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for Polish metric spaces

In October, André Nies gave a talk as part of the Universality and Homo-
geneity Trimester at the Hausdorff Institute for Mathematics in Bonn. The
summary follows.

We are given a class of structures. We always mean concrete presentations
of structures (rather than “up to isomorphism”). We address the following
leading questions:

(a) Which similarity relations are there on the class?
(b) How complex are these similarity relations?
(c) If structures X,Y in the class are similar, how complex, relative to

X,Y , is the means for showing this? For instance, if X ∼= Y , can
one compute and isomorphism from the structures?

For instance, in the model theoretic setting, we could be given the count-
able models of a first-order theory. Some answers to the questions in this
setting are:

(a) isomorphism ∼=, elementary equivalence ≡, elementary equivalence
≡α for Lω1,ω sentences of rank < α.

(b) Isomorphism of countable graphs, linear orders, countable Boolean
algebras is ≤B complete for orbit equivalence relations of continu-
ous S∞ actions (≤B is Borel reducibility, S∞ is the Polish group of
permutations of ω).

(c) for ∼= is partially answered in computable model theory, with notions
such as relatively computably categorical, where presentations of
X,Y together uniformly compute an isomorphism if there is one at
all. For instance, a dense linear order is r.c.c.

We will be mainly considering the metric setting. We have a class of
Polish metric spaces. To answer (a): we have the following similarities
which will be defined formally below.

Isometry ∼=i, homeomorphism ∼=h,

Gromov-Hausdorff distance 0, Lipschitz equivalence.

The former two are discussed in detail in [3, Ch. 14]. The latter two
can be found in [4, Ch.3] (the first edition dates from 1998). After some
preliminary facts, we will answer (b) and (c) for the metric setting. We
also consider Polish metric spaces with some additional structure, such as
Banach spaces, or spaces with a probability measure on the Borel sets.
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Representing Polish metric spaces. We adopt the global view. Sin-
gle structures are thought of as points in a “hyperspace”. To endow this
hyperspace with its own structure it matter how we represent the single
structures. For metric spaces two ways are common.

(1) U denotes the Urysohn space, F (U) its Effros algebra of closed sub-
sets. Each Polish metric space is isometric to an element of F (U).
See [3, Ch. 14].

(2) A point V = 〈vi.k〉i,k∈N ∈ RN×N is a distance matrix if V is a pseudo-
metric on N. Let MV denote its completion. This means that in MV

we have a distinguished dense sequence of points 〈pi〉 and present the
space by giving their distances. We merely ask that V is a pseudo-
metric in order to ensure that the set M of distance matrices is
closed in RN×N.

Both representations are in a sense equivalent [3, Ch. 14]. However, the
second one is better at describing the complexity of the space. For instance,
a computable metric space (M,d, 〈pi〉) is given by a distance matrix w such
that wi,k = d(pi, pk) is a computable real uniformly in i, k.

A Polish group action is a continuous action G × X → X where G is a
Polish group and X a Polish space. We write Gy X. The orbit equivalence
relation is EXG = {〈x, y〉 : ∃g [gx = y]}.

Polish metric spaces and the classical Scott analysis. A metric space
(M,d) can be turned into a structure in the language with binary relations
Sq for q ∈ Q+, where Sq(a, b) holds if d(a, b) < q.

Definition 1.1. Let M be an L-structure. We define inductively what
it means for finite tuples of same length ā, b̄ from M to be α-equivalent,
denoted by ā ≡α b̄.

• ā ≡0 b̄ if and only if the quantifier-free types of the tuples are the
same.
• For a limit ordinal α, ā ≡α b̄ if and only if ā ≡β b̄ for all β < α.
• ā ≡α+1 b̄ if and only if both of the following hold:

– For all x ∈M , there is some y ∈M such that āx ≡α b̄y
– For all y ∈M , there is some x ∈M such that āx ≡α b̄y

The Scott rank sr(M) of a structure M is defined as the smallest α such
that ≡α implies ≡α+1 for all tuples of that structure. We remark that always
sr(M) < |M |+.

