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“Almost everywhere” theorems (1)

Several important theorems in

analysis assert a property for

almost every real z. We give two

examples due to Lebesgue.

Theorem (Lebesgue’s Theorem, 1904/1910)

Let f : [0, 1]→ R be non-decreasing.

Then the derivative f ′(z) exists for almost every real z.
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“Almost everywhere” theorems (2)
From HENRI LEBESGUE, Sur l’ intégration des fonctions

discontinues, Annales scientifiques de l’ É.N.S. 3e série, tome 27

(1910), p. 361-450; p. 407.

SUR I/INTÉGRATION DES FONCTIONS DISCONTINUES. 4^7

à droite supérieure à - (donc différente de zéro puisque K est quel-
conque) forment un ensemble de mesure nulle.

Soient maintenant un ensemble quelconque A, E un ensemble
d'intervalles contenant A; les points extérieurs à E en lesquels A n'a
pas une densité à droite nulle forment un ensemble de mesure nul le;
et cela étant vrai quel que soit E contenant A est vrai aussi des points
extérieurs à A. Soit B le complémentaire de A par rapport à un certain
intervalle; les points de B en lesquels A n'a pas une densité à droite
nulle forment, on vient de le voir, un ensemble de mesure nulle.
Permutons A et B dans l'énoncé de ce résultat, il reste vrai; or A +• B
a une densité égale à i en tout point; donc, les points d'un ensemble
de mesure n u l l e étant exceptés, la densité à droite de A est égale à un
en tout point de A, égale à zéro en tout point de B.

Raisonnant de même sur la densité à gauche, on voit finalement que
la densité d'un ensemble mesurable est égaie à un en presque tous les
points de cet ensemble.

34. C'est-à-dire qu'il est démontré qu'une fonction est presque
partout la dérivée de son intégrale indéfinie, lorsqu'il s'agit d'une
fonction ne prenant que les valeurs o ou i.

Par suite, ce théorème s'en déduit quand il s'agit de fonctions ne
prenant qu'un nombre fini de valeurs différentes. Passons au cas
général et supposons qu'il s'agisse d'une fonction qui n'est jamais
négative/. Soit E^ l'ensemble des points en lesquels on a

p£^f<.(p -+-!)£ (P=0, I, ...);

£ est u n e quantité positive arbitraire. Soit y^ la fonction égale h p e
dans E^,, pour p = o, i, ..., n et égale a zéro ailleurs. Les nombres
dérivés de l'intégrale de/sont au moins égaux à ceux de l'intégrale
de y/,; donc, presque partout, les nombres dérivés de l'intégrale de/
sont égaux ou supérieurs à /.

Soit $ la fonction égale à (p 4- i) s dans chaque B^. Les nombres
dérivés de f fdx ne surpassant pas ceux de ^dx, il suffirait de
démontrer le théorème pour la fonction $. Or, si <&^ est la fonction
définie comme étant égale à zéro dans E^ 4- E ^ . . . + E^ et égale à <&

Translation:

Theorem (Lebesgue Density Theorem, 1910)

Let E ⊆ [0, 1] be measurable. For almost every z ∈ [0, 1]:

if z ∈ E, then E has density 1 at z.
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Effective versions of almost everywhere theorems

Now consider the case where the given objects are effective in some

sense.

I How strong an algorithmic randomness notion for a real z is

needed to make the theorem hold at z?

I Will the theorem in fact characterize the randomness notion?

I I will give an overview of results linking algorithmic

randomness to differentiability.

I I will discuss exciting recent developments: the density of

effectively closed sets at random members, and applications of

this to the study of K-triviality.
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1. A brief introduction to

algorithmic randomness
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Idea in algorithmic randomness

I One defines a notion of algorithmic null set.

I A real z is random in a particular sense if it avoids all null sets

of this kind.

I There are only countably many null sets of this kind. So almost

every z is random in that sense.

Randomness notions relevant to us:

Martin-Löf random ⇒ computably random ⇒ Schnorr random.

