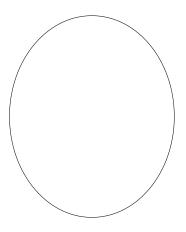
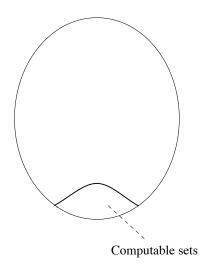
How the Lebesgue density theorem resolved the covering problem

involves work with L. Bienvenu, N. Greenberg, A. Kučera, D. Turetsky, and work by A. Day and J. Miller

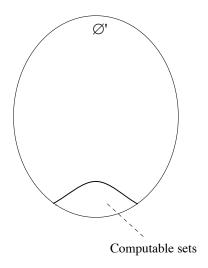
André Nies

ALC 2013, Guangzhou

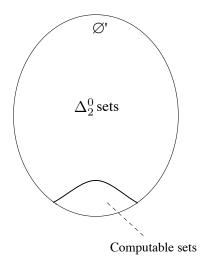




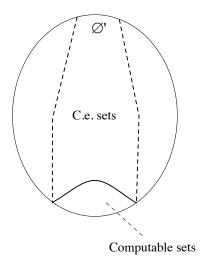
▶ The computable subsets of \mathbb{N}



- ▶ The computable subsets of \mathbb{N}
- ▶ the halting problem \emptyset'

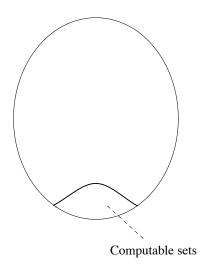


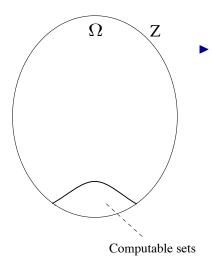
- ▶ The computable subsets of \mathbb{N}
- ▶ the halting problem \emptyset'
- ▶ Turing reducibility \leq_T
- ▶ the Δ_2^0 sets $(A \leq_{\mathrm{T}} \emptyset')$



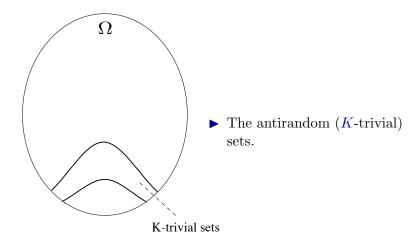
- ▶ The computable subsets of \mathbb{N}
- ▶ the halting problem \emptyset'
- ▶ Turing reducibility \leq_T

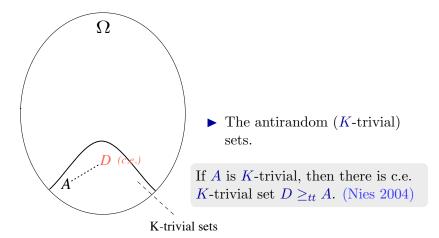
► the computably enumerable sets

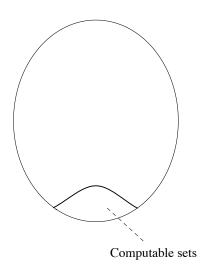


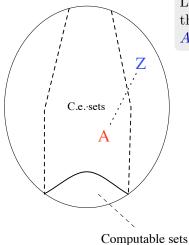


The Martin-Löf random sets Z, such as Chaitin's halting probability Ω defined later on. We have $\Omega \equiv_T \emptyset'$.

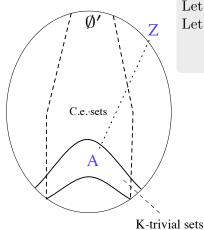




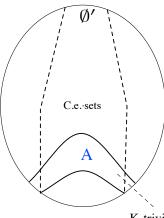




Let Z be a random Δ_2^0 set. Then there is a c.e., incomputable set $A \leq_{\rm T} Z$. (Kučera, 1986)



Let Z be random with $Z \geq_T \emptyset'$. Let $A \leq_T Z$ be c.e. Then A is K-trivial. (Hirschfeldt, N., Stephan, 2007)

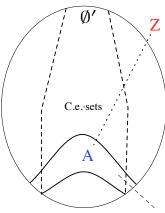


Let Z be random with $Z \geq_T \emptyset'$. Let $A \leq_T Z$ be c.e. Then A is K-trivial. (Hirschfeldt, N., Stephan, 2007)

Covering problem (Stephan, 2004)

Let A be a c.e. K-trivial set.