Fact 1.2. A Polish space has Scott rank 0 iff it is ultrahomogeneous.

Friedman, Körwien and Nies (2012) showed that for each α < ω1, there
is an countable Polish ultrametric space M such that sr(M) = α× ω.

Question 1.3.
(a) Does every Polish metric space have countable Scott rank?
(b) Can it in fact be described within the class of Polish metric spaces by an
Lω1,ω sentence?
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I. Isometry ∼=i. In 1998 Anatoly Vershik [6] asked about the complexity
of isometry ∼=i on Polish metric spaces, and in particular if one can assign
invariants. The answer was a resounding no.

Theorem 1.4 (Gao-Kechris 2000; Clemens; see [3], Ch. 14). ∼=i≤B E
F (U
Iso(U).

For every E = EXG we have E ≤B∼=i.

Let K be the class of compact metric spaces. Note that this is Π0
3 with re-

spect to the distance matrix representation of Polish metric spaces, because
compactness is equivalent to being totally bounded. Isometry of compact
spaces is much simpler: points in some fixed Polish space serve as invariants.

Theorem 1.5 (Essentially Gromov [4], Thm 3.27,5).

∼=i ∩(K ×K) ≤B idR.

Proof. Gromov shows that the sequence of sets of n × n distance matrices
that occur in a compact space X constitute a complete set of invariants.

Each such matrix is a point in a compact set Kn(X) ⊆ Rn2
. The sequence

of such compact sets can be represented by a single point in a Polish space,
say R. �

Computable versions. The distance matrices form an effectively closed set,
and thus can be coded as the infinite branches of a Π0

1 tree ⊆ 2<ω. Such a
branch provides data of the form |vi,k − q| < ε for q ∈ Q+

0 , ε ∈ Q+.
Let Ve denote the e-th computable distance matrix. The domain of this

partial computable function grows as long as the data are consistent with
being a distance matrix; if seen to be not (a Σ0

1 event) it stops. Being total
is Π0

2.
Let Me denote the computable metric space given by the e-th (total)

distance matrix Ve.

Proposition 1.6 (Fokina et al. [2]). {〈e, k〉 : Me
∼=i Mk} is a Σ1

1 complete
equivalence relation.

Proposition 1.7. The set C of indices for compact computable metric
spaces is Π0

3. Isometry is Π0
2 within that set, that is, of the form E ∩C ×C

where E is Π0
2 relation.

II. Having Gromov-Hausdorff distance 0. The following is ongoing
work with Itai Ben Yaacov and Todor Tsankov. One thinks of two metric
spaces X,Y as isometric within error ε if they can be isometrically embedded
into a third metric space Z in such a way that the usual Hausdorff distance
of the two images is at most ε. “X,Y isometric within error 0” then means
that the completions of X,Y are isometric. We let the Gromov- Hausdorff
distance be

dGH(X,Y ) = inf{ε : X,Y isometric within error ε}.
For instance, if we let X = {0, 1} and Y = {1/4, 3/4}, then

dGH(X,Y ) = 1/4.

So, are there examples of non-isometric spaces X,Y with GH-distance 0?
Neither space can be compact (Gromov). Also there is no positive lower
bound on the distance of distinct points, otherwise a near isometry with
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error less than that bound will be an isometry. During the HIM talk, Nies
mentioned an example: let E be the unit sphere of the Gurarij space. Let
v ∈ E be smooth, and w be non-smooth. Let X = Y = E ∪ a, b, with
dX(a, b) = dY (a, b) = 3. We set dX(v, a) = dX(v, b) = 3, and dY (w, a) =
dY (w, b) = 3. Any isometry would have to map v to w, which is impossible.
However, by general properties of the Gurarij space, dGH(X,Y ) = 0.

