
How the Lebesgue density theorem
resolved the covering problem

involves work with L. Bienvenu, N. Greenberg,
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I the halting problem ∅′
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Adding the world of (anti-)randomness

Computable sets

I The Martin-Löf random
sets Z, such as Chaitin’s
halting probability Ω defined
later on. We have Ω ≡T ∅′.

I The antirandom (K-trivial)
sets.

If A is K-trivial, then there is c.e.
K-trivial set D ≥tt A. (Nies 2004)
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Kučera’s theorem and the covering problem

Computable sets

Let Z be random with Z 6≥T ∅′.
Let A ≤T Z be c.e.

Then A is K-trivial.
(Hirschfeldt, N., Stephan, 2007)

Covering problem (Stephan, 2004)

Let A be a c.e. K-trivial set.
Is there a ML-random Z ≥T A

with Z 6≥T ∅′?

We may omit the assumption that
A is c.e.: if not, replace A by a
c.e. K-trivial set D above A.
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A strong solution to the covering problem

Z

K-trivial sets

∅�
Theorem 5 + 2 authors

There is a ML-random set Z <T ∅′
above all the K-trivials.

How random can Z be?

Answer: not much more than
Martin-Löf random.

How close to ∅′ must Z lie?

Answer: Z is very close to ∅′.
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Background on random and antirandom sets
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Martin-Löf’s 1966 randomness notion

An infinite sequence Z of bits can be “identified” with the real
number z = 0.Z in [0, 1] via the binary expansion.

I A Martin-Löf test is an effective
descending sequence (Um)m∈N of
open sets in [0, 1] such that the
Lebesgue measure of Um is at
most 2−m.

I Intuitively, Um is an attempt to
approximate a real z with
accuracy 2−m.

I Z passes the test if

Z is not in all Um.

I Z is called Martin-Löf random if it
passes all ML-tests.

0 1

...

U0
U1
U2
U3
U4
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Descriptive string complexity K

Consider a partial computable function from binary strings to
binary strings (called machine). It is called prefix-free if its
domain is an antichain under the prefix relation of strings.

There is a universal prefix-free machine U:
for every prefix-free machine M ,

M(σ) = y implies U(τ) = y for some τ with |τ | ≤ |σ|+ dM ,

and the constant dM only depends on M .

The prefix-free Kolmogorov complexity of string y is the length
of a shortest U-description of y:

K(y) = min{|σ| : U(σ) = y}.
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The Schnorr/Levin 1973 Theorem

We think of a string τ as random if it is incompressible:
K(τ) > |τ | − b for some “small” constant b.
For an infinite sequence of bits Z, let

Z �n = Z(0) . . . Z(n− 1).

An infinite sequence of bits Z is Martin-Löf random iff each of
its initial segments is random as a string:

Theorem (Schnorr 1973; Levin 1973)

Z is ML-random ⇐⇒
there is b ∈ N such that ∀n [K(Z �n) > n− b].

Chaitin’s halting probability is ML-random:

Ω =
∑{2−|σ| : U halts on input σ}.
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Definition of K-triviality

In the following, we identify a natural number n with its binary
representation (as a string). For a string τ , up to additive const
we have K(|τ |) ≤ K(τ), since we can compute |τ | from τ .

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some b ∈ N,

∀n [K(A�n) ≤ K(n) + b],

namely, all its initial segments have minimal K-complexity.

It is not hard to see that K(n) ≤ 2 log2 n+O(1).

Z is random ⇔ ∀n [K(Z �n) > n −O(1)]
A is K-trivial ⇔ ∀n [K(A�n) ≤ K(n) +O(1)]

Thus, being K-trivial means being far from random.
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Some properties of the K-trivials

⌦

K-trivial sets

I Ideal in the ∆0
2 Turing degrees

(Chaitin ‘75, DHNS ‘03, N. ‘05)

I C.e. K-trivs have Σ0
3 index set

I they are all superlow: A′ ≤tt ∅′
(N. ‘05)

I there is no largest: for every
low c.e. set B, there is a
K-trivial set

A 6≤T B (N., ‘02)

I there is a low2 c.e. set C above
all of them (Barmpalias and N.,
2011)

I there is a low1 set R above all
of them (Kučera and Slaman)
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Some properties of the K-trivials
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Lebesgue Density

12/37



Density

Let λ denote uniform (Lebesgue) measure.

Definition

Let E be a subset of [0, 1]. The (lower) density of E at a real z
is

ρ(E | z) = lim inf
z∈J , |J |→0

λ(J ∩ E)

|J | ,

where J ranges over intervals.

