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“Almost everywhere” theorems (1)

Several important theorems in
analysis assert a property for
almost every real z. We give two
examples due to Lebesgue.

Theorem (Lebesgue’s Theorem, 1904/1910)

Let f:]0,1] — R be non-decreasing.
Then the derivative f'(z) exists for almost every real z.

André Nies (U of Auckland) Almost everywhere theorems CCA 2012 2 /42



“Almost everywhere” theorems (2)

From HENRI LEBESGUE, Sur I’ intégration des fonctions
discontinues, Annales scientifiques de 1’ E.N.S. 3e série, tome 27

(1910), p. 361-450; p. 407.

Raisonnant de méme sur la densité 3 gauche, on voit finalement que
la densité d’un ensemble mesurable est égale @ un en presque tous les
points de cet ensemble.

Translation:

Theorem (Lebesgue Density Theorem, 1910)

Let E C [0,1] be measurable. For almost every z € [0, 1]:
if z € E, then E has density 1 at z.
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Effective versions of almost everywhere theorems

Now consider the case where the given objects are effective in some
sense.

» How strong an algorithmic randomness notion for a real z is
needed to make the theorem hold at 27

» Will the theorem in fact characterize the randomness notion?

» [ will give an overview of results linking algorithmic
randomness to differentiability.

» [ will discuss exciting recent developments: the density of
effectively closed sets at random members, and applications of
this to the study of K-triviality.
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1. A brief introduction to

algorithmic randomness
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Idea in algorithmic randomness

» One defines a notion of algorithmic null set.

» A real z is random in a particular sense if it avoids all null sets
of this kind.

» There are only countably many null sets of this kind. So almost

every z is random in that sense.

Randomness notions relevant to us:

Martin-Lof random = computably random = Schnorr random.

These implications are proper.
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Computable randomness

Computable betting strategies (martingales) are computable
functions M from binary strings to the non-negative reals.

» Let Z be a sequence of bits. When the player has seen the
string o of the first n bits of Z, she can make a bet ¢, where
0 < ¢ < M(o), on what the next bit Z(n) is.

» If she is right, she gets q. Otherwise she loses q. Thus, we have
M(c0) + M(ol) =2M(o)
for each string o.

» She wins on Z if M is unbounded along Z. (These Z form an
algorithmic null set.) We call a set Z computably random if
no computable betting strategy wins on Z.
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Martin-Lof’s 1966 randomness notion

Infinite sequences Z of bits can be “identified” with reals numbers

in [0, 1] via the binary expansion.
» A Martin-Lof test is an
effective descending sequence
(Un)men of open sets in [0, 1]
such that the measure of U,,

1s at most 27™.

» Intuitively, U, is an attempt

-

to approximate a real Z with
accuracy 27,

CcC C Cc C C
W N

» 7 passes the test if Z is not in

N

all U,,.
» 7 is ML-random if it passes
all ML-tests.
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Randomness via effective Vitali covers

Let (Gk)ren be a computable sequence of rational open intervals
with |Gk’ — 0.
The set of points Vitali covered by (G )ren is

V(Gi)ren = {z: z is in infinitely many Gj’s}.

Martin-Lof and Schnorr randomness also can be defined via
effective Vitali covers.

» Martin-Lof random: not in any set V(Gj)ren Where

21 |G| <00

» Schnorr random: not in any set V(Gj)ken where Y, |Gl is a
computable real.
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2. Effective versions of Lebesgue’s first theorem
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e

Theorem (Brattka, Miller, N; submitted)

Let f :]0,1] — R be non-decreasing and computable. Then
z is computably random = f'(z) exists.

If f has bounded variation, then f’(z) exists for each Martin-Lof
random real z (Demuth, 1975).
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Proving this: Functions-to-tests
» If f is computable nondecreasing, we (uniformly in f) build a
computable martingale M such that
f'(2) fails to exist = M succeeds on z.
» If f is computable of bounded variation, we build a
Martin-Lof test such that
f'(2) fails to exist = the test succeeds on z.

Corollary
FEach computable nondecreasing function f is differentiable at a
(uniformly obtained) computable real.