K-trivial sets

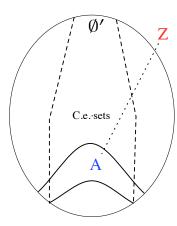


Let Z be random with $Z \not\geq_T \emptyset'$. Let $A \leq_T Z$ be c.e. Then A is K-trivial. (Hirschfeldt, N., Stephan, 2007)

Covering problem (Stephan, 2004)

Let A be a c.e. K-trivial set. Is there a ML-random $Z \ge_T A$ with $Z \ge_T \emptyset'$?

K-trivial sets

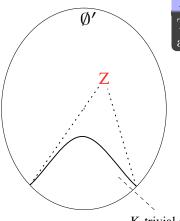


Let Z be random with $Z \geq_T \emptyset'$. Let $A \leq_T Z$ be c.e. Then A is K-trivial. (Hirschfeldt, N., Stephan, 2007)

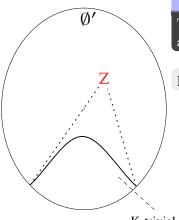
Covering problem (Stephan, 2004)

Let A be a c.e. K-trivial set. Is there a ML-random $Z \ge_T A$ with $Z \ge_T \emptyset'$?

We may omit the assumption that A is c.e.: if not, replace A by a c.e. K-trivial set D above A.

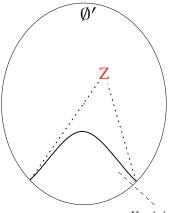


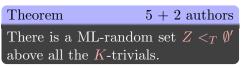
K-trivial sets



How random can Z be?

K-trivial sets

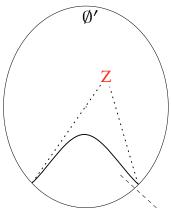




How random can Z be?

Answer: not much more than Martin-Löf random.

K-trivial sets



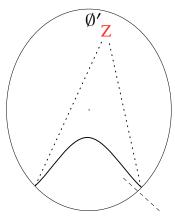
Theorem5+2 authorsThere is a ML-random set $Z <_T \emptyset'$ above all the K-trivials.

How random can Z be?

Answer: not much more than Martin-Löf random.

How close to \emptyset' must Z lie?

K-trivial sets



Theorem5+2 authorsThere is a ML-random set $Z <_T \emptyset'$ above all the K-trivials.

How random can Z be?

Answer: not much more than Martin-Löf random.

How close to \emptyset' must Z lie?

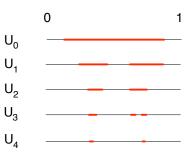
Answer: Z is very close to \emptyset' .

K-trivial sets

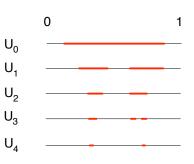
Background on random and antirandom sets

An infinite sequence Z of bits can be "identified" with the real number z = 0.Z in [0, 1] via the binary expansion.

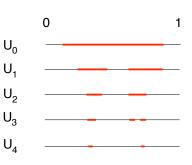
▶ A Martin-Löf test is an effective descending sequence $(U_m)_{m \in \mathbb{N}}$ of open sets in [0, 1] such that the Lebesgue measure of U_m is at most 2^{-m} .



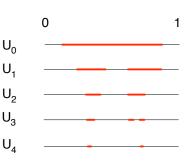
- ▶ A Martin-Löf test is an effective descending sequence $(U_m)_{m \in \mathbb{N}}$ of open sets in [0, 1] such that the Lebesgue measure of U_m is at most 2^{-m} .
- ▶ Intuitively, U_m is an attempt to approximate a real z with accuracy 2^{-m} .



- ▶ A Martin-Löf test is an effective descending sequence $(U_m)_{m \in \mathbb{N}}$ of open sets in [0, 1] such that the Lebesgue measure of U_m is at most 2^{-m} .
- ▶ Intuitively, U_m is an attempt to approximate a real z with accuracy 2^{-m} .
- Z passes the test if Z is not in all U_m .



- ▶ A Martin-Löf test is an effective descending sequence $(U_m)_{m \in \mathbb{N}}$ of open sets in [0, 1] such that the Lebesgue measure of U_m is at most 2^{-m} .
- ▶ Intuitively, U_m is an attempt to approximate a real z with accuracy 2^{-m} .
- Z passes the test if Z is not in all U_m .
- ► Z is called Martin-Löf random if it passes all ML-tests.



