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Abstract: Given a class of structures encoded by reals, how can we

determine the complexity of the corresponding isomorphism relation?

For instance, isometry of Polish spaces is Borel complete for orbit

equivalence relations (Gao and Kechris, 2003), while isomorphism of

countable graphs is not (H. Friedman and Stanley, 1989).

We mainly consider a modified form of the question posed above,

where definability, or effectiveness constraints are placed on the class,

the isomorphism, or both. For instance, we study isometry of

computable compact metric spaces. Related to this we discuss the

Scott analysis of Polish spaces.

We show that computable isomorphism of computable Boolean

algebras is a Sigma-0-3 complete equivalence relation on N, where the

reductions are computable functions. We give further examples of

complete equivalence relations at lower levels; in particular, there is

one at level Pi-0-1.

This project involves lots of co-workers, including Sy Friedman, K.

Fokina, M. Koerwien, A. Melnikov, R. Miller, Selwyn Ng, P. Schlicht,
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Motivating question

Question

Suppose we are given a class K
of mathematical structures.

How hard is it to determine whether

two structures in K are isomorphic?

I I will first consider this in the classic setting.

I Thereafter, I will discuss the case that the structures, or the

isomorphisms, or both, are in some sense effectively presented.
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Borel reducibility
The complexity of an equivalence relation is often determined by

being a hardest object in a natural class. E.g. universal countable

Borel equivalence relation.

We compare the complexity of equivalence relations using Borel

reducibility.

Definition (H. Friedman, Stanley, 1989)

Let X ,Y be Polish spaces.

Let E be an equivalence relation on X .

Let F be an equivalence relation on Y .

We write E ≤B F if there is a Borel map φ : X → Y such that

uE v ⇐⇒ φ(u)F φ(v).
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Orbit equivalence relations

Definition

An equivalence relation E on a Polish Space X is called

orbit equivalence relation if for some Polish group G acting

continuously on X , we have

xEy ⇐⇒ ∃g ∈ G [g · x = y].

I E is analytical, but often not Borel

I every equivalence class [x]E is Borel.

Proof: Let Gx be the stabilizer of x, which is closed.

Lusin-Souslin: the range of a 1-1 Borel map is Borel.

Apply this to the natural map G/Gx → [x]E .

(This actually works for Borel actions.)
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Three isomorphism relations

of different complexity
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1. Graph isomorphism
We consider graphs with domain ω. Isomorphism of graphs is an

orbit equivalence relation via the action of S∞, the group of

permutations of ω.

Let E1 denote almost equality of elements of Rω (i.e., sequences of

reals). Friedman and Stanley (1989) showed that

E1 6≤B graph isomorphism.

In fact, E1 is not reducible to any orbit equivalence relation.

Let c0 denote the Borel orbit equivalence relation on x, y ∈ Rω

that limn(xn − yn) = 0. By the Hjorth turbulence theorem,

c0 6≤B any orbit equivalence relation given by an S∞ action.

In particular,

c0 6≤B graph isomorphism.
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2. Isometry of Polish metric spaces
A Polish metric space X = (X, d) with dense sequence (pn)n∈N
can be encoded by a single element of Rω×ω, namely d(pi, pk)i,k∈ω.

Theorem (Gao-Kechris 2003/Clemens)

Let E be any orbit equivalence relation. Then

E ≤B ∼=i

where ∼=i denotes isometry of Polish metric spaces.

I In particular, c0 ≤B ∼=i. Thus, isometry of Polish spaces is

strictly more complex than graph isomorphism.

I They also showed that ∼=i ≤B the orbit equivalence relation

given by the Iso(U) action on F (U), the Effros structure of the

Urysohn space.
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3. Isometry of compact metric spaces

For a compact metric space X , let Dn(X ) denote the set of all

n× n matrices d(xi, xk)i,k<n, where x0, . . . , xn−1 ∈ X .

Theorem (Gromov, 1999)

Let X0,X1 be compact metric spaces such that Dn(X0) = Dn(X1)

for each n. Then X0 and X1 are isometric.

I The sequence of compact sets Dn(X ) ⊆ Rn can be encoded by

a single point in a standard Polish space.

I So, ∼=i on compact spaces is smooth, that is, Borel reducible to

the identity on R.

I This means it is much simpler than graph isomorphism.
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Scott analysis for Polish metric spaces
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α-equivalence of tuples in structures

Definition

Let M,N be L-structures. Let ā, b̄ tuples of the same length from

M,N .

I ā ≡0 b̄ if the quantifier-free types of the tuples are the same.

I For a limit ordinal α, ā ≡α b̄ if ā ≡β b̄ for all β < α.