PROOF: Each computable martingale fails on some computable
real, which can be obtained uniformly.
This argument doesn’t work for functions of bounded variation in

general.
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Converses (tests-to-functions)

» Both the nondecreasing and the bounded variation cases also
have converses: if z is not random in the appropriate sense,
then some computable function of the respective type fails to
be differentiable at z (BMN, submitted).

» So computable analysts could take these properties as
definitions!

z is computably random <=
each computable nondecreasing function is differentiable at z

z 1s Martin-Lof random <=

each computable function of bounded variation differentiable at z.
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Computable randomness and Lipschitz functions

Recall that f is Lipschitz if | f(z) — f(y| < C(|x — y|) for some

C eN.
Theorem [Freer, Kjos, N, Stephan: submitted]

A real z is computably random

each computable function
f:[0,1] — R is differentiable at z.

= : Write f(z) = (f(z) + Cz) — Cz. Then f(x) + Cz is
computable and non-decreasing.

From the monotone case (BMN), we obtain a test (martingale) for
this function. If f’(z) does not exists, then z fails this test.

<= : Turn success of a martingale on a real into oscillation of the

slopes, around the real, of a Lipschitz function.
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Rademacher’s theorem

Theorem (Rademacher, 1920)

Let f:]0,1]" — R be Lipschitz.
Then the derivative D f(z) (an element of
R") ezists for almost every vector z € [0, 1]™.

To define computable randomness of a vector z € [0, 1]

» Take the binary expansion of the n components of z.

» We can bet on the corresponding sequence of blocks of n bits.

Conjecture

z € [0,1]™ is computably random <= every computable Lipschitz
function f : [0,1]" — R is differentiable at z.
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Schnorr randomness and Lj-computability

Pathak, Rojas, and Simpson (2012) and Rute (2012) proved:

z € [0,1]¢ is Schnorr random <>
for every L;-computable function g: [0,1]¢ — R, the
usual limit exists:
: 1
im0 x5, Jb,() 9
This is an effective version of the Lebesgue differentiation theorem
(but takes into account only the existence of limits).
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3. Polytime randomness and analysis
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Polynomial time randomness

Definition
» A martingale M: 2<“ — Q is called polynomial time if from

string o can compute the rational M (o) in poly. time.

» A real z is polynomial time random if no polynomial time
martingale succeeds on its binary expansion.

What’s known on poly time randomness?

» Exists in all time classes properly containing P, such as
DTIME(n'o&™).

» Incomparable with Schnorr randomness!

» Implies nice statistical properties, such as absolutely normal.
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Polynomial time functions g: [0,1] — R

» Recall a sequence of rationals (p;);en is a Cauchy name if
VEk > i|p; — pr| < 27°

» Use a compact set of Cauchy names to represent reals
(signed digit representation does it).

» ¢ is polytime computable if there is a polytime oracle TM
turning every Cauchy name for x into a Cauchy name for g(z).

Functions like e®, 22, sin x are polynomial time.
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Tests-to-functions

For a martingale M, the measure pu,; is given by
pa([o]) = 2°1M (o),
and distribution gy (z) = pm|0, ).

» M has the savings property if M (o) > M (1) — 2 whenever
o> T.

» This implies M (o) = O(|o|) so M grows slowly.

» In particular, pp, has no atoms.

If M is poly time and has savings property, then g,; is poly time.
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Characterization of polytime randomness via the
lower derivative

Theorem [Nies, using BMN 2011]
A real z is NOT polytime random

We can develop the theory of martingales with bases other than 2.
We get the same connections with nondecreasing functions. Since
the right side of the theorem is base invariant, we obtain
Corollary

Polytime randomness of a real is base invariant.

Figueira and his student Javier Silveira have a direct proof of this
(2011, master thesis).
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Questions on polytime randomness

Let z be a polynomial time random real.

» Does f'(z) exist for each nondecreasing polytime computable f7

» Easier: does f’(z) exist for each Lipschitz polytime computable

7
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4. Further “almost everywhere” theorems and

their effective content
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Sard’s theorem (suggested by Alex Galicki)

Theorem (Sard)

Let S C R™ be open, and let f: S — R be a C' function.
Then the set of values f(y) where Df(y) =0 has measure 0.