These implications are proper.
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Computable randomness

Computable betting strategies (martingales) are computable

functions M from binary strings to the non-negative reals.

I Let Z be a sequence of bits. When the player has seen the

string σ of the first n bits of Z, she can make a bet q, where

0 ≤ q ≤M(σ), on what the next bit Z(n) is.

I If she is right, she gets q. Otherwise she loses q. Thus, we have

M(σ0) +M(σ1) = 2M(σ)

for each string σ.

I She wins on Z if M is unbounded along Z. (These Z form an

algorithmic null set.) We call a set Z computably random if

no computable betting strategy wins on Z.
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Martin-Löf’s 1966 randomness notion
Infinite sequences Z of bits can be “identified” with reals numbers

in [0, 1] via the binary expansion.

I A Martin-Löf test is an

effective descending sequence

(Um)m∈N of open sets in [0, 1]

such that the measure of Um
is at most 2−m.

I Intuitively, Um is an attempt

to approximate a real Z with

accuracy 2−m.

I Z passes the test if Z is not in

all Um.

I Z is ML-random if it passes

all ML-tests.

0 1

...

U0
U1
U2
U3
U4
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Randomness via effective Vitali covers

Let (Gk)k∈N be a computable sequence of rational open intervals

with |Gk| → 0.

The set of points Vitali covered by (Gk)k∈N is

V(Gk)k∈N = {z : z is in infinitely many Gk’s}.

Martin-Löf and Schnorr randomness also can be defined via

effective Vitali covers.

I Martin-Löf random: not in any set V(Gk)k∈N where∑
k |Gk| <∞

I Schnorr random: not in any set V(Gk)k∈N where
∑

k |Gk| is a

computable real.
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2. Effective versions of Lebesgue’s first theorem
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Theorem (Brattka, Miller, N; submitted)

Let f : [0, 1]→ R be non-decreasing and computable. Then

z is computably random ⇒ f ′(z) exists.

If f has bounded variation, then f ′(z) exists for each Martin-Löf

random real z (Demuth, 1975).
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Proving this: Functions-to-tests
I If f is computable nondecreasing, we (uniformly in f) build a

computable martingale M such that

f ′(z) fails to exist ⇒ M succeeds on z.

I If f is computable of bounded variation, we build a

Martin-Löf test such that

f ′(z) fails to exist ⇒ the test succeeds on z.

Corollary
Each computable nondecreasing function f is differentiable at a

(uniformly obtained) computable real.

PROOF: Each computable martingale fails on some computable

real, which can be obtained uniformly.

This argument doesn’t work for functions of bounded variation in

general.
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Converses (tests-to-functions)

I Both the nondecreasing and the bounded variation cases also

have converses: if z is not random in the appropriate sense,

then some computable function of the respective type fails to

be differentiable at z (BMN, submitted).

I So computable analysts could take these properties as

definitions!

z is computably random ⇐⇒
each computable nondecreasing function is differentiable at z

z is Martin-Löf random ⇐⇒
each computable function of bounded variation differentiable at z.
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Computable randomness and Lipschitz functions
Recall that f is Lipschitz if |f(x)− f(y| ≤ C(|x− y|) for some

C ∈ N.
Theorem [Freer, Kjos, N, Stephan: submitted]

A real z is computably random

⇐⇒

each computable Lipschitz function

f : [0, 1]→ R is differentiable at z.

=⇒ : Write f(x) = (f(x) + Cx)− Cx. Then f(x) + Cx is

computable and non-decreasing.

From the monotone case (BMN), we obtain a test (martingale) for

this function. If f ′(z) does not exists, then z fails this test.

⇐= : Turn success of a martingale on a real into oscillation of the

slopes, around the real, of a Lipschitz function.
André Nies (U of Auckland) Almost everywhere theorems CCA 2012 14 / 42



Rademacher’s theorem

Theorem (Rademacher, 1920)

Let f : [0, 1]n → R be Lipschitz.

