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» The Martin-Lof random
sets Z, such as Chaitin’s
halting probability Q2 defined
later on. We have Q =1 /.
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sets.

If A is K-trivial, then there is c.e.
K-trivial set D >;; A. (Nies 2004)
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Kucera’s theorem and the covering problem

Let Z be a random AY set. Then
there is a c.e., incomputable set
A<t Z. (Kucera, 1986)
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Kucera’s theorem and the covering problem

Let Z be random with Z 21 (.
Let A <1 Z be c.e.
Then A is K-trivial.
(Hirschfeldt, N., Stephan, 2007)

Covering problem (Stephan, 2004)

Let A be a c.e. K-trivial set.
Is there a ML-random Z > A

W‘ith Z \ZT ‘Z)/?

We may omit the assumption that
A is c.e.: if not, replace A by a
c.e. K-trivial set D above A.
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A strong solution to the covering problem

Theorem 5 + 2 authors
There is a ML-random set Z <7 (I
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There is a ML-random set Z <7 (I
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How random can Z be?

Answer: not much more than
Martin-Lof random.
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Background on random and antirandom sets
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Martin-Lof’s 1966 randomness notion

An infinite sequence Z of bits can be “identified” with the real
number z = 0.7 in [0, 1] via the binary expansion.

» A Martin-Lof test is an effective

descending sequence (U, )men of
open sets in [0, 1] such that the

Lebesgue measure of U, is at 0 1
—m
most 27, U,
» Intuitively, U,, is an attempt to U,
approximate a real z with U
accuracy 27", 2
Us
» 7 passes the test if
U,

Z is not in all U,,.

» 7 is called Martin-Lof random if it
passes all ML-tests.

~
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Descriptive string complexity K

Consider a partial computable function from binary strings to
binary strings (called machine). It is called prefix-free if its
domain is an antichain under the prefix relation of strings.

There is a universal prefix-free machine U:
for every prefix-free machine M,

M (o) = y implies U(7) = y for some 7 with |7| < |o| + dps,
and the constant d,; only depends on M.

The prefix-free Kolmogorov complexity of string y is the length
of a shortest U-description of y:

K(y) = min{lo|: U(o) = y}.



The Schnorr/Levin 1973 Theorem

We think of a string 7 as random if it is incompressible:
K (1) > |r| — b for some “small” constant b.
For an infinite sequence of bits Z, let

Zln = Z(0)...Z(n—1).

An infinite sequence of bits Z is Martin-Lof random iff each of
its initial segments is random as a string:

Theorem (Schnorr 1973; Levin 1973)
Z is ML-random <=

there is b € N such that Yn[K(Z [,) > n — b].

Chaitin’s halting probability is ML-random:

Q = Y{271°l: U halts on input o}.



Definition of K-triviality

In the following, we identify a natural number n with its binary
representation (as a string). For a string 7, up to additive const
we have K (|7|) < K(7), since we can compute |7| from 7.
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we have K (|7|) < K(7), since we can compute |7| from 7.

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some b € N,
Vn|[K(Al,) < K(n)+ 1),
namely, all its initial segments have minimal K-complexity.

It is not hard to see that K(n) < 2logyn + O(1).

Zis random & Vn[K(Z1],) >n —0(1)]
Ais K-trivial & Vn[K(Al,) < K(n) +0(1)]

Thus, being K-trivial means being far from random.
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Some properties of the K-trivials

» Ideal in the A Turing degrees
(Chaitin ‘75, DHNS ‘03, N. ‘05)
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Some properties of the K-trivials

» Ideal in the A Turing degrees
(Chaitin ‘75, DHNS ‘03, N. ‘05)
» C.e. K-trivs have X index set

» they are all superlow: A’ < (/
(N. ‘05)
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Some properties of the K-trivials

» Ideal in the A Turing degrees
(Chaitin ‘75, DHNS ‘03, N. ‘05)

» there is no largest: for every
low c.e. set B, there is a
K-trivial set
A £t B (N, ‘02)
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Some properties of the K-trivials

» Ideal in the A Turing degrees
(Chaitin ‘75, DHNS ‘03, N. ‘05)

» there is a lowy c.e. set C' above
all of them (Barmpalias and N.,
2011)
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Some properties of the K-trivials

» Ideal in the A Turing degrees
(Chaitin ‘75, DHNS ‘03, N. ‘05)

K-trivial sets » there is a low; set R above all
of them (Kucera and Slaman)
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Density

Let A denote uniform (Lebesgue) measure.