I ā ≡α+1 b̄ if both of the following hold:

I For all x ∈M , there is some y ∈ N such that ā x ≡α b̄ y
I For all y ∈ N , there is some x ∈M such that ā x ≡α b̄ y
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Back-and-forth systems and Scott rank

I A back-and-forth system for a pair of structures M,N is a set

of finite partial isomorphisms with the two-sided extension

property.

I Recall that M ∼=p N means that there is a nonempty

back-and-forth system for the two structures.

I Suppose α is least such that ≡α implies ≡α+1 for all tuples in

M,N . If ≡α contains 〈∅, ∅〉 then we get a non-empty back-and

forth system, so M ∼=p N .

I For M = N , α is called the Scott rank sr(M).

Note that sr(M) < |M |+.

André Nies (Univ. of Auckland) Isomorphism relations DSTMT 12 / 37



Metric spaces as structures in first-order

language

We view a metric space (X, d) as a structure for the signature

{R<q, R>q : q ∈ Q+},

where R<q and R>q are binary relation symbols.

I The intended meaning of R<qxy is that d(x, y) < q.

I The intended meaning of R>qxy is that d(x, y) > q.

Clearly, isomorphism is isometry.
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Polish spaces vs. countable structures

Sometimes, Polish metric spaces behave like countable structures.

For instance, for countable structures A,B we have

A ∼=p B ⇒ A ∼= B.

This can be easily extended to Polish metric spaces. In particular,

we can view the Scott relations ≡α as approximations to isometry.

Sometimes, they don’t. We have already seen that

graph isomorphism <B isometry of Polish spaces.

The left side is a universal S∞ orbit equivalence relation. The

right side Borel reduces all orbit equivalence relations.
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Polish metric spaces of low Scott rank
The Urysohn space has Scott rank 0: if tuples ā, b̄ realize the

same distances, then they are isometric.

Theorem (extending Gromov’s argument)

A compact metric space M has Scott rank at most ω.

Proof:

I ā ≡ω b̄ implies that for each tuple x̃ there is a tuple ỹ of the

same length such that ā x̃ realizes the same distances as b̄ ỹ;

and conversely.

I By Gromov’s argument, this implies there is an isometry of M

sending ā to b̄.

By the same argument, a compact metric space is determined by

its existential positive theory. Thus it has a rather simple Scott

sentence within the Polish spaces.
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Discrete ultrametric spaces can have

arbitrary countable Scott rank

Theorem (S. Friedman, M.Koerwien, N.)

For each α < ω1, there is a discrete ultrametric space M of Scott

rank α · ω.

M is given as the maximal paths on a subtree of ω<ω. For

σ 6= τ ∈M , the distance is 2−k where k is the least disagreement.

André Nies (Univ. of Auckland) Isomorphism relations DSTMT 16 / 37



Upper bounds on the Scott rank

I By cardinality considerations, the Scott rank of a Polish space

is < (2ω)+.

I In fact, the Scott rank is less than the least ordinal α such

that Lα(R) |= Kripke-Platek set theory (i.e., with Σ1

replacement and ∆0 comprehension).

Question

Is the Scott rank of every Polish metric space countable?

I By Gao/Kechris (2003) the isometry class of each Polish space

is Borel. This suggests an affirmative answer by analogy with

the case of countable structures.

I There are possible connections to the topological Scott

analysis of Hjorth for general Polish group actions.
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In the second part of the talk, the structures, or the

isomorphisms, or both, are in some sense effectively presented.
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Effectivizing structures, or isomorphisms

I Camerlo (2002) studied computable isomorphism between

arbitrary structures with domain contained in ω. He showed

that for many classes, such as groups, fields, linear orders,

Boolean algebras, this equivalence relation is universal

countable. He reduced recursive isomorphism on 5ω to it.

I In contrast, we will consider computable structures with

arbitrary, and then with effective isomorphisms.

I This is related to a program to understand the complexity of

equivalence relations on ω using computable reductions,

analogous to the case of Borel reductions.

I Sy Friedman, E. Fokina, J. Hamkins, R. Miller, A. Sorbi,

A. Törnquist and others have worked in this.

André Nies (Univ. of Auckland) Isomorphism relations DSTMT 19 / 37



Definition of computable structure

The atomic diagram of a structure M is the set of all basic facts

that hold in M : RMa1, . . . an, fM(a, b) = c etc.

Definition

Let L be a computable language. An L-structure with domain

⊆ ω is called computable if its atomic diagram is computable.

Examples: ring of integers, countable free groups, many Boolean

algebras, ...

A computable structure is given by a computable index, that is a

Turing machine deciding the atomic diagram.
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Arbitrary isomorphisms (1)

I Let I(K) be the set of indices of computable structures in a

class K. We will assume I(K) is hyperarithmetical (usually it

is in fact arithmetical).