Then the derivative Df(z) (an element of

Rn) exists for almost every vector z ∈ [0, 1]n.

To define computable randomness of a vector z ∈ [0, 1]n:

I Take the binary expansion of the n components of z.

I We can bet on the corresponding sequence of blocks of n bits.

Conjecture

z ∈ [0, 1]n is computably random ⇐⇒ every computable Lipschitz

function f : [0, 1]n → R is differentiable at z.
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Schnorr randomness and L1-computability

Pathak, Rojas, and Simpson (2012) and Rute (2012) proved:

z ∈ [0, 1]d is Schnorr random ⇐⇒
for every L1-computable function g : [0, 1]d → R, the

usual limit exists:

limr→0
1

λ(Br(z))

∫
Br(z)

g.

This is an effective version of the Lebesgue differentiation theorem

(but takes into account only the existence of limits).
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3. Polytime randomness and analysis
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Polynomial time randomness

Definition
I A martingale M : 2<ω → Q is called polynomial time if from

string σ can compute the rational M(σ) in poly. time.

I A real z is polynomial time random if no polynomial time

martingale succeeds on its binary expansion.

What’s known on poly time randomness?

I Exists in all time classes properly containing P , such as

DTIME(nlogn).

I Incomparable with Schnorr randomness!

I Implies nice statistical properties, such as absolutely normal.
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Polynomial time functions g : [0, 1]→ R

I Recall a sequence of rationals (pi)i∈N is a Cauchy name if

∀k > i |pi − pk| ≤ 2−i

I Use a compact set of Cauchy names to represent reals

(signed digit representation does it).

I g is polytime computable if there is a polytime oracle TM

turning every Cauchy name for x into a Cauchy name for g(x).

Functions like ex, x2, sin x are polynomial time.
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Tests-to-functions

For a martingale M , the measure µM is given by

µM([σ]) = 2|σ|M(σ),

and distribution gM(x) = µM [0, x).

I M has the savings property if M(σ) ≥M(τ)− 2 whenever

σ � τ .

I This implies M(σ) = O(|σ|) so M grows slowly.

I In particular, µM has no atoms.

If M is poly time and has savings property, then gM is poly time.

André Nies (U of Auckland) Almost everywhere theorems CCA 2012 20 / 42



Characterization of polytime randomness via the

lower derivative

Theorem [Nies, using BMN 2011]

A real z is NOT polytime random ⇐⇒
some nondecreasing polytime function g satisfies Dg(z) = +∞.

We can develop the theory of martingales with bases other than 2.

We get the same connections with nondecreasing functions. Since

the right side of the theorem is base invariant, we obtain

Corollary
Polytime randomness of a real is base invariant.

Figueira and his student Javier Silveira have a direct proof of this

(2011, master thesis).
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Questions on polytime randomness

Let z be a polynomial time random real.

I Does f ′(z) exist for each nondecreasing polytime computable f?

I Easier: does f ′(z) exist for each Lipschitz polytime computable

f?
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4. Further “almost everywhere” theorems and

their effective content
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Sard’s theorem (suggested by Alex Galicki)

Theorem (Sard)

Let S ⊆ Rn be open, and let f : S → R be a C1 function.

Then the set of values f(y) where Df(y) = 0 has measure 0.

Such a value f(y) is called a critical value.

Galicki and N (2012): Suppose f ∈ C1(0, 1) is computable. If z is

Martin-Löf-random, then z is not a critical value. (This also works

in higher dimensions.)

I Idea: into the m-th component Um of the Martin-Löf test,

enumerate all intervals K = (min f(I),max f(I)), where I is

an elementary dyadic interval such that |K| < 2−m|I|.
I Converse (work in progress): if z is not Martin-Löf random, it

is critical value of some computable f ∈ C1(0, 1).
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Carleson-Hunt (suggested by Manfred Sauter)

Theorem (Carleson, 1966 for p = 2; improved by Hunt

1968)

Let f ∈ Lp[−π, π] be a periodic function. Then the Fourier series

cN(z) =
∑
|n|≤N f̂(n)einz converges for almost every z.