Definition

Let E be a subset of [0,1]. The (lower) density of E at a real z
is

. ... MJNE)
E = ==z
B |2) = lminf ——7—,

where J ranges over intervals.

This gauges how much of F is around z

as intervals zoom in on z.

It is the least fraction of F

in smaller and smaller intervals around z.



Lebesgue

From HENRI LEBESGUE, Sur I’
intégration des fonctions discontinues,
Annales scientifiques de I’ E.N.S. 3¢
série, tome 27 (1910), p. 361-450;

p- 407.

Raisonnant de méme sur la densité d gauche, on voit finalement que
la densité d’un ensemble mesurable est égale & un en presque tous les
points de cel ensemble.

Translation:
Theorem (Lebesgue Density Theorem, 1910)

Let E C [0, 1] be measurable. For almost every z € [0, 1]:
if z € E, then E has density 1 at z.



Lebesgue’s Theorem: towards an effective version
Recall: p(E | z) = liminf jiperval ze 10 A(J N E)/|J].

Theorem (Lebesgue Density Theorem, 1910)

Let E C [0,1] be measurable. Then for almost every z € [0, 1]:
ifz€ E, then p(E | z) = 1.

» If F is open, this is immediate, and actually holds for all
z €]0,1].

» If F is closed, this is the simplest case where there is
something to prove.

E C[0,1] is effectively closed if one can list open intervals with
union [0,1] \ E.
Definition

We say that a real z is a density-one point if p(E | z) =1 for
every effectively closed F > z.



Almost everywhere theorems and randomness

» Take an “almost everywhere” theorem from analysis,
saying that a function, set, etc. is well-behaved at almost
every real z.

» State an algorithmic version of the theorem.
» A sufficiently strong algorithmic randomness
condition on z implies that the theorem holds at z.

Does Martin-Lof randomness ensure that an effectively closed
E C [0, 1] has density one at z € E?

Answer: NO!

Example

Let E # (), E C [0,1] be an effectively closed set of Martin-Lof
randoms. Let z = min(E). Then p(E | z) =0

(This uses that every ML-random is Borel normal.)
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Connecting density and K-triviality

This is based on the following work:

[Oberwolfach] Bienvenu, Greenberg, Kucera, N. Turetsky 2012 (early)
[Berkeley] Day and Miller 2012 (mid)

[Paris] Bienvenu, Miller, Holzl and N. 2011
(STACS 2012)



Turing incompleteness and positive density

Definition
We say that a real z is a positive density point if
p(E | z) > 0 for every effectively closed E > z.

For a real z ¢ Q, let Z € 2" denote its binary expansion:
z=0.27.

Theorem (Paris)

Let z be a Martin-Lof random real. Then

7 is NOT above the halting problem ()/ <
z is a positive density point.

This was applied to solve an open problem of Miller and
N. (2006) on the interaction of K-trivials and randoms:
a K-trivial does not help a random to compute (.

Theorem (Day and Miller, 2012)

Let A C N be K-trivial. Suppose Z C N is a Martin-Lof
random set such that Z & A >1 (). Then already Z >1 /.

18/37



The main connection of density and K-trivials
Recall: p(E | z) = liminf| ;0.7 A(J N E)/|J].
Definition (Recall)

We say that a real z is a density-one point if
p(E | z) = 1 for every effectively closed E > z.

In other words, z satisfies the Lebesgue Theorem for effectively closed
sets.

Z

Theorem (Oberwolfach)

Let z be a Martin-Lof random real.
Suppose z is NOT a density-one

point.

Then Z is above all the K-trivials.

N

~
N

N
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Theorem (Oberwolfach)

Let z be a Martin-Lof random real.

Suppose z is NOT a density-one point.

Then Z is above all the K-trivials.

It is easier to work in Cantor space 2N. For a string o, let
o] ={X €2V: X =~ o}

For E C 2¥ and Z € 2V, let the lower dyadic density be

p2(E | Z) = liminf A([o] mE)Q*\U\;

oc=<Z,|o|—o00
Khan and Miller have shown that for ML-random 7, dyadic
density-one points are already full density-one points. So the
transition to Cantor space is fine.
We use a new notion called Oberwolfach (OW) randomness. We
have

OW-random = ML-random,

but not conversely.
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A real § is left-c.e. if B = sup 3, for an increasing computable
sequence (f3,)men of rationals.
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Oberwolfach randomness

A real § is left-c.e. if B = sup 3, for an increasing computable
sequence (f3,)men of rationals.