After the talk Matatiahou Rubin and Philipp Schlicht constructed further,
in a sense simpler examples. See Appendix 1.

Bi-Katetov functions. One can describe being isometric within error ε with-
out referring to a third space. A bi-Katetov function f : X × Y → R is
defined as

f(x, y) = dZ(i(x), j(y)),

where i, j are embeddings into some metric space as above. Equivalently, f
is 1-Lipschitz in both variables and

dA(x,w) ≤ f(x, y) + f(w, y)

dB(y, z) ≤ f(x, y) + f(x, z)

A bi-Katetov function f can be seen as an approximate isometry. Its
error qf is given by

qf = max(sup
x

inf
y
f(x, y), sup

y
inf
x
f(x, y)).

By definition this equals the Hausdorff distance of the isometric images
above.

For instance, if there is an actual onto isometry θ : X → Y , we can let
f(x, y) = dY (θ(x), y) and obtain the least possible error 0. Conversely, as
mentioned above, if the spaces are complete and the error is 0 then there is
an onto isometry.

Clearly we have

dGH(X,Y ) = inf
f
qf ,

where f runs through all the bi-Katetov functions on X × Y .

Continuous Scott analysis. We define approximations to dGH from below by
induction on countable ordinals.
Suppose ā = 〈ai〉i<n and b̄ = 〈bi〉i<n are enumerated finite metric spaces.
Following [?] define

r0,n(ā, b̄) = inf
f is bi-Katetov on ā×b̄

max
i<n

f(ai, bi).

An explicit expression for this is given by [?]*Proposition 7.1:

(1) r0,n(ā, b̄) = ε/2 where ε = min
i,k<n

|d(ai, ak)− d(bi, bk)|.

(In fact, Uspenskii builds a bi-Katetov function such that f(ai, bi) = ε/2 for
each i.)
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Definition 1.8. Suppose A and B are metric spaces and ā ∈ An, b̄ ∈ Bn.
Define by induction on ordinals α:

rA,B0,n (ā, b̄) = r0,n(ā, b̄)

rA,Bα+1,n(ā, b̄) = max
(

sup
x∈A

inf
y∈B

rA,Bα,n+1(āx, b̄y), sup
y∈B

inf
x∈A

rA,Bα,n+1(āx, b̄y)
)

rA,Bα,n (ā, b̄) = sup
β<α

rA,Bβ,n (ā, b̄), for α a limit ordinal.

Given a metric space (X, d) and n ≥ 1, we equip Xn with the “maximum”
metric d(ū, v̄) = maxi<n d(ui, vi). The following are not hard to check.

Lemma 1.9. Fix separable metric spaces A,B of finite diameter.

(1) For each α and each n, the functions rA,Bα,n (ā, b̄) are 1-Lipschitz in ā
and b̄.

(2) The functions rA,Bα,n (ā, b̄) are nondecreasing in α.

(3) There is α < ω1 after which all the rA,Bα,n stabilize.

Theorem 1.10 (Ben Yaacov, Nies, Tsankov 2013). Let A,B be separable

metric spaces of finite diameter. Let α∗ be such that rA,Bα∗+1,n = rA,Bα∗,n for each
n. Then

rA,Bα∗,0 = dGH(A,B).

For a proof see appendix 2.

Definition 1.11. The continuous Scott rank of A is least α for which

rA,Aα,n (ā1, ā2) = rA,Aα+1,n(ā1, ā2), for all n, ā1, ā2 ∈ An.

One can define an equivalence relation EGH on the set of distance matrices
M by

AEGHB ⇐⇒ dGH(A,B) = 0.

Using the continuous Scott analysis we can show:

Theorem 1.12. Each EGH class is Borel.