Descriptive string complexity K

Consider a partial computable function from binary strings to binary strings (called machine). It is called prefix-free if its domain is an antichain under the prefix relation of strings.

There is a universal prefix-free machine \mathbb{U} : for every prefix-free machine M,

 $M(\sigma) = y$ implies $\mathbb{U}(\tau) = y$ for some τ with $|\tau| \leq |\sigma| + d_M$,

and the constant d_M only depends on M.

The prefix-free Kolmogorov complexity of string y is the length of a shortest U-description of y:

 $K(y) = \min\{|\sigma| \colon \mathbb{U}(\sigma) = y\}.$

The Schnorr/Levin 1973 Theorem

We think of a string τ as random if it is incompressible: $K(\tau) > |\tau| - b$ for some "small" constant b. For an infinite sequence of bits Z, let

 $Z\upharpoonright_n = Z(0)\ldots Z(n-1).$

An infinite sequence of bits Z is Martin-Löf random iff each of its initial segments is random as a string:

Theorem (Schnorr 1973; Levin 1973)

Z is ML-random \iff

there is $b \in \mathbb{N}$ such that $\forall n [K(Z \upharpoonright_n) > n - b]$.

Chaitin's halting probability is ML-random:

 $\Omega = \sum \{ 2^{-|\sigma|} \colon \mathbb{U} \text{ halts on input } \sigma \}.$

In the following, we identify a natural number n with its binary representation (as a string). For a string τ , up to additive const we have $K(|\tau|) \leq K(\tau)$, since we can compute $|\tau|$ from τ .

In the following, we identify a natural number n with its binary representation (as a string). For a string τ , up to additive const we have $K(|\tau|) \leq K(\tau)$, since we can compute $|\tau|$ from τ .

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some $b \in \mathbb{N}$,

 $\forall n \left[K(A \upharpoonright_n) \le K(n) + b \right],$

namely, all its initial segments have minimal K-complexity.

In the following, we identify a natural number n with its binary representation (as a string). For a string τ , up to additive const we have $K(|\tau|) \leq K(\tau)$, since we can compute $|\tau|$ from τ .

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some $b \in \mathbb{N}$,

 $\forall n \left[K(A \upharpoonright_n) \le K(n) + b \right],$

namely, all its initial segments have minimal K-complexity.

It is not hard to see that $K(n) \leq 2 \log_2 n + O(1)$.

In the following, we identify a natural number n with its binary representation (as a string). For a string τ , up to additive const we have $K(|\tau|) \leq K(\tau)$, since we can compute $|\tau|$ from τ .

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some $b \in \mathbb{N}$,

 $\forall n \left[K(A \upharpoonright_n) \le K(n) + b \right],$

namely, all its initial segments have minimal K-complexity.

It is not hard to see that $K(n) \leq 2 \log_2 n + O(1)$.

Z is random $\Leftrightarrow \forall n [K(Z \upharpoonright_n) > n \quad -O(1)]$

In the following, we identify a natural number n with its binary representation (as a string). For a string τ , up to additive const we have $K(|\tau|) \leq K(\tau)$, since we can compute $|\tau|$ from τ .

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some $b \in \mathbb{N}$,

 $\forall n \left[K(A \upharpoonright_n) \le K(n) + b \right],$

namely, all its initial segments have minimal K-complexity.

It is not hard to see that $K(n) \leq 2\log_2 n + O(1)$.

A is K-trivial $\Leftrightarrow \forall n [K(A \upharpoonright_n) \leq K(n) + O(1)]$

In the following, we identify a natural number n with its binary representation (as a string). For a string τ , up to additive const we have $K(|\tau|) \leq K(\tau)$, since we can compute $|\tau|$ from τ .

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some $b \in \mathbb{N}$,

 $\forall n \left[K(A \upharpoonright_n) \le K(n) + b \right],$

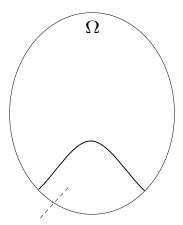
namely, all its initial segments have minimal K-complexity.

It is not hard to see that $K(n) \leq 2 \log_2 n + O(1)$.

