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Synopsis

We study the complexity of isometry between compact computable
metric spaces.

Index sets:

The class of computable indices for compact metric spaces is Π0
3.

Being isometric is Π0
2 within that class.

Determining isometries from the presentations:

Theorem

I Suppose M,N are isometric compact computable metric spaces.
Then there is an isometry g : M → N such that g′ ≤T ∅′′.

I There are such M , N where ∅′ cannot compute an isometry.
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Local approach to Polish metric spaces

Definition

I A Polish metric space M is a complete metric space (M,d)
together with a dense sequence (pi)i∈N.

I The space is computable if d(pi, pk) is a computable real,
uniformly in i, k.

Classic approach: only work with a few spaces at any time.

I Functional analysis: theorems only involve a few Banach spaces,
such as X,Y,X ′, Y ′, L(X,Y ).

I We can use a fixed computable metric space as a setting for
concepts from computability more general than Cantor Space.

– For instance, one defines a point x ∈M to be computable if there is
computable function f such that x = limk pf(k) and d(x, pk) ≤ 2−k.

– Melnikov and N. study K-trivial points in computable metric spaces
[Proc. AMS, 2013]. Their main result is that each such point has a
K-trivial Cauchy name (pf(i))i∈N, namely, K(f �n) ≤ K(n) +O(1).
This implies that K-triviality is closed under computable maps.
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Global approach to Polish metric spaces

Now we look at whole classes of Polish metric spaces.

I The representations of Polish metric spaces form a closed set
P ⊆ Rω×ω.
(This is sometimes called a hyperspace of Polish spaces;

see Su Gao, Invariant Descriptive Set Theory, Ch 14.)

I The Polish metric spaces with diameter bounded by 1 form a
computable metric subspace of the Hilbert cube [0, 1]ω×ω;
the computable spaces are the computable points.

I One studies equivalences on P, such as isometry.

I we can measure similarity of M,N ∈ P by the

Gromov–Hausdorff distance of M , N

(this is the infimum of the Hausdorff distances of isometric
embeddings of M,N into a third metric space).
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The viewpoint of invariant descriptive set theory

Let X ,Y be Polish topological spaces. Let E be an equivalence
relation on X . Let F be an equivalence relation on Y.

We write E ≤B F if there is a Borel map φ : X → Y such that

uE v ⇔ φ(u)F φ(v).

That is, E is Borel many-one reducible to F .

Theorem (Gao-Kechris 2003/Clemens)

Let E be equivalence relation arising from a Polish group action on X .
Then E ≤B ∼=i, where ∼=i denotes isometry of Polish metric spaces.
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Isometry of compact metric spaces is much simpler

Definition (Distance relations in metric spaces)

For a metric space X , let Dn(X ) denote the set of all n× n matrices
d(xi, xk)i,k<n, where x0, . . . , xn−1 ∈ X .

Theorem (Gromov, 1999; see Su Gao, 2009)

Let X0,X1 be compact metric spaces such that Dn(X0) = Dn(X1) for
each n. Then X0 and X1 are isometric.

I The sequence of compact sets Dn(X ) ⊆ Rn can be encoded by a
single point in a standard Polish space.

I So, ∼=i on compact spaces is smooth, that is, Borel reducible to the
identity on R.
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The same in the computable setting

Theorem (Follows from Fokina et al., 2010)

Isometry of computable metric spaces is (computably) many-one
complete for Σ1

1 equivalence relations.

Fokina et al. actually show Σ1
1-completeness for isomorphism of countable

graphs. These graphs can be coded into countable ultrametric spaces.

Proposition

The class of computable indices e for compact metric spacesMe is
Π0

3. Being isometric is Π0
2 within that class.

Being Π0
3 follows from the definition of compactness via ε-nets.