III. Homeomorphism ∼=h. We collect some results, most of which are
proved in [3, Ch. 14]. For general Polish metric spaces, ∼=h is merely known to
be Σ1

2. Homeomorphism of compact metric spaces X,Y is analytic, because
homeomorphisms are uniformly continuous. In fact, by the Banach-Stone
theorem, we have

X ∼=h Y ⇔ C(X) ∼=i C(Y );

so by the aforementioned results of Gao and Kechris on isometry [?], ∼=h on
compact metric spaces is Borel reducible to an orbit equivalence relation.
(A similar argument works for locally compact metric spaces, using C0(X),
the C∗ algebra of continuous functions vanishing at∞; however, for a Polish
metric space, to be locally compact is known to be properly Π1

1.)
Camerlo and Gao [1] proved that graph isomorphism is Borel reducible to

homeomorphism of totally disconnected compact metric spaces (i.e., separa-
ble Stone spaces). One notes that countable compact metric spaces X won’t
work here, because X is scattered and hence given by the Cantor-Bendixson
rank α together the size of the last set X(α).

The main question remains open.
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Question 1.13. Determine the complexity with respect to ≤B of ∼=h on
compact metric spaces.

In contrast, in the computable case the complexity is known to be as large
as possible.

Theorem 1.14. Homeomorphism of compact computable metric spaces is
complete with respect to computable reductions for Σ1

1 equivalence relations
on ω.

Proof. Friedman et al. [2] showed this for isomorphism of computable graphs.
It can be verified that the construction Camerlo-Gao use for providing their
Borel reduction is effective. Hence, if the given graph is computable, then
uniformly in its index they build a compact computable metric space. �

The complexity of particular isometries. Let us return to the leading
questions posed initially. It appears that Questions (b) and (c) are closely
connected:

It is easy to detect that X is similar to Y ⇔
we can determine from X,Y a means via which the similarity holds.

We will provide some evidence for this thesis, first for compact metric spaces,
and then for metric measure spaces studied by Gromov [4] and Vershik. For
a function g, let g′ be the halting problem relative to the graph of g.

Theorem 1.15 (Melnikov, Nies [5]). Let X,Y be compact metric spaces.
Let A be an oracle Turing equivalent to the Turing jump of (the presentation
of) X together with Y .

(a) If X ∼=i Y then there is an isometry g such that g′ ≤T A′′.
(b) there a isometric compact computable metric spaces X,Y with no

isometry g ≤T ∅′.

For (a) note that is suffices to build g an isometric embedding. By com-
pactness we can view embeddings as branches on a subtree T ⊆ ω<ω with
an A′ computable bound on the level size. Now apply the low basis theorem
relative to A′ in order to obtain g.

A metric measure (m.m.) space has the form T = (X,µ, d) where (X, d)
is Polish, µ a Borel probability measure. We may assume that µU > 0 for
any non-empty open U ; otherwise, replace X by the least conull closed set.

Theorem 1.16 (Gromov (1997), see [4]). Measure-preserving isometry of
m.m. spaces is smooth.

Gromov used as invariants the sequence of distributionsDn of the distance
matrix of n randomly chosen points. He used moments to show that 〈Dn〉n∈N
is a complete invariant for the m.m. space T .

In 1996 Vershik [6] also gave a proof; also see the survey [7]. He describes
T by the single invariant DT , the distribution of the distance matrix of a
randomly chosen infinite sequence (xi). More formally, DT is the pushout
measure of d(xi, xk) on the space M⊆ Rω×ω of distance matrices. He used
a form of the law of large numbers to reconstruct T from DT .

We give an effective analysis of Vershik’s proof. Let O ⊆ ω be some Π1
1

complete set.
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Theorem 1.17. Suppose T1, T2 are computable m.m. spaces (the measure
of Boolean combinations of balls is uniformly computable). Then there is a

measure-preserving isometry Θ such that Θ ≤T O(α) for some computable
ordinal α.

It remains to be determined whether this is necessarily bad, or if the
complexity of a Θ can be lowered.