 $\begin{array}{lll} Z \text{ is random} & \Leftrightarrow & \forall n \left[K(Z \upharpoonright_n) > n & -O(1) \right] \\ A \text{ is } & K \text{-trivial} & \Leftrightarrow & \forall n \left[K(A \upharpoonright_n) \leq K(n) & +O(1) \right] \end{array}$

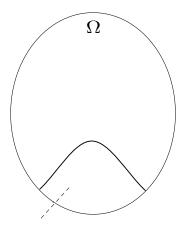
Thus, being K-trivial means being far from random.

Some properties of the K-trivials

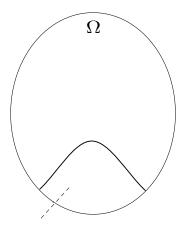


► Ideal in the ∆⁰₂ Turing degrees (Chaitin '75, DHNS '03, N. '05)

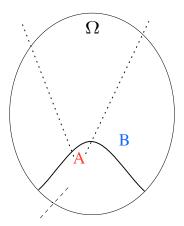
K-trivial sets



- ► Ideal in the ∆⁰₂ Turing degrees (Chaitin '75, DHNS '03, N. '05)
- ▶ C.e. K-trivs have Σ_3^0 index set

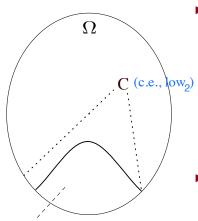


- ► Ideal in the ∆⁰₂ Turing degrees (Chaitin '75, DHNS '03, N. '05)
- ▶ C.e. K-trivs have Σ_3^0 index set
- ► they are all superlow: $A' \leq_{tt} \emptyset'$ (N. '05)



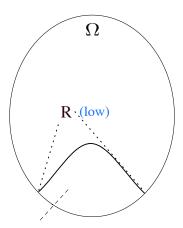
 Ideal in the Δ⁰₂ Turing degrees (Chaitin '75, DHNS '03, N. '05)

► there is no largest: for every low c.e. set *B*, there is a *K*-trivial set $A \not\leq_{\mathbf{T}} B$ (N., '02)



► Ideal in the ∆⁰₂ Turing degrees (Chaitin '75, DHNS '03, N. '05)

► there is a low₂ c.e. set C above all of them (Barmpalias and N., 2011)



 Ideal in the Δ⁰₂ Turing degrees (Chaitin '75, DHNS '03, N. '05)

K-trivial sets

• there is a low_1 set R above all of them (Kučera and Slaman)

Lebesgue Density

Density

Let λ denote uniform (Lebesgue) measure.

Definition

Let E be a subset of [0, 1]. The *(lower) density* of E at a real z is

$$\rho(E \mid z) = \liminf_{z \in J, \, |J| \to 0} \frac{\lambda(J \cap E)}{|J|},$$

where J ranges over intervals.

This gauges how much of E is around z

as intervals zoom in on z.

It is the least fraction of Ein smaller and smaller intervals around z.

Lebesgue

From HENRI LEBESGUE, Sur l' intégration des fonctions discontinues, Annales scientifiques de l' É.N.S. 3e série, tome 27 (1910), p. 361-450; p. 407.

Raisonnant de même sur la densité à gauche, on voit finalement que la densité d'un ensemble mesurable est égale à un en presque tous les points de cet ensemble.

Translation:

Theorem (Lebesgue Density Theorem, 1910) Let $E \subseteq [0, 1]$ be measurable. For almost every $z \in [0, 1]$:

if $z \in E$, then E has density 1 at z.

Lebesgue's Theorem: towards an effective version Recall: $\rho(E \mid z) = \liminf_{J \text{ interval}, z \in J, |J| \to 0} \lambda(J \cap E)/|J|.$

Theorem (Lebesgue Density Theorem, 1910) Let $E \subseteq [0,1]$ be measurable. Then for almost every $z \in [0,1]$: if $z \in E$, then $\rho(E \mid z) = 1$.

- ▶ If E is open, this is immediate, and actually holds for all $z \in [0, 1]$.
- If E is closed, this is the simplest case where there is something to prove.

 $E \subseteq [0,1]$ is effectively closed if one can list open intervals with union $[0,1] \setminus E$.

Definition

We say that a real z is a density-one point if $\rho(E \mid z) = 1$ for every effectively closed $E \ni z$.

Almost everywhere theorems and randomness

- ▶ Take an "almost everywhere" theorem from analysis, saying that a function, set, etc. is well-behaved at almost every real z.
- ▶ State an algorithmic version of the theorem.
- ► A sufficiently strong algorithmic randomness condition on z implies that the theorem holds at z.

Does Martin-Löf randomness ensure that an effectively closed $E \subseteq [0, 1]$ has density one at $z \in E$?

