \{A : \exists x \leq_{\mathrm{T}} A \,\forall y \text{ computable } [\neg xRy] \} \end{aligned}$$

▶ An effective F_{σ} class has the form $\bigcup_m C_m$, where the C_m are uniformly Π_1^0 .

▶ A set $\mathcal{F} \subseteq {}^{\omega}2$ is called effectively meager if it is contained in such a class $\bigcup_m \mathcal{C}_m$ where each \mathcal{C}_m is nowhere dense.

Let X = Y = meager sets, R = inclusion.

- ▶ $\mathcal{B}(R)$ says that A computes a meager set covering all effectively meager sets ("meager engulfing")
- ▶ $\mathcal{D}(R)$ says that A is not low for meager sets.

The set-theoretic diagram in terms of unbounding/domination numbers

Meager engulfing

We discuss some new equalities in the diagram. A is meager engulfing (Rupprecht) if A computes a meager set containing all plain meager sets. (This is the analog of $add(\mathcal{M})$.)

Theorem (Rupprecht's thesis; short proof in BBNN)

A is high \Leftrightarrow A is meager engulfing.

A is weakly meager engulfing if A computes a meager set containing all computable sets. (This is the analog of non(\mathcal{M}).) We show equivalence with $\mathcal{B}(\neq^*)$.

Theorem (BBNN)

There is $f \leq_{\mathrm{T}} A$ that eventually disagrees with each computable function $\Leftrightarrow A$ is weakly meager engulfing.

The property on the left is known to be equivalent to [high or DNR].

Further directions (1): set theory to computability

Study analogs of further cardinal characteristics.

- The splitting number s is the least size of a subset S of P(ω) such that every infinite set is split by a set in S into two infinite parts.
- ▶ The analog in computability theory: an infinite set $A \subseteq \omega$ is *r*-cohesive if it cannot be split into two infinite parts by a computable set.

Also: unreaping number and being of bi-immune free degree.

Further directions (2): set theory to computability

What happens when $x \leq_{\mathrm{T}} A$ is replaced by some other form of relative definability? For instance, by hyperarithmetical definability.

Disjoint work of Kihara and Monin shows that we have less collapsing.

- ▶ As before, every hyp-dominating is higher Schnorr engulfing.
- ▶ But hyperimmune is weaker than computing a weakly 1-generic.

How about arithmetical definability?

Understand the connection of forcing and constructions of powerful oracles.

Further directions (3): randomness to set theory

Is low for tests = low for randomness notion relevant in set theory?

Do some cardinal characteristics correspond to highness properties related to Martin-Löf randomness?

References

- ▶ Tomek Bartoszynski and Haim Judah. Set Theory. On the structure of the real line. A K Peters, Wellesley, MA, 1995. 546 pages.
- ▶ Joerg Brendle, Andrew Brooke-Taylor, Keng Meng Ng and Andre Nies. An analogy between cardinal characteristics and highness properties of oracles. Submitted to Proceedings of the Asian Logic Colloquium 2013. Available at arxiv.org/abs/1404.2839
- ▶ Nicholas Rupprecht. Relativized Schnorr tests with universal behavior. Arch. Math. Logic, 49(5):555 570, 2010.
- ▶ Nicholas Rupprecht. Effective correspondent to Cardinal characteristics in Cichoń's diagram. PhD Thesis, Univ of Michigan, 2010.
- ▶ These slides on my web page.