We say z is weakly 2-random if z is in no null effective Gδ set. This

properly implies Martin-Löf randomness.

Easy consequence of Carleson-Hunt theorem: if f is

Lp-computable, then weak 2-randomness of z suffices to make the

sequence cN(z) converge. This is currently all we know.
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Theorem (Weyl, 1916)

Let (ai)i∈N be a sequence of distinct integers. Then for almost every

real z, the sequence aiz mod 1 is uniformly distributed in [0, 1].

Suppose now (ai)i∈N is computable. Avigad (2012) shows that

I Schnorr randomness of z suffices to make the conclusion of

Weyl’s theorem hold.

I There is a z satisfying the conclusion of the theorem which is

in some null effectively closed set (hence not even “Kurtz

random”.)
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What is the common motif behind

all these effective a.e. theorems?
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5. Density of effectively closed classes

at random members
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Lebesgue density
Let λ denote uniform (Lebesgue) measure.

Definition
Let E be a subset of [0, 1]. The (lower) density of E at a real z is

ρ(z | E) = lim inf
|J |→0

λ(J ∩ E)

|J |
,

where J ranges over intervals with rational endpoints containing z.

This gauges how much of E is around z as we zoom in on z.

Note that ρ(z | E) = Dg(z) where g(x) = λ([0, x) ∩ E).

Theorem (Lebesgue Density Theorem, 1910)

Let E ⊆ [0, 1] be measurable. For almost every z ∈ [0, 1]:

if z ∈ E, then E has lower density 1 at z .
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Theorem (Recall)

Let E ⊆ [0, 1] be measurable. Then for almost every z ∈ [0, 1]:

if z ∈ E, then has density 1 in E.

I If E is open this is trivial, and actually holds for all z ∈ [0, 1].

I E closed is the first case where there is something to prove.

I If E is closed then any 1-generic z ∈ E has density one.

Does the strongest notion we have considered, Martin-Löf

randomness, ensure density one? Answer: NO!
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A Martin-Löf random of density zero

Example

Let P 6= ∅, P ⊆ [0, 1] be an effectively closed set of Martin-Löf

randoms. Let z = minP . Then ρ(z | P) = 0

This uses that every Martin-Löf random is Borel normal. Given k,

pick n such that from positions n to n+ k − 1 we have 1’s in the

binary expansion of z. Let J be the interval

[0.z0 . . . zn−1, 0.z0 . . . zn−1 + 2−n]. Then

λ(J ∩ P)

|J |
≤ 2−k.

Note that the real z = minP above, is left-r.e.. This means it is

Turing complete. Intuitively, Martin-Löf randomness isn’t strong

enough a notion to ensure Density, because it allows for Turing

completeness.
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Turing incompleteness and positive density

Definition
We say that a real z is a positive density point if ρ(z | P) > 0 for

every effectively closed P 3 z.

The following result shows that for positive density, Turing

incompleteness is all we need.

Theorem (Bienvenu, Hölzl, Miller, N, STACS 2012)

Let z be a Martin-Löf random real. Then

z is Turing above the halting problem ⇐⇒
z is a positive density point.

André Nies (U of Auckland) Almost everywhere theorems CCA 2012 32 / 42



Using this to solve a long-standing open question

Reals in [0, 1] are identified with subsets of N via the binary

expansion. K denotes prefix free string complexity. K-trivial sets

are far from random in a specific sense: there is b such that

∀nK(A�n) ≤ K(0n) + b.

Many results assert that K-trivials are also close to computable.

Theorem (Day and Miller, recent)

Let A ⊆ N be K-trivial. Suppose Z ⊆ N is a Martin-Löf random

set such that Z ⊕ A ≥T ∅′. Then already Z ≥T ∅′.

The idea is to translate Turing incompleteness into a downward

closed property for Π0
1 classes.
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Recall BHMN ’12: Let Z be a Martin-Löf random real. Then

z ≥T ∅′ ⇐⇒ Z is a positive density point.