Answer: NO!

Example

Let $E \neq \emptyset$, $E \subseteq [0, 1]$ be an effectively closed set of Martin-Löf randoms. Let $z = \min(E)$. Then $\rho(E \mid z) = 0$

(This uses that every ML-random is Borel normal.)

Connecting density and K-triviality

This is based on the following work:

[Oberwolfach] Bienvenu, Greenberg, Kučera, N. Turetsky 2012 (early)

[Berkeley]	Day and Miller	$2012 \pmod{\text{mid}}$
[Paris]	Bienvenu, Miller, Hölzl and N. (STACS 2012)	2011

Turing incompleteness and positive density

Definition

We say that a real z is a positive density point if $\rho(E \mid z) > 0$ for every effectively closed $E \ni z$.

For a real $z \notin \mathbb{Q}$, let $Z \in 2^{\mathbb{N}}$ denote its binary expansion: z = 0.Z.

Theorem (Paris)

Let z be a Martin-Löf random real. Then Z is NOT above the halting problem $\emptyset' \Leftrightarrow$

```
z is a positive density point.
```

This was applied to solve an open problem of Miller and N. (2006) on the interaction of K-trivials and randoms: a K-trivial does not help a random to compute \emptyset' .

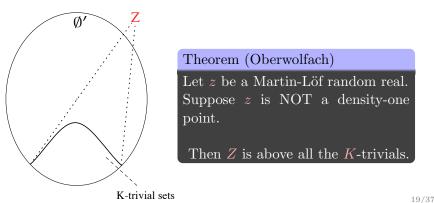
Theorem (Day and Miller, 2012)

Let $A \subseteq \mathbb{N}$ be K-trivial. Suppose $Z \subseteq \mathbb{N}$ is a Martin-Löf random set such that $Z \oplus A \geq_T \emptyset'$. Then already $Z \geq_T \emptyset'$. The main connection of density and K-trivials Recall: $\rho(E \mid z) = \liminf_{|J| \to 0, z \in J} \lambda(J \cap E)/|J|.$

Definition (Recall)

We say that a real z is a density-one point if $\rho(E \mid z) = 1$ for every effectively closed $E \ni z$.

In other words, \boldsymbol{z} satisfies the Lebesgue Theorem for effectively closed sets.



Theorem (Oberwolfach)

Let z be a Martin-Löf random real. Suppose z is NOT a density-one point.

Then Z is above all the K-trivials.

It is easier to work in Cantor space $2^{\mathbb{N}}$. For a string σ , let

 $[\sigma] = \{ X \in 2^{\mathbb{N}} \colon X \succ \sigma \}$

For $E \subseteq 2^{\mathbb{N}}$ and $Z \in 2^{\mathbb{N}}$, let the lower dyadic density be

$$\rho_2(E \mid Z) = \liminf_{\sigma \prec Z, \, |\sigma| \to \infty} \lambda([\sigma] \cap E) 2^{-|\sigma|};$$

Khan and Miller have shown that for ML-random Z, dyadic density-one points are already full density-one points. So the transition to Cantor space is fine.

We use a new notion called Oberwolfach (OW) randomness. We have

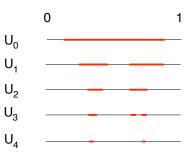
OW-random \Rightarrow ML-random,

but not conversely.

A real β is *left-c.e.* if $\beta = \sup \beta_n$ for an increasing computable sequence $(\beta_n)_{m \in \mathbb{N}}$ of rationals.

A real β is *left-c.e.* if $\beta = \sup \beta_n$ for an increasing computable sequence $(\beta_n)_{m \in \mathbb{N}}$ of rationals.

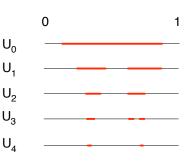
► A left-c.e. bounded test is an effective descending sequence $(U_n)_{m \in \mathbb{N}}$ of open sets in [0, 1], together with $(\beta_n)_{m \in \mathbb{N}}$, such that $\lambda(U_n) \leq \beta - \beta_n$.



A real β is *left-c.e.* if $\beta = \sup \beta_n$ for an increasing computable sequence $(\beta_n)_{m \in \mathbb{N}}$ of rationals.

► A left-c.e. bounded test is an effective descending sequence $(U_n)_{m \in \mathbb{N}}$ of open sets in [0, 1], together with $(\beta_n)_{m \in \mathbb{N}}$, such that $\lambda(U_n) \leq \beta - \beta_n$.