Such a value f(y) is called a critical value.

Galicki and N (2012): Suppose f € C'(0, 1) is computable. If z is
Martin-Lof-random, then z is not a critical value. (This also works
in higher dimensions.)

» Idea: into the m-th component U, of the Martin-Lof test,
enumerate all intervals K = (min f(I), max f(I)), where I is
an elementary dyadic interval such that |K| < 27™|I|.

» Converse (work in progress): if z is not Martin-Lof random, it
is critical value of some computable f € C1(0,1).
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Carleson-Hunt (suggested by Manfred Sauter)

Theorem (Carleson, 1966 for p = 2; improved by Hunt
1968)

Let f € LP[—7, x| be a periodic function. Then the Fourier series
en(z) = DN f(n)e™* converges for almost every z.

We say z is weakly 2-random if z is in no null effective G5 set. This
properly implies Martin-Lof randomness.

Easy consequence of Carleson-Hunt theorem: if f is
LP-computable, then weak 2-randomness of z suffices to make the
sequence cy(z) converge. This is currently all we know.
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Theorem (Weyl, 1916)

Let (a;)ien be a sequence of distinct integers. Then for almost every
real z, the sequence a;z mod 1 is uniformly distributed in [0, 1].

Suppose now (a;);en is computable. Avigad (2012) shows that

» Schnorr randomness of z suffices to make the conclusion of
Weyl’s theorem hold.

» There is a z satisfying the conclusion of the theorem which is
in some null effectively closed set (hence not even “Kurtz

random”.)
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What is the common motif behind

all these effective a.e. theorems?
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5. Density of effectively closed classes

at random members
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Lebesgue density

Let A denote uniform (Lebesgue) measure.

Definition
Let € be a subset of [0, 1]. The (lower) density of £ at a real z is

L AINE)
p(z| &) = h&l_l)%fT,

where J ranges over intervals with rational endpoints containing z.

This gauges how much of E is around z as we zoom in on z.
Note that p(z | £) = Dg(z) where g(x) = \([0,2) N E).
Theorem (Lebesgue Density Theorem, 1910)

Let € C [0, 1] be measurable. For almost every z € [0, 1]:
if z € &, then € has lower density 1 at z .
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Theorem (Recall)

Let £ C [0, 1] be measurable. Then for almost every z € [0,1]:
if z € €, then has density 1 in E.

» If £ is open this is trivial, and actually holds for all z € [0, 1].
» & closed is the first case where there is something to prove.
» If £ is closed then any 1-generic z € £ has density one.

Does the strongest notion we have considered, Martin-Lof
randomness, ensure density one? Answer: NO!
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A Martin-Lof random of density zero

Example

Let P # (), P C [0,1] be an effectively closed set of Martin-Lof
randoms. Let z = minP. Then p(z | P) =0

This uses that every Martin-Lo6f random is Borel normal. Given £k,
pick n such that from positions n to n + k — 1 we have 1’s in the
binary expansion of z. Let J be the interval
[0.20...20-1,0.20 ... 2,1 +27"]. Then

A(JNP)

< 9
| J|

Note that the real z = minP above, is left-r.e.. This means it is
Turing complete. Intuitively, Martin-Lof randomness isn’t strong
enough a notion to ensure Density, because it allows for Turing

completeness.
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Turing incompleteness and positive density

Definition

We say that a real z is a positive density point if p(z | P) > 0 for
every effectively closed P > z.

The following result shows that for positive density, Turing

incompleteness is all we need.

Theorem (Bienvenu, Holzl, Miller, N, STACS 2012)

Let 2z be a Martin-Lof random real. Then

z is Turing above the halting problem
z is a positive density point.

André Nies (U of Auckland) Almost everywhere theorems CCA 2012 32 / 42



Using this to solve a long-standing open question

Reals in [0, 1] are identified with subsets of N via the binary
expansion. K denotes prefix free string complexity. K-trivial sets
are far from random in a specific sense: there is b such that

VnK(Al,) < K(0") +b.