Isometry is Π0
2 by Gromov’s argument: for compact spaces,

“∀n [Dn(Me) = Dn(Mi)]”

is a Π0
2 predicate of e and i. It is not Σ0

2.
There is no many-one complete Π0

2 equivalence relation by Ianovski, Miller,

Ng and N., “Complexity of equivalence relations and preorders from

computability theory”, submitted 2013.
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An internal way of understanding similarity

Given isometric presentations of metric spaces M,N ,
can we determine an isometry from these presentations?

We are asking whether M,N taken together “know” that they are

isometric. This is not always the case, because isometry is Σ1
1–complete.

Example

I If computable metric spaces

M = (M,dM , (pi)i∈N) and N = (N, dN , (qk)k∈N)

are both isometric to [0, 1], then there is a computable isometry g
between them.

I To say that g is computable means that from a rational ε > 0 and
i ∈ N, we can compute k ∈ N with dN (g(pi), qk) < ε.

I Such a computable metric space is called computably categorical.

I `2 and Urysohn space U are computably categorical (Melnikov).

I `1 isn’t (Pour-El/Richards); C[0, 1]) isn’t (Melnikov).
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Isometric compact spaces may fail to be ∆0
2-isometric

Let α be a left-r.e. non-computable real. It is not hard to see that the
natural presentations of the computable metric spaces

[0, α] and [−α/2, α/2]

are not computably isometric.
These presentations add whole closed intervals each time α increases.

Can it be worse?

Theorem (Melnikov and N., 2012)

There are computable presentations L,R of a compact metric space so
that no isomorphism is ∆0

2.

The space is the closure of a computable sequence of elements σ0∞ in
Cantor space, for finite strings σ.

Can it be worse still?
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No! We can bound the complexity of some isometry

Theorem

Suppose that a compact metric space has two presentations L,R.
Then there is an isometry g : L→ R with g′ ≤T (L⊕R)′′.

Proof. Since any self-embedding of a compact metric space is onto, it
suffices to obtain an embedding g : L→ R (then use symmetry).

Let L have dense sequence (pn)n∈N. Start with an L⊕R-computable
double sequence yni (i < n) so that yn0 , . . . , y

n
n−1 realizes the same distances

as p0, . . . , pn−1, up to an error of 2−n.

The embedding g is given as a path h on a finitely branching Π0
1 tree

relative to (L⊕R)′, based on that double sequence. At each level we

typically consider a finite open cover and need to pick a en element of it

containing infinitely many elements of a computable sequence. We can

choose g low in (L⊕R)′ by the low basis theorem relative to (L⊕R)′.
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Some more detail on how to build embedding g : L→ R

I Let A∅ = N.

I A string σ ∈ ω<ω of length 2n can be extended by special point q
of R such that

d(ykn, q) < 2−n for infinitely many k ∈ Aσ.

Enumerate these k into a set Cσˆq.

I A string η ∈ ω<ω of length 2n+ 1 can be extended by a special
point r = 〈r0, . . . , rn〉 of Rn+1 such that

d(〈yk0 , . . . , ykn〉, r) < 2−n−1 for infinitely many k ∈ Cη.

Enumerate these k into a set Aηˆr.

By compactness of all the Rm and the low basis theorem relativized,
there is a path h ∈ ωω of allowed extensions with h′ ≤T (L⊕R)′′.
From h we compute a double sequence 〈wni 〉i≤n,0<n by letting

wni = the i-th component of h(2n).

For each i: (wni )n>i is a Cauchy name. So the point s zi := limn>i w
n
i

are uniformly computable in h. The map g : L→ R given by
g(pi) = zi preserves distances.
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Some directions and open questions

I Develop effective categoricity for compact computable metric
groups and other metric structures.

I Study weaker senses of similarity for compact computable metric
spaces: bi-Lipschitz equivalence, homeomorphism.
In particular, is homeomorphism Σ1

1-complete?

For the corresponding classical question, complexity of homeomorphism ∼=h

for compact metric spaces has not been determined. It is known that

E+
0 ≤B

∼=h≤B

isometry of metric spaces. The latter is easy because X ∼=h Y iff

C(X) ∼=i C(Y ). See Su Gao Ch 14 near end.
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