This gauges how much of E is around z
as intervals zoom in on z.

It is the least fraction of E
in smaller and smaller intervals around z.
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Lebesgue

From HENRI LEBESGUE, Sur l’

intégration des fonctions discontinues,

Annales scientifiques de l’ É.N.S. 3e

série, tome 27 (1910), p. 361-450;

p. 407.

SUR I/INTÉGRATION DES FONCTIONS DISCONTINUES. 4^7

à droite supérieure à - (donc différente de zéro puisque K est quel-
conque) forment un ensemble de mesure nulle.

Soient maintenant un ensemble quelconque A, E un ensemble
d'intervalles contenant A; les points extérieurs à E en lesquels A n'a
pas une densité à droite nulle forment un ensemble de mesure nul le;
et cela étant vrai quel que soit E contenant A est vrai aussi des points
extérieurs à A. Soit B le complémentaire de A par rapport à un certain
intervalle; les points de B en lesquels A n'a pas une densité à droite
nulle forment, on vient de le voir, un ensemble de mesure nulle.
Permutons A et B dans l'énoncé de ce résultat, il reste vrai; or A +• B
a une densité égale à i en tout point; donc, les points d'un ensemble
de mesure n u l l e étant exceptés, la densité à droite de A est égale à un
en tout point de A, égale à zéro en tout point de B.

Raisonnant de même sur la densité à gauche, on voit finalement que
la densité d'un ensemble mesurable est égaie à un en presque tous les
points de cet ensemble.

34. C'est-à-dire qu'il est démontré qu'une fonction est presque
partout la dérivée de son intégrale indéfinie, lorsqu'il s'agit d'une
fonction ne prenant que les valeurs o ou i.

Par suite, ce théorème s'en déduit quand il s'agit de fonctions ne
prenant qu'un nombre fini de valeurs différentes. Passons au cas
général et supposons qu'il s'agisse d'une fonction qui n'est jamais
négative/. Soit E^ l'ensemble des points en lesquels on a

p£^f<.(p -+-!)£ (P=0, I, ...);

£ est u n e quantité positive arbitraire. Soit y^ la fonction égale h p e
dans E^,, pour p = o, i, ..., n et égale a zéro ailleurs. Les nombres
dérivés de l'intégrale de/sont au moins égaux à ceux de l'intégrale
de y/,; donc, presque partout, les nombres dérivés de l'intégrale de/
sont égaux ou supérieurs à /.

Soit $ la fonction égale à (p 4- i) s dans chaque B^. Les nombres
dérivés de f fdx ne surpassant pas ceux de ^dx, il suffirait de
démontrer le théorème pour la fonction $. Or, si <&^ est la fonction
définie comme étant égale à zéro dans E^ 4- E ^ . . . + E^ et égale à <&

Translation:

Theorem (Lebesgue Density Theorem, 1910)

Let E ⊆ [0, 1] be measurable. For almost every z ∈ [0, 1]:
if z ∈ E, then E has density 1 at z.
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Lebesgue’s Theorem: towards an effective version

Recall: ρ(E | z) = lim infJ interval,z∈J,|J |→0 λ(J ∩ E)/|J |.

Theorem (Lebesgue Density Theorem, 1910)

Let E ⊆ [0, 1] be measurable. Then for almost every z ∈ [0, 1]:
if z ∈ E, then ρ(E | z) = 1.

I If E is open, this is immediate, and actually holds for all
z ∈ [0, 1].

I If E is closed, this is the simplest case where there is
something to prove.

E ⊆ [0, 1] is effectively closed if one can list open intervals with
union [0, 1] \ E.

Definition

We say that a real z is a density-one point if ρ(E | z) = 1 for
every effectively closed E 3 z.
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Almost everywhere theorems and randomness

I Take an “almost everywhere” theorem from analysis,
saying that a function, set, etc. is well-behaved at almost
every real z.

I State an algorithmic version of the theorem.

I A sufficiently strong algorithmic randomness
condition on z implies that the theorem holds at z.

Does Martin-Löf randomness ensure that an effectively closed
E ⊆ [0, 1] has density one at z ∈ E?

Answer: NO!

Example

Let E 6= ∅, E ⊆ [0, 1] be an effectively closed set of Martin-Löf
randoms. Let z = min(E). Then ρ(E | z) = 0

(This uses that every ML-random is Borel normal.)
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Connecting density and K-triviality

This is based on the following work:

[Oberwolfach] Bienvenu, Greenberg, Kučera, N. Turetsky 2012 (early)

[Berkeley] Day and Miller 2012 (mid)

[Paris] Bienvenu, Miller, Hölzl and N. 2011
(STACS 2012)
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Turing incompleteness and positive density

Definition

We say that a real z is a positive density point if
ρ(E | z) > 0 for every effectively closed E 3 z.