Theorem (Day and Miller, recent)

Let A ⊆ N be K-trivial. Suppose Z ⊆ N is a Martin-Löf random

set such that Z ⊕ A ≥T ∅′. Then already Z ≥T ∅′.

I A K-trivial implies A′ ≡T ∅′

I By one direction of [BHMN ’12], if Z ⊕ A ≥T ∅′ then Z ∈ P
for some Π0

1(A) class P 3 Z with ρ(Z | P ) = 0.

I Known fact: Since A is K-trivial and Z random, for each

Π0
1(A) class P 3 Z has a Π0

1 class Q with P ⊇ Q 3 Z.

I Then ρ(Z | Q) = 0.

I Hence, by the converse direction of [BHMN ’12], this means

that Z ≥T ∅′.
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A mystery notion: density-one points

Definition
We say that a real z is a density-one point if ρ(z | P) = 1 for every

effectively closed P containing z.

Question
Suppose z is Martin-Löf random. How much additional

randomness is needed to ensure that z is a density-one point?
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Interval-r.e. functions

Definition
A non-decreasing function f on [0, 1] with f(0) = 0 is called

interval-r.e. if f(q)− f(p) is a left-r.e. real uniformly in rationals

p < q.

If f is continuous, this implies lower semicomputable.

Recall that for g : [0, 1]→ R we let

V (g, [0, x]) = sup
∑n−1

i=1 |g(ti+1)− g(ti)|,

where the sup is taken over all t1 ≤ t2 ≤ . . . ≤ tn in [0, x].

Theorem (Freer, Kjos-Hanssen, N, Stephan, Rute 2012)

A continuous function f is interval-r.e. ⇐⇒
there is a computable function g such that f(x) = Var(g, [0, x]).
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I If U ⊆ [0, 1] is effectively open, then g(x) = λ([0, x] ∩ U) is

interval-r.e.

I So, if z ∈ P = [0, 1] \ U and g′(z) exists then ρ(z | P) = 1.

For ML-random reals z, gauge deviation from T-complete:

z makes

interval-r.e.

functions

differentiable

−→ z is a density

one point
−−→ z is a positive

density point

xy
z �T ∅′
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A new randomness notion
Definition
An interval test consists of a left-c.e. real α, and an effective

monotone assignment of rational open intervals I ⊆ [0, 1] to Σ0
1

classes GI ⊆ [0, 1], with λGI ≤ λI; z fails the test if z ∈
⋂
α∈I GI . z

is Oberwolfach random if it passes each interval test.

I If α is computable, this yields the same as a ML-test. For

various reasons OW-random is just slightly stronger than

ML-random.
I For instance, recall that Y is LR-hard if every Y -random set is

random relative to ∅′. Random Turing incomplete LR-hard

sets exist, but are very close to Turing complete. We improved

a result of BHMN 2012:

Theorem (Bienvenu et al. 2012)

If Y is ML-random but not OW-random, then Y is LR-hard.
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Oberwolfach randomness and effective analysis

Theorem (Bienvenu, Greenberg, Kučera N, Turetsky 2012)

Let z be an Oberwolfach random real. Then

I every interval-r.e. nondecreasing function is differentiable at z.

I In particular, z is a density-one point.

No converses are known.
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For ML-random reals z, gauge deviation from T-complete (2):

OW

random
−→

z makes

interval-r.e.

functions

differentiable

−→ z is a density

one point
−−→ z is a positive

density point

x xy
z 6≥LR ∅′ −→ z �T ∅′
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Summary

I Effective versions of “ almost everywhere” theorems frequently

correspond to algorithmic randomness notions.

I Randomness to analysis: algorithmic randomness notions

calibrate the strength of such theorems

I Analysis to randomness: the analytic theorems can be used to

analyze the randomness notions. Analytic properties can gauge

the deviation from Turing completeness of Martin-Löf randoms.

This is in the focus of interest for the interaction of

computability and randomness.
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