Appendix 1: Non-isometric discrete spaces with GH distance 0.
M. Rubin gave an example of two non-isometric Banach spaces at distance
0: let D = 〈pi〉i∈N be a dense sequence of distinct elements in (1, 2), say.
Let Up be the 2-dimensional R vector space with `p norm. Let ED be the
c0-sum of the spaces Upi . That is, null sequences, with norm the maximum
of the individual `pi norms. If we have two dense sequences with different
sets of members, the spaces are at distance 0, but not isometric.

The following result of Schlicht and Rubin shows that there is a single EGH
class such that the isometry equivalence relation inside is Borel bi-reducible
with identity on 2N. In particular, there are continuum many non-isometric
spaces with discrete topology that are mutually at GH distance 0.

We equip [0, ε]×(ω+1)×R with the metric d defined by d((x, i, y), (x′, i′, y′)) =
1 if (x, i) 6= (x′, i′) and d((x, i, y), (x′, i′, y′)) = |y − y′| if (x, i) = (x′, i′).

Definition 1.18. Suppose that f : [0, ε]→ ω + 1 is a function.

(1) Let Xf = {(x, i, 0), (x, i, x) ∈ [0, ε]× (ω+ 1)×R | i ≤ f(x)} with the
metric from [0, ε]× (ω + 1)× R.

(2) Let supp(f) = {x ∈ [0, ε] | f(x) 6= 0} denote the support of f .
(3) Let bound(f) = {(x, i) | x ∈ supp(f), i ≤ f(x)}.

If |supp(f)| = ω, then Xf is a discrete countable metric space with dis-
tance set supp(f) ∪ {0, 1}.

Proposition 1.19. Suppose that ε ≤ 1
2 . Suppose that f0 : [0, ε]→ ω+ 1 is a

function such that supp(f0) is a countable dense subset of [0, ε]. Then idω2

is Borel reducible to Iso � [Xf0 ]GH .

Proof. Note that for arbitrary functions f, g : [0, ε] → ω + 1, Xf , Xg are
isometric if and only if f = g.

Claim 1.20. Suppose that f, g : [0, ε] → ω + 1 are functions such that
supp(f), supp(g) are countable dense subsets of [0, ε]. Then dGH(Xf , Xg) =
0.

Proof. Note that for every δ > 0, there is a bijection h : bound(f) →
bound(g) such that |x − h(x, i)0| < δ for all (x, i) ∈ bound(f). Let h ×
id : Xf → bound(g) × R, (h × id)(x, i, y) = (h(x, i), y). Then h × id is dis-
tance preserving and dH((h×id)[Xf ], Xg) ≤ δ. Hence dGH(Xf , Xg) ≤ δ. �

Let Dq = {0, q} for q > 0. Suppose that (qn, in)n∈ω is an enumeration of
bound(f0) without repetitions. Suppose that X is a complete metric space
with dGH(X,Xf0) = 0. Suppose that 0 < δ < 1. Since dGH(X,Xf0) < δ

3 , X

is of the form X =
⊔
n∈ωX

δ
n with

(1) dGH(Xδ
n, Dqn) < δ and

(2) |d(x, y)− 1| < δ if x ∈ Xδ
m, y ∈ Xδ

n, and m 6= n.
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Let Xn = X
1
2
n . Conditions 1 and 2 imply that for all δ < 1

2 and all n, there

is some m with Xδ
m = Xn. Hence for each n there is a sequence (ni)i∈ω in

ω with dGH(Xn, Dqni
) < 1

2i
. It follows that 1 ≤ |Xn| ≤ 2. Let pn = d(x, y)

if Xn = {x, y}. Let A = {pn | n ∈ ω}.

Claim 1.21. d(x, y) = 1 for all x ∈ Xm and y ∈ Xn with m 6= n.

Proof. This follows from Condition 2 and since for all δ < 1
2 and all k, there

is some l with Xδ
l = Xk. �

Claim 1.22. A ⊆ [0, ε].