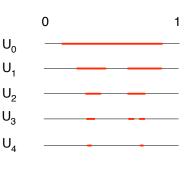
• Z passes the test if Z is not in all U_n .



A real β is *left-c.e.* if $\beta = \sup \beta_n$ for an increasing computable sequence $(\beta_n)_{m \in \mathbb{N}}$ of rationals.

► A left-c.e. bounded test is an effective descending sequence $(U_n)_{m\in\mathbb{N}}$ of open sets in [0,1], together with $(\beta_n)_{m\in\mathbb{N}}$, such that $\lambda(U_n) \leq \beta - \beta_n$.

- Z passes the test if Z is not in all U_n .
- ► Z is Oberwolfach random if it passes all left-c.e. bounded tests.



A real β is *left-c.e.* if $\beta = \sup \beta_n$ for an increasing computable sequence $(\beta_n)_{m \in \mathbb{N}}$ of rationals.

0

U₀

U₁

U,

U₂

U₄

► A left-c.e. bounded test is an effective descending sequence $(U_n)_{m\in\mathbb{N}}$ of open sets in [0,1], together with $(\beta_n)_{m\in\mathbb{N}}$, such that $\lambda(U_n) \leq \beta - \beta_n$.

- Z passes the test if Z is not in all U_n .
- ► Z is Oberwolfach random if it passes all left-c.e. bounded tests.

We can use a similar definition in Cantor space $2^{\mathbb{N}}$. They are equivalent via the binary expansion.

There are two parts to the argument to establish that every ML-random non-density-one point Z is above all the K-trivials.

Part 1: If $E \subseteq 2^{\mathbb{N}}$ is a Π_1^0 class, $Z \in E$, and $\rho_2(E \mid Z) < 1$, then Z is not OW random.

Part 2: If Z is ML-random, but not OW random,

then Z is above all the K-trivials.

Part 1. If $E \subseteq 2^{\mathbb{N}}$ is a Π_1^0 class, $Z \in E$ and $\rho_2(E \mid Z) < \Theta < 1$ then Z is not OW random.

The Oberwolfach group used convergence of left-c.e. martingales. J. Miller's later proof:

For $S \subseteq 2^{<\omega}$ let $[S]^{\prec}$ denote the open set it generates in Cantor space. Let $\lambda_{\sigma}(E)$ be the local measure $2^{-|\sigma|}\lambda(E \cap [\sigma])$.

Let $\sigma_0, \sigma_1, \ldots$ be a prefix-free sequence of strings such that $2^{\mathbb{N}} \setminus E = \bigcup_n [\sigma_n] = [\sigma_0, \sigma_1, \ldots]^{\prec}$. Let $\beta_n = \lambda [\sigma_0, \ldots, \sigma_{n-1}]^{\prec}$, and $\beta = \sup_n \beta_n$ $U_n = \{Y: \exists k \lambda_{[Y]_k}] ([\sigma_n, \sigma_{n+1}, \ldots]^{\prec}) > 1 - \Theta\}.$

Since Z ∈ E, and (σ_i)_{i∈ℕ} is prefix free, Z ∈ U_n for each n
 λ(U_n) ≤ 1/(1-Θ(β − β_n).

So Z is not OW random.

Part 2: If Z is ML-random, but not OW random, then Z is above each K-trivial set A.

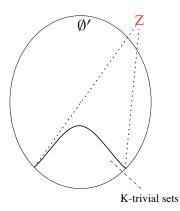
Suppose $\beta = \sup \beta_n$ for an increasing computable sequence $(\beta_n)_{n \in \mathbb{N}}$ of rationals. Suppose $Z \in \bigcap U_n$ where $\lambda(U_n) \leq \beta - \beta_n$.

Since A is K-trivial, by a result of N. (2010), there is a computable enumeration (A_s) of A such that

 $\infty > \sum_{s} \{\beta_s - \beta_n : n \text{ is least such that } A_s(n) \neq A_{s-1}(n) \}.$

We define a Turing functional, and declare that all the oracles in $U_{n,s-1}$ compute $A_{s-1}(n)$. If $A_s(n) \neq A_{s-1}(n)$, let $\mathcal{V}_s = U_{n,s-1}$ be the class of oracles that are now incorrect.