» A left-c.e. bounded test is an
effective descending sequence 0
(Un)men of open sets in [0, 1],

together with (3, )men, such that Yo
)‘(Un) S /8 - Bn U1

» Z passes the test if U,
Z is not in all U,,. Uy

U

N~

» 7 is Oberwolfach random if it
passes all left-c.e. bounded tests.

We can use a similar definition in Cantor space 2. They are
equivalent via the binary expansion.



There are two parts to the argument to establish that every
ML-random non-density-one point Z is above all the K-trivials.

Part 1: If EC 2V is a TI{ class, Z € E, and p2(E | Z) < 1,

then Z is not OW random.

Part 2: If Z is ML-random, but not OW random,

then Z is above all the K-trivials.
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Part 1. If EC 2V is a TI{ class, Z € E and po(E | Z) <O < 1

then Z is not OW random.

The Oberwolfach group used convergence of left-c.e. martingales.

J. Miller’s later proof:

For S C 2<% let [S]™ denote the open set it generates in Cantor
space. Let A\, (E) be the local measure 27 17I\(E N [o]).

Let 09,01, ... be a prefix-free sequence of strings such that
2N\ E =, [on] = [00,01, .. ]F
Let 8, = Moo, . ..,0n-1]", and 8 = sup,, 5n

Un =A{Y: 3k Ay, (lon, 0ng1,--.]°) > 1 -0}
» Since Z € E, and (0;)¢cn is prefix free, Z € U, for each n

So Z is not OW random.



Part 2: If Z is ML-random, but not OW random,
then Z is above each K-trivial set A.

Suppose S = sup [, for an increasing computable sequence
(Bn)nen of rationals. Suppose Z € (U, where A(U,,) < 8 — fp.

Since A is K-trivial, by a result of N. (2010), there is a
computable enumeration (A;) of A such that

00 > Y {Bs — Pn: nis least such that As(n) # As—1(n)}.

We define a Turing functional, and declare that all the oracles
in Uy, s—1 compute As_1(n). If As(n) # As—1(n), let Vs = U, 51

be the class of oracles that are now incorrect.

Since AUp s—1 < s — B, we have > AVs < 00. So (Vs)sen is a
“Solovay test”: If the oracle Z is incorrect infinitely often, it
fails this test, so it is not ML-random. Thus A <t Z.



The main connection of density and K-trivials
We have proved:

Theorem

7
Let 2z be a Martin-Lof random real.

Suppose z is not a density-one point.

Then Z is above all the K-trivials.
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The main connection of density and K-trivials

Z

N

N

K-trivial sets

We have proved:
Theorem

Let z be a Martin-Lof random real.
Suppose z is not a density-one point.

Then Z is above all the K-trivials.

[Paris] in their journal version
subsequently give a direct proof, not
using OW-randomness.

Rather than K-trivial, it is based on
the equivalent lowness for MLR.

The proof given here also leads to a
new proof that K-trivial implies low
for MLR.



The main connection of density and K-trivials
We have proved:

Theorem

Z

N

~
N

K-trivial sets

To solve the covering problem, we need to know:

Does Z as in the picture exist?

Let z be a Martin-Lof random real.
Suppose z is not a density-one point.

Then Z is above all the K-trivials.
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The main connection of density and K-trivials
We have proved:

Theorem

Z

N

~
N

K-trivial sets

To solve the covering problem, we need to know:

Does Z as in the picture exist?
Where do we get a ML-random set Z %7 ()
that is not a density-one point?

Let z be a Martin-Lof random real.
Suppose z is not a density-one point.

Then Z is above all the K-trivials.

3
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Why such a Z exists
Theorem (Berkeley, i.e., Day and Miller)

Let P be a nonempty I1{ class of ML-randoms. There is a ML-

random set Z Z7p (' such that po(P | Z) < 1/2.

[Paris] characterized difference randomness of a ML-random Z
via positive density:

Z #7 O iff Z is a positive density point.

Berkeley built a set Z that is a positive density point.