Many results assert that K-trivials are also close to computable.

Theorem (Day and Miller, recent)

Let A C N be K-trivial. Suppose Z C N is a Martin-Lof random
set such that Z ® A > ('. Then already Z >7 (.

The idea is to translate Turing incompleteness into a downward

closed property for IT9 classes.
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Recall BHMN ’12: Let Z be a Martin-Lof random real. Then
2 >7p I <= Z is a positive density point.

Theorem (Day and Miller, recent)

Let A C N be K-trivial. Suppose Z C N is a Martin-Lof random
set such that Z ® A > (V. Then already Z >7 (.

» A K-trivial implies A" =7 (
» By one direction of [BHMN ’12],if Z & A >7 () then Z € P
for some II9(A) class P 2 Z with p(Z | P) = 0.

v

Known fact: Since A is K-trivial and Z random, for each
I9(A) class P > Z has a 1Y class Q with P 2 Q > Z.

Then p(Z | Q) = 0.

Hence, by the converse direction of [BHMN ’12], this means
that Z >¢ 0.

v

v
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A mystery notion: density-one points

Definition

We say that a real z is a density-one point if p(z | P) =1 for every
effectively closed P containing z.

Question

Suppose z is Martin-Lof random. How much additional
randomness is needed to ensure that z is a density-one point?
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Interval-r.e. functions

Definition
A non-decreasing function f on [0,1] with f(0) = 0 is called
interval-r.e. if f(q) — f(p) is a left-r.e. real uniformly in rationals

P <gq.

If f is continuous, this implies lower semicomputable.
Recall that for g: [0,1] — R we let

V(g,[0,x]) = sup 2?2_11 lg(tiva) — g(ts)l,

where the sup is taken over all t; <ty < ... <t, in [0, z].

Theorem (Freer, Kjos-Hanssen, N, Stephan, Rute 2012)

A continuous function f is interval-r.e.

there is a computable function g such that f(x) = Var(g, [0, z]).
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» If U C [0, 1] is effectively open, then g(x) = A([0, z] NU) is
interval-r.e.

» So, if z€ P =[0,1] \U and ¢'(2) exists then p(z | P) = 1.

For ML-random reals z, gauge deviation from T-complete:

z makes
interval-r.e. . z is a density z is a positive
functions one point density point
differentiable

2 E
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A new randomness notion

Definition

An interval test consists of a left-c.e. real o, and an effective
monotone assignment of rational open intervals I C [0, 1] to X9
classes Gy C [0, 1], with AG; < AI; 2 fails the test if z € (),.;Gr. 2
is Oberwolfach random if it passes each interval test.

» If o is computable, this yields the same as a ML-test. For
various reasons OW-random is just slightly stronger than
ML-random.

» For instance, recall that Y is LR-hard if every Y-random set is
random relative to (/. Random Turing incomplete LR-hard
sets exist, but are very close to Turing complete. We improved
a result of BHMN 2012:

Theorem (Bienvenu et al. 2012)
If Y is ML-random but not OW-random, then Y is LR-hard.
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Oberwolfach randomness and effective analysis

Theorem (Bienvenu, Greenberg, Kucera N, Turetsky 2012)

Let 2z be an Oberwolfach random real. Then

every interval-r.e. nondecreasing function is differentiable at z.

In particular, z is a density-one point.

No converses are known.
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For ML-random reals z, gauge deviation from T-complete (2):

z makes
oW interval-r.e. L, F is a density z is a positive
random functions one point density point
differentiable
4 2 LR 4 — z %T o
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Summary

» Effective versions of “ almost everywhere” theorems frequently
correspond to algorithmic randomness notions.

» Randomness to analysis: algorithmic randomness notions
calibrate the strength of such theorems

» Analysis to randomness: the analytic theorems can be used to
analyze the randomness notions. Analytic properties can gauge
the deviation from Turing completeness of Martin-Lof randoms.
This is in the focus of interest for the interaction of

computability and randomness.
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