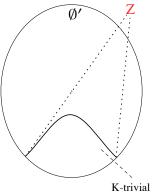
Since $\lambda U_{n,s-1} \leq \beta_s - \beta_n$, we have $\sum_s \lambda \mathcal{V}_s < \infty$. So $(\mathcal{V}_s)_{s \in \mathbb{N}}$ is a "Solovay test": If the oracle Z is incorrect infinitely often, it fails this test, so it is not ML-random. Thus $A \leq_T Z$.



Theorem

Let z be a Martin-Löf random real. Suppose z is not a density-one point.

Then Z is above all the K-trivials.



Theorem

Let z be a Martin-Löf random real. Suppose z is not a density-one point.

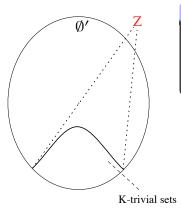
Then Z is above all the K-trivials.

[Paris] in their journal version subsequently give a direct proof, not using OW-randomness.

Rather than K-trivial, it is based on the equivalent lowness for MLR.

K-trivial sets

The proof given here also leads to a new proof that K-trivial implies low for MIR.



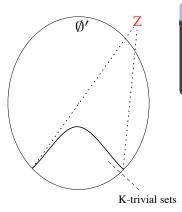
Theorem

Let z be a Martin-Löf random real. Suppose z is not a density-one point.

Then Z is above all the K-trivials.

To solve the covering problem, we need to know:

Does Z as in the picture exist?



Theorem

Let z be a Martin-Löf random real. Suppose z is not a density-one point.

Then Z is above all the K-trivials.

To solve the covering problem, we need to know:

Does Z as in the picture exist? Where do we get a ML-random set $Z \not\geq_T \emptyset'$ that is not a density-one point?

Why such a Z exists

Theorem (Berkeley, i.e., Day and Miller)

Let P be a nonempty Π_1^0 class of ML-randoms. There is a ML-random set $Z \geq_T \emptyset'$ such that $\rho_2(P \mid Z) \leq 1/2$.

[Paris] characterized difference randomness of a ML-random ${\cal Z}$ via positive density:

 $Z \geq_T \emptyset'$ iff Z is a positive density point.

Berkeley built a set Z that is a positive density point.

Note that, for the Day-Miller set Z, the local measure $\lambda_{\sigma}(Z)$ for $\sigma \prec Z$ oscillates between 1 (asymptotically), and a value ϵ with $0 < \epsilon \leq 1/2$.

Why such a Z exists

Theorem (Berkeley)

Let P be a nonempty Π_1^0 class of ML-randoms. There is a ML-random set $Z \not\geq_T \emptyset'$ such that $\rho_2(P \mid Z) \leq 1/2$.

Proof. Force with conditions of the form $\langle \sigma, Q \rangle$, where

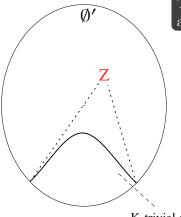
- ▶ σ is a string, $Q \subseteq P$, $[\sigma] \cap Q \neq \emptyset$
- ▶ there is $\delta < 1/2$ such that each string $\tau \succeq \sigma$ has two options:

either $[\tau] \cap Q = \emptyset$, or $\lambda_{\tau}(Q) \ge \lambda_{\tau}(P) - \delta$.

(*Q* either loses all, or $\leq \delta$ of *P*'s local measure within $[\tau]$.)

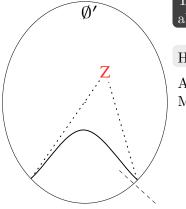
 $\langle \sigma', Q' \rangle$ extends $\langle \sigma, Q \rangle$ if $\sigma' \succeq \sigma$ and $Q' \subseteq Q$. We have an initial condition $\langle \emptyset, P \rangle$ (via $\delta = 0$).

If G is a sufficiently generic filter, then $Z_G = \bigcup \{ \sigma \colon \langle \sigma, Q \rangle \in G \}$ is a ML-random positive density point, and $\rho_2(P \mid Z) \leq 1/2$. Then by Bienvenu et al., $Z \geq_T \emptyset'$.



Theorem (Oberwolfach + Berkeley)

There is a ML-random set $Z <_T \emptyset'$ above all the K-trivials.



Theorem (Oberwolfach + Berkeley)

There is a ML-random set $Z <_T \emptyset'$ above all the K-trivials.

How random can Z be?

Answer: not much more than Martin-Löf random.