For a real z 6∈ Q, let Z ∈ 2N denote its binary expansion:
z = 0.Z.

Theorem (Paris)

Let z be a Martin-Löf random real. Then
Z is NOT above the halting problem ∅′ ⇔

z is a positive density point.

This was applied to solve an open problem of Miller and
N. (2006) on the interaction of K-trivials and randoms:

a K-trivial does not help a random to compute ∅′.
Theorem (Day and Miller, 2012)

Let A ⊆ N be K-trivial. Suppose Z ⊆ N is a Martin-Löf
random set such that Z ⊕A ≥T ∅′. Then already Z ≥T ∅′.
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The main connection of density and K-trivials
Recall: ρ(E | z) = lim inf |J|→0,z∈J λ(J ∩ E)/|J |.

Definition (Recall)

We say that a real z is a density-one point if
ρ(E | z) = 1 for every effectively closed E 3 z.

In other words, z satisfies the Lebesgue Theorem for effectively closed

sets.

Z

K-trivial sets

∅�

Theorem (Oberwolfach)

Let z be a Martin-Löf random real.
Suppose z is NOT a density-one
point.

Then Z is above all the K-trivials.
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Theorem (Oberwolfach)

Let z be a Martin-Löf random real.
Suppose z is NOT a density-one point.

Then Z is above all the K-trivials.

It is easier to work in Cantor space 2N. For a string σ, let

[σ] = {X ∈ 2N : X � σ}

For E ⊆ 2N and Z ∈ 2N, let the lower dyadic density be

ρ2(E | Z) = lim inf
σ≺Z , |σ|→∞

λ([σ] ∩ E)2−|σ|;

Khan and Miller have shown that for ML-random Z, dyadic
density-one points are already full density-one points. So the
transition to Cantor space is fine.
We use a new notion called Oberwolfach (OW) randomness. We
have

OW-random ⇒ ML-random,

but not conversely.
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Oberwolfach randomness

A real β is left-c.e. if β = supβn for an increasing computable
sequence (βn)m∈N of rationals.

I A left-c.e. bounded test is an
effective descending sequence
(Un)m∈N of open sets in [0, 1],
together with (βn)m∈N, such that
λ(Un) ≤ β − βn.

I Z passes the test if

Z is not in all Un.

I Z is Oberwolfach random if it
passes all left-c.e. bounded tests.

0 1

...

U0
U1
U2
U3
U4

We can use a similar definition in Cantor space 2N. They are
equivalent via the binary expansion.
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There are two parts to the argument to establish that every
ML-random non-density-one point Z is above all the K-trivials.

Part 1: If E ⊆ 2N is a Π0
1 class, Z ∈ E, and ρ2(E | Z) < 1,

then Z is not OW random.

Part 2: If Z is ML-random, but not OW random,

then Z is above all the K-trivials.
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Part 1. If E ⊆ 2N is a Π0
1 class, Z ∈ E and ρ2(E | Z) < Θ < 1

then Z is not OW random.

The Oberwolfach group used convergence of left-c.e. martingales.

J. Miller’s later proof:

For S ⊆ 2<ω let [S]≺ denote the open set it generates in Cantor
space. Let λσ(E) be the local measure 2−|σ|λ(E ∩ [σ]).

Let σ0, σ1, . . . be a prefix-free sequence of strings such that
2N \ E =

⋃
n[σn] = [σ0, σ1, . . .]

≺.

Let βn = λ[σ0, . . . , σn−1]≺, and β = supn βn

Un = {Y : ∃k λ[Y�k] ([σn, σn+1, . . .]
≺) > 1−Θ}.

I Since Z ∈ E, and (σi)i∈N is prefix free, Z ∈ Un for each n

I λ(Un) ≤ 1
1−Θ(β − βn).

So Z is not OW random.
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Part 2: If Z is ML-random, but not OW random,
then Z is above each K-trivial set A.

Suppose β = supβn for an increasing computable sequence
(βn)n∈N of rationals. Suppose Z ∈ ⋂

Un where λ(Un) ≤ β − βn.

Since A is K-trivial, by a result of N. (2010), there is a
computable enumeration (As) of A such that

∞ >
∑

s{βs − βn : n is least such that As(n) 6= As−1(n)}.