I Note that isomorphism on I(K) is a Σ1
1 relation on numbers.

I Fokina, S. Friedman, Harizanov, Knight, McCoy, Montalban

2010 studied reductions between equivalence relations that are

given by a partial computable function with domain containing

the relevant set I(K). (This reducibility is denoted ≤FF .)

Theorem (Fokina, S. Friedman et al., 2010)

Each Σ1
1 equivalence relation is reducible in the sense of ≤FF to

(a) isomorphism of computable graphs

(b) isomorphism of computable subtrees of ω<ω.
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Arbitrary isomorphisms (2)

Fokina, Friedman et al. posed a “Post problem” for isomorphism

relations:

Question

Let K be a reasonable class such that isomorphism on I(K) is not

hyperarithmetical. Is isomorphism already Σ1
1 complete for ≤FF?

A potential counterexample would be the class K of Boolean

algebras. Note that I(K) is Π0
2.

Isomorphism of computable Boolean algebras is known to be

I m-complete for Σ1
1 sets (Goncharov and Knight, 2002), but

I not known to be complete for Σ1
1 equivalence relations.
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The arithmetical hierarchy
We study whether computable structures are effective isomorphic.

The right setting to measure complexity of effective isomorphism

is the arithmetical hierarchy.

∆0
1 ∆0

2 ∆0
3

· · ·
⊂

⊂ ⊂

⊂ ⊂

⊂ ⊂

⊂ ⊂

⊂ ⊂

⊂

Σ0
1 Σ0

2 Σ0
3

Π0
1 Π0

2 Π0
3

For instance, to say e is an index of a computable structure is Π0
2.

The relation e ∼=comp i that indices e, i describe computably

isomorphic structures is Σ0
3.

For equivalence relations E,F on ω, we write E ≤c F if there is a

computable function φ such that uE v ⇐⇒ φ(u)F φ(v).
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Computable isomorphism

Theorem (S. Friedman, Fokina, N)

≡1 on r.e. sets is complete for Σ0
3 equivalence relations.

Corollary

Computable isomorphism on computable equivalence relations with

all classes of size at most 2 is Σ0
3 complete.

Proof of Corollary.

Given r.e. set A, build a computable equivalence relation RA such that

A ≡1 B iff RA ≡comp RB.

We may assume at most one element enters A at each stage, and only

at even stages.

Let RA = {〈2a, 2t + 1〉 : a enters A at stage t}.
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Boolean algebras and Σ0
3 completeness

Theorem (Fokina, Friedman, N)

Computable isomorphism of computable Boolean algebras is

complete for Σ0
3 equivalence relations.

Proof. Reduce 1-equivalence ≡1 of r.e. sets W e containing the evens.

Define the Boolean algebra Be to be the interval algebra of a

computable linear order
⊕

x∈ωM
e
x, where

I M e
x has one element, until x enters W e;

I when that happens, expand M e
x to a computable copy of [0, 1)Q.

One can show that W e ≡1 W
i ⇐⇒ Be ∼=comp B

i.
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Computable metric spaces
I A Polish metric space X with dense sequence (pn)n∈N is

computable if the atomic diagram for this sequence (consisting

of facts such as d(pi, pj) > 1/3) is computable. Call the atomic

diagram for a particular sequence a presentation of the space.

I Let Y have dense sequence (qk)k∈N. A Lipschitz map

φ : X → Y is computable if there is a computable function α

such that

φ(pi) = limn qα(i,n) = y,

where d(y, qα(i,n)) ≤ 2−n. That is, from input i we can

compute a “Cauchy name” for φ(pi).

Examples: R, C[0, 1], and other natural Polish metric spaces.

Proposition

Computable isometry of computable metric spaces is Σ0
3 complete.
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Variant of the motivating question

Question

Suppose we are given a class K
of mathematical structures.

Given presentations of isomorphic structures in K,

can we determine an isomorphism from these presentations?

I If so, then it should also be comparatively easy to determine

whether two structures in K are isomorphic.

I We will see that this is the case for compact metric spaces.
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Computable categoricity
An abstract Polish metric space is called computably categorical

(c.c.) if any two of its computable presentations are computably

isomorphic. A. Melnikov studied this in his thesis (supervised by

Khoussainov and me).

Theorem (A. Melnikov)

The following computable metric spaces are c.c.:

I The unit interval; Cantor space; `2
I Urysohn space.

Theorem (A. Melnikov)

The following computable metric spaces are not c.c.:

I `1 (Pour-El and Richards, essentially)

I C[0, 1]
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Compact metric spaces
Isometry of compact metric spaces is very simple from the

classical point of view:

I It is smooth.

I The Scott rank is at most ω.