Proof. Suppose that Xn = {x, y} and η = d(x, y) − ε > 0. Suppose that
Xn = Xη

m. This contradicts the fact that dGH(Xη
m, Dqm) < η by Condition

1. �

Claim 1.23. A is dense in (0, ε).

Proof. Suppose that U ⊆ (0, ε) is nonempty and open with U ∩A = ∅. Sup-

pose that (qn−δ, qn+δ) ⊆ U . This contradicts the fact that dGH(X
δ
2
n , Dqn) <

δ
2 by Condition 1. �

Let f : [0, ε]→ ω+ 1, f(x) = 0 if x /∈ A, f(0) = i if |{n ∈ ω | |Xn| = 1}| =
i, and f(z) = i if |{n ∈ ω | ∃x, y ∈ Xn d(x, y) = z}| = i for z ∈ (0, ε]. Then
Xf , X are isometric. �

Appendix 2: Proof of Theorem 1.10. Since A,B are fixed we suppress
them in our notations. Variables a, ai etc range over A, and bi etc. range
over B. For tuples ā, b̄ of length k, let

δk(ā, b̄) = inf
f
{max(qf ,max

i<k
f(ai, bi))},

where f ranges over bi-Katetov functions on A×B. We show that for each
n and tuples ā, b̄ of length n,

rα∗,n(ā, b̄) = δn(ā, b̄).

For n = 0 this establishes the theorem.
Firstly, we show by induction on ordinals α that

rα,n(ā, b̄) ≤ δn(ā, b̄)).

The cases α = 0 and α limit ordinal are immediate. For the successor case,
suppose that δn(ā, b̄) < s via a bi-Katetov function f on A × B. For each
x ∈ A we can pick y ∈ B such that f(x, y) < s. Then δn+1(āx, b̄y) < s
via the same f . Inductively we have rα,n+1(āx, b̄y) < s. Similarly, for each
y ∈ B we can pick x ∈ A such that rα,n+1(āx, b̄y) < s. This shows that
rα,n(ā, b̄) ≤ s.

Secondly, we verify that

δn(ā, b̄)) ≤ rα∗,n(ā, b̄)

Let rα∗,n(ā, b̄) < t. We combine a back-and-forth argument with the com-
pactness of the space of bi-Katetov functions in order to build a bi-Katetov
function f with qf ≤ t and maxi<n f(ai, bi) ≤ t.
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To do so we extend ā, b̄ to dense sequences in A,B respectively. Let
D ⊆ A,E ⊆ B be countable dense sets. Let ūk denote a tuple of length k;
in particular, we can write ā = ān and b̄ = b̄n. We ensure that

rα∗,k(ā
k, b̄k) < t for each k ≥ n.

Suppose āk, b̄k have been defined. If k is even, let ak be the next ele-
ment in D. Using rα∗+1,k(ā

k, b̄k) = rα∗,k(ā
k, b̄k) we can choose bk so that

rα∗,k+1(āk+1, b̄k+1) < t. Similarly, if k is odd, let bk be the next element in
E and choose ak as required.

By Lemma 1.9(2) we have r0,k(ā
k, b̄k) < t for each k ≥ n via some bi-

Katetov function f̃k defined on {a0, . . . , ak−1} × {b0, . . . , bk−1}. We can ex-
tend this to a bi-Katetov function fk defined on A×B as noted in Remark ??.
By the compactness of the space of bi-Katetov functions on A×B, viewed
as elements of RD×E , there is a subsequence k0 < k1 < . . . such that 〈fku〉
converges pointwise to a bi-Katetov function f . Since bi-Katetov functions
are 1-Lipschitz in both arguments, this implies limu fku(ap, bp) = f(ap, bp)
for each p. Therefore f(ap, bp) ≤ t. This implies qf ≤ t as required.
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