Ø'

Theorem (Oberwolfach + Berkeley)

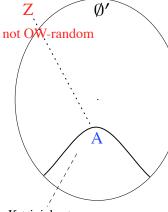
There is a ML-random set $Z <_T \emptyset'$ above all the K-trivials.

How random can Z be?

Answer: not much more than Martin-Löf random.

Why?

Z cannot be OW-random



K-trivial sets

Theorem (Oberwolfach)

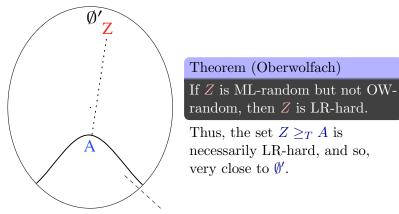
There is a K-trivial set A so that no set $Z \ge_T A$ is OW-random.

So Z is ML-random and incomplete (difference random), but not much more.

We call A a "smart" K-trivial: any random set above A is above all the K-trivials.

Z must be very close to \emptyset'

Recall that Y is LR-hard if every Y-random set is random relative to \emptyset' . Such a set is superhigh: $\emptyset'' \leq_{\text{tt}} Y'$. A ML-random LR-hard set $Y \geq_T \emptyset'$ was built by N. (2009); Kučera.



Density randomness

Definition

We say that Z is density random if Z is ML-random and $\rho_2(P \mid Z) = 1$ for each Π_1^0 class $P \in Z$.

We can equivalently require density 1 in the setting of reals.

Theorem

The following are equivalent for $Z \in 2^{\mathbb{N}}, z = 0.Z$.

- \triangleright Z is density random
- ► [Madison group, 2012] Each left-c.e. martingale M converges: $\lim_{n} M(Z \upharpoonright_{n})$ exists $(M(\sigma)$ is a c.e. real uniformly in string σ)
- ▶ [N., 2013] f'(z) exists for each interval-c.e. function f (basically, the variation function of a computable function)
- ▶ [Miyabe, 2013] z is a Lebesgue point for each integrable lower semicomputable function $f: [0, 1] \to \overline{\mathbb{R}}^+$.

Randomness in the higher setting

- ► N. and Hjorth (2007) studied randomness using tools from effective descriptive set theory, rather than algorithmic tools. The idea is to replace c.e. objects by Π¹₁ objects in the definitions of tests.
- ▶ There is much recent work on this: Chong and Yu; Bienvenu, Greenberg and Monin.

Theorem (Greenberg and N., 2013, based on Madison)

The following are equivalent for $Z \in 2^{\mathbb{N}}, z = 0.Z$.

- ► Z is Π_1^1 -ML random and $\rho_2(\mathcal{C} \mid Z) = 1$ for each closed Σ_1^1 class $\mathcal{C} \ni Z$.
- ▶ The same without "closed"
- Every left- Π_1^1 martingale converges along Z.

Questions on separating the new randomness notions

Question (Oberwolfach, Miller)

Is the implication

Oberwolfach random \Rightarrow density random

a proper one? Equivalently, can a ML-random Z above all the K-trivials be density random?

Question (Oberwolfach)

Is the implication

ML-random \land not LR-hard \Rightarrow Oberwolfach random

a proper one?

Questions on density randomness

Question (Turetsky)

Is density randomness closed downward within the ML-randoms?

This is known for most randomness notions stronger than Martin-Löf's, including for OW-randomness (by the results above).

Question (Franklin)

Is density randomness equivalent to being a Birkhoff point for each computable measure preserving operator and semicomputable function?

Book references for background

My book "Computability and Randomness", Oxford University Press, 447 pages, Feb. 2009; Paperback version Mar. 2012.

Book by Downey and Hirschfeldt: "Algorithmic Randomness and Complexity", Springer, > 800 pages, Dec. 2010;

Paper and preprint references

[Everyone] Bienvenu, Day, Greenberg, Kučera, Miller, N., Turetsky Computing K-trivial sets by incomplete random sets Bulletin of Symbolic Logic, in press.

[Oberwolfach] Bienvenu, Greenberg, Kučera, N., Turetsky Oberwolfach randomness, K-triviality, and differentiability. Preprint, MFO, 2012. Submitted.

[Berkeley] Day and Miller Density, forcing and the covering problem (in prep.)

[Paris] Bienvenu, Miller, Hölzl and N.
The Denjoy alternative for computable functions STACS 2012, 543 - 554.
Demuth, Denjoy, and Density (27 pages).
Submitted, and on ArXiv.