I Isometry is a closed equivalence relation on K(U), the space

of compact subsets of Urysohn space.

Recursion theory provides a different view.

Theorem (Melnikov and N., 2012)

There is a compact metric space with two computable

presentations L,R so that no isomorphism is ∆0
2.

The space is in fact quite simple: it is the closure of a computable

sequence of rationals in [0, 1].
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Isomorphism of low complexity

Theorem (Melnikov and N., 2012)

Suppose that a compact metric space has two presentations L,R.

I Then there is an isometry g : L→ R with g′ ≤T (L⊕R)′′.

That is, g is low relative to (L⊕R)′.

I In particular, if L,R are computable then g is ∆0
3.
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Isomorphism of low complexity

Theorem (Melnikov and N., 2012)

Suppose that a compact metric space has two presentations L,R.

Then there is an isometry g : L→ R with g′ ≤T (L⊕R)′′.

Proof. Since any self-embedding of a compact metric space is onto, it

suffices to obtain an embedding g : L→ R (then use symmetry).

Let L have dense sequence (pn)n∈N. Start with an L⊕R-computable

double sequence yni (i < n) so that yn0 , . . . , y
n
n−1 realizes the same

distances as p0, . . . , pn−1, up to an error of 2−n.

g is given as a path on a finitely branching Π0
1 tree relative to (L⊕R)′,

based on that double sequence. At each level we typically consider a

finite open cover and need to pick a piece of it containing infinitely

many elements of a sequence. We can chose g low in (L⊕R)′ by the

low basis theorem.
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Descriptive complexity of the

isomorphism relation
I For a complete metric space, compact = totally bounded (for

each ε there is a finite cover consisting of open ε-balls).

I We can center the balls at points of the dense sequence; so

being totally bounded is a Π0
3 property of the atomic diagram.

I We say that a computable metric space is effectively compact

if from a rational ε > 0 we can compute how long an initial

segment of the dense sequence is needed. E.g. [0, 1].

Corollary

Isometry of compact metric spaces is a Π0
3 relation on atomic

diagrams.

Isometry of effectively compact metric spaces is a Π0
2 relation on

computable indices.
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Complete Σ0
n equivalence relations

We give natural examples of Σ0
n equivalence relations that are

complete for computable reducibility ≤c. Results are due to

Ianovski, Miller, Ng and N. (2012) unless mentioned otherwise.

n=1 The “precomplete” equivalence relation. For instance,

equivalence of sentences under PA (Kripke and Pour-El, 1966).

n=2: Polynomial time Turing equivalence on exponential time

sets.

n=3: recall ∼=comp on computable Boolean algebras is complete for

Σ0
3 equivalence relations (Friedman, Fokina, and N). Another

example: almost equality of r.e. sets.

n=4: Turing equivalence on r.e. sets.

for n > 4: jump equivalence A(n−4) ≡T B(n−4) for r.e. sets A,B.
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A Π0
1 complete isomorphism relation

For a binary function f let xEfy if ∀u f(x, u) = f(y, u).

Theorem (Ianovski, Miller, Ng and N., 2012)

There is polynomial time computable function f such that each

Π0
1 equivalence relation is computably reducible to Ef .

Fix a finite alphabet A of size > 1. A predecessor tree is a

nonempty subset of A∗ closed under prefixes. Isomorphism of

polynomial time predecessor trees is Π0
1 by König’s Lemma.

Given f from the theorem above, we code fx into a polytime

tree Tx: If fx(u) = k we add a leaf 1u0k to the tree. This yields:

Corollary

Isomorphism of polynomial time predecessor trees is complete for

Π0
1 equivalence relations.
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There is no Π0
2 complete equivalence

relation

Theorem (Ianovski, Miller, Ng and N., 2012)

For n ≥ 2 there is no Π0
n and no ∆0

n complete equivalence relation.

In particular, isometry of effectively compact metric spaces is not

Π0
2 complete.

To prove the theorem for n = 2: given a Π0
2 equivalence relation

E, we build a ∆0
2 equivalence relation L with classes of size ≤ 2

such that L 6≤c E.
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Problems. Classify the complexity of the

following:

Isomorphism of computable Boolean algebras.

Goncharov and Knight (2002) proved this is Σ1
1 -complete as a set

of pairs.

Isomorphism of finitely presented groups.

Rabin proved that every equivalence class is Σ0
1 complete as a set.

Conjecture: It is a Σ0
1 complete equivalence relation.

Isomorphism of finite-automata presentable equivalence relations.

Kuske, Liu and Lohrey (2012) showed that this is Π0
1 complete as

a set of pairs.

Conjecture: It is a Π0
1 complete equivalence relation.
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I These slides.

All available on my web page.
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