Note that, for the Day-Miller set Z, the local measure \,(Z) for
o < Z oscillates between 1 (asymptotically), and a value € with
0<e<1/2.



Why such a Z exists

Theorem (Berkeley)

Let P be a nonempty 11} class of ML-randoms. There is a ML-

random set Z Z7p (' such that po(P | Z) < 1/2.
Proof. Force with conditions of the form (o, @), where
» oisastring, Q C P, [0]NQ #0
» there is § < 1/2 such that each string 7 = o has two options:
either [7]NQ =10, or A-(Q) > A\ (P) —é.
(Q either loses all, or < § of P’s local measure within [7].)

(o', Q") extends (0,Q) if 0/ = o and Q' C Q.
We have an initial condition (f), P) (via 6 = 0).

If G is a sufficiently generic filter, then Zg = |J{o: (0,Q) € G}
is a ML-random positive density point, and po(P | Z) < 1/2.
Then by Bienvenu et al., Z 27 (V.

%}
J
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The strongest answer to the covering question
Berkeley’s careful effectvization of the forcing yields a AJ set Z.
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The strongest answer to the covering question
Berkeley’s careful effectvization of the forcing yields a AJ set Z.

Theorem (Oberwolfach + Berkeley)

There is a ML-random set Z <7 ()/

above all the K-trivials.

How random can Z be?

Answer: not much more than
Martin-Lof random.

Why?

K-trivial sets
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7 cannot be OW-random

Theorem (Oberwolfach)

There is a K-trivial set A so that
no set Z >7 A is OW-random.

not OW

So Z is ML-random and incomplete
(difference random), but not much
more.

We call A a “smart” K-trivial: any
random set above A is above all the

/

B K-trivials.
K-trivial sets
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Z must be very close to (

Recall that Y is LR-hard if every Y-random set is random
relative to (/. Such a set is superhigh: (" < Y’. A ML-random
LR-hard set Y 27 (' was built by N. (2009); Kucera.

Theorem (Oberwolfach)
If Z is ML-random but not OW-

random, then Z is LR-hard.

Thus, the set Z >p A is
necessarily LR-hard, and so,
very close to (/.

N
N
N
N

K-trivial sets
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Density randomness



Definition

We say that Z is density random if Z is ML-random and
p2(P | Z) =1 for each IIY class P € Z.

We can equivalently require density 1 in the setting of reals.

Theorem

The following are equivalent for Z € 2N, 2 = 0.Z.

» 7 is density random

» [Madison group, 2012] Each left-c.e. martingale M
converges: lim,, M (Z [,) exists (M (o) is a c.e. real
uniformly in string o)

» [N., 2013] f'(z) exists for each interval-c.e. function f
(basically, the variation function of a computable function)

» [Miyabe, 2013] z is a Lebesgue point for each integrable
lower semicomputable function f: [0,1] — R



Randomness in the higher setting

» N. and Hjorth (2007) studied randomness using tools from
effective descriptive set theory, rather than algorithmic
tools. The idea is to replace c.e. objects by II1 objects in
the definitions of tests.

» There is much recent work on this: Chong and Yu;
Bienvenu, Greenberg and Monin.

Theorem (Greenberg and N., 2013, based on Madison)
The following are equivalent for Z € 2V, 2 = 0.Z.

» Z is II}-ML random and ps(C | Z) = 1 for each closed X}
class C > Z.
» The same without “closed”

» Every left-II} martingale converges along Z.



Questions on separating the new randomness notions

Question (Oberwolfach, Miller)

Is the implication
Oberwolfach random = density random

a proper one? Equivalently, can a ML-random Z above all the
K-trivials be density random?

Question (Oberwolfach)
Is the implication
ML-random A not LR-hard = Oberwolfach random

a proper one?



Questions on density randomness

Question (Turetsky)
Is density randomness closed downward within the
ML-randoms?

This is known for most randomness notions stronger than
Martin-Lof’s, including for OW-randomness (by the results above).

Question (Franklin)

Is density randomness equivalent to being a Birkhoff point for
each computable measure preserving operator and
semicomputable function?



Book references for background

My book

“Computability and Randomness”,

Oxford University Press, 447 pages, Feb. 2009;
Paperback version Mar. 2012.

Computability

and Randomness

Book by Downey and Hirschfeldt:
“Algorithmic Randomness and Complexity”,
Springer, > 800 pages, Dec. 2010;
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