We define a Turing functional, and declare that all the oracles
in Un,s−1 compute As−1(n). If As(n) 6= As−1(n), let Vs = Un,s−1

be the class of oracles that are now incorrect.

Since λUn,s−1 ≤ βs − βn, we have
∑

s λVs <∞. So (Vs)s∈N is a
“Solovay test”: If the oracle Z is incorrect infinitely often, it
fails this test, so it is not ML-random. Thus A ≤T Z.
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The main connection of density and K-trivials

Z

K-trivial sets

∅�

We have proved:

Theorem

Let z be a Martin-Löf random real.
Suppose z is not a density-one point.

Then Z is above all the K-trivials.

[Paris] in their journal version
subsequently give a direct proof, not
using OW-randomness.
Rather than K-trivial, it is based on
the equivalent lowness for MLR.
The proof given here also leads to a
new proof that K-trivial implies low
for MLR.

To solve the covering problem, we need to know:

Does Z as in the picture exist?
Where do we get a ML-random set Z 6≥T ∅′

that is not a density-one point?
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Why such a Z exists

Theorem (Berkeley, i.e., Day and Miller)

Let P be a nonempty Π0
1 class of ML-randoms. There is a ML-

random set Z 6≥T ∅′ such that ρ2(P | Z) ≤ 1/2.

[Paris] characterized difference randomness of a ML-random Z
via positive density:

Z 6≥T ∅′ iff Z is a positive density point.

Berkeley built a set Z that is a positive density point.

Note that, for the Day-Miller set Z, the local measure λσ(Z) for
σ ≺ Z oscillates between 1 (asymptotically), and a value ε with
0 < ε ≤ 1/2.
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Why such a Z exists

Theorem (Berkeley)

Let P be a nonempty Π0
1 class of ML-randoms. There is a ML-

random set Z 6≥T ∅′ such that ρ2(P | Z) ≤ 1/2.

Proof. Force with conditions of the form 〈σ,Q〉, where

I σ is a string, Q ⊆ P , [σ] ∩Q 6= ∅
I there is δ < 1/2 such that each string τ � σ has two options:

either [τ ] ∩Q = ∅, or λτ (Q) ≥ λτ (P )− δ.
(Q either loses all, or ≤ δ of P ’s local measure within [τ ].)

〈σ′, Q′〉 extends 〈σ,Q〉 if σ′ � σ and Q′ ⊆ Q.
We have an initial condition 〈∅, P 〉 (via δ = 0).

If G is a sufficiently generic filter, then ZG =
⋃{σ : 〈σ,Q〉 ∈ G}

is a ML-random positive density point, and ρ2(P | Z) ≤ 1/2.
Then by Bienvenu et al., Z 6≥T ∅′.
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The strongest answer to the covering question
Berkeley’s careful effectvization of the forcing yields a ∆0

2 set Z.

Theorem (Oberwolfach + Berkeley)

There is a ML-random set Z <T ∅′
above all the K-trivials.

How random can Z be?

Answer: not much more than
Martin-Löf random.

Why?
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Z cannot be OW-random

 

Z

A

K-trivial sets

∅�
not OW-random

Theorem (Oberwolfach)

There is a K-trivial set A so that
no set Z ≥T A is OW-random.

So Z is ML-random and incomplete
(difference random), but not much
more.

We call A a “smart” K-trivial: any

random set above A is above all the

K-trivials.
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Z must be very close to ∅′
Recall that Y is LR-hard if every Y -random set is random
relative to ∅′. Such a set is superhigh: ∅′′ ≤tt Y

′. A ML-random
LR-hard set Y 6≥T ∅′ was built by N. (2009); Kučera.

Z

K-trivial sets

∅�

A

Theorem (Oberwolfach)

If Z is ML-random but not OW-
random, then Z is LR-hard.

Thus, the set Z ≥T A is
necessarily LR-hard, and so,
very close to ∅′.
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Density randomness
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Definition

We say that Z is density random if Z is ML-random and
ρ2(P | Z) = 1 for each Π0

1 class P ∈ Z.

We can equivalently require density 1 in the setting of reals.

Theorem

The following are equivalent for Z ∈ 2N, z = 0.Z.

I Z is density random

I [Madison group, 2012] Each left-c.e. martingale M
converges: limnM(Z �n) exists (M(σ) is a c.e. real
uniformly in string σ)

I [N., 2013] f ′(z) exists for each interval-c.e. function f
(basically, the variation function of a computable function)

I [Miyabe, 2013] z is a Lebesgue point for each integrable

lower semicomputable function f : [0, 1]→ R+
.
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Randomness in the higher setting

I N. and Hjorth (2007) studied randomness using tools from
effective descriptive set theory, rather than algorithmic
tools. The idea is to replace c.e. objects by Π1

1 objects in
the definitions of tests.

I There is much recent work on this: Chong and Yu;
Bienvenu, Greenberg and Monin.

Theorem (Greenberg and N., 2013, based on Madison)

The following are equivalent for Z ∈ 2N, z = 0.Z.

I Z is Π1
1-ML random and ρ2(C | Z) = 1 for each closed Σ1

1

class C 3 Z.

I The same without “closed”

I Every left-Π1
1 martingale converges along Z.
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Questions on separating the new randomness notions

Question (Oberwolfach, Miller)

Is the implication

Oberwolfach random ⇒ density random

a proper one? Equivalently, can a ML-random Z above all the
K-trivials be density random?

Question (Oberwolfach)

Is the implication

ML-random ∧ not LR-hard ⇒ Oberwolfach random

a proper one?
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Questions on density randomness

Question (Turetsky)

Is density randomness closed downward within the
ML-randoms?

This is known for most randomness notions stronger than

Martin-Löf’s, including for OW-randomness (by the results above).

Question (Franklin)

Is density randomness equivalent to being a Birkhoff point for
each computable measure preserving operator and
semicomputable function?
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Book references for background

My book
“Computability and Randomness”,
Oxford University Press, 447 pages, Feb. 2009;
Paperback version Mar. 2012.

Theory and Applications of Computability

Books published in this series will be of interest to the research community  
and graduate students, with a unique focus on issues of computability.  
The perspective of the series is multidisciplinary, recapturing the spirit of 
Turing by linking theoretical and real-world concerns from computer science, 
 mathematics, biology, physics, and the philosophy of science. 

The series includes research monographs, advanced and graduate texts, 
and books that offer an original and informative view of computability and 
 computational paradigms.

In cooperation with the 
Computability in Europe 
association

Algorithm
ic Random

ness 
and Com

plexity

Downey · Hirschfeldt

Algorithmic Randomness  
and Complexity
Intuitively, a sequence such as 101010101010101010… does not seem random, whereas 101101011101010100…, 
obtained using coin tosses, does. How can we reconcile this intuition with the fact that both are statistically  
equally likely? What does it mean to say that an individual mathematical object such as a real number is random, or 
to say that one real is more random than another? And what is the relationship between randomness and  
computational power?

 The theory of algorithmic randomness uses tools from computability theory and algorithmic information theory to 
address questions such as these. Much of this theory can be seen as exploring the relationships between three  
fundamental concepts: relative computability, as measured by notions such as Turing reducibility; information 
content, as measured by notions such as Kolmogorov complexity; and randomness of individual objects, as first  
successfully defined by Martin-Löf. Although algorithmic randomness has been studied for several decades,  
a dramatic upsurge of interest in the area, starting in the late 1990s, has led to significant advances.

 This is the first comprehensive treatment of this important field, designed to be both a reference tool for experts 
and a guide for newcomers. It surveys a broad section of work in the area, and presents most of its major results 
and techniques in depth. Its organization is designed to guide the reader through this large body of work, providing 
context for its many concepts and theorems, discussing their significance, and highlighting their interactions.  
It includes a discussion of effective dimension, which allows us to assign concepts like Hausdorff dimension to 
individual reals, and a focused but detailed introduction to computability theory. It will be of interest to researchers 
and students in computability theory, algorithmic information theory, and theoretical computer science.

 springer.com

 ISBN 978-0-387-95567-4

D
ow

ney · H
irschfeldt

Rodney G. Downey · Denis R. Hirschfeldt

Algorithmic Randomness 
and Complexity

Book by Downey and Hirschfeldt:
“Algorithmic Randomness and Complexity”,
Springer, > 800 pages, Dec. 2010;
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Paper and preprint references

[Everyone] Bienvenu, Day, Greenberg, Kučera, Miller, N., Turetsky
Computing K-trivial sets by incomplete random sets
Bulletin of Symbolic Logic, in press.

[Oberwolfach] Bienvenu, Greenberg, Kučera, N., Turetsky
Oberwolfach randomness, K-triviality, and
differentiability. Preprint, MFO, 2012. Submitted.

[Berkeley] Day and Miller
Density, forcing and the covering problem (in prep.)

[Paris] Bienvenu, Miller, Hölzl and N.
The Denjoy alternative for computable functions
STACS 2012, 543 - 554.
Demuth, Denjoy, and Density (27 pages).
Submitted, and on ArXiv.
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