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Main thesis

I Martingales are related to nondecreasing functions on the unit interval.

I Concepts about martingales have corresponding analytical notions.

I The martingale concepts are the restrictions of these analytical notions
to dyadic rationals.
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“Almost everywhere” theorems
Several theorems in real analysis make a statement that holds at almost
every real. Often they state that a function of a certain type is
well-behaved at almost every input.

Theorem (Lebesgue, 1904)
Let f : [0, 1]→ R be non-decreasing.
Then the derivative f ′(z) exists for almost every real z,
that is, with (uniform) probability 1.
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Denjoy alternative
For a function f , define the Dini derivatives by

Df (x) = lim sup
h→0

(f (x + h)− f (x))/h

Df (x) = lim inf
h→0

(f (x + h)− f (x))/h

The function f is differentiable at x iff Df (x) = Df (x) and this value is
finite.
Let λ denote Lebesgue measure.

Theorem (Denjoy-Young-Saks; strengthens Lebesgue)
Let f be an arbitrary function [0, 1]→ R. Then λ-almost surely,

either f ′(x) exists,

or Df (x) =∞ and Df (x) = −∞.
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Rademacher’s theorem

Theorem (Rademacher)
Let f : [0, 1]n → R be Lipschitz.
Then the derivative Df (z) (an element of Rn) exists for almost every
vector z ∈ [0, 1]n.
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Ergodic theory

Definition
A measurable operator T on a probability space (M,A, µ) is called ergodic
if for each X ∈ A,
I µ(X ) = µ(T−1(X )), and
I T−1(X ) = X implies µ(X ) = 0 or µ(X ) = 1.

Examples: Cantor space {0, 1}N, T is shift map.
Unit interval, T (x) = fractional part of x + α, where α > 0 is irrational.

Theorem (Ergodic Theorem; Birkhoff, 1932)

Let f ∈ L1(µ). Then for almost every x ∈ M, the “time average”
1
N
∑N−1

i=0 f ◦ T i (x) converges to the “space average”
∫
fdµ.
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Connection to computable analysis,
and algorithmic randomness

For each theorem of this kind:

I Find a framework in which the given objects are computable.

I Now the “almost everywhere” property may correspond to an
algorithmic randomness notion. Try to figure out which one.

I For Lebesgue’s theorem, the notion is “computable randomness”,
which is based on effective betting strategies.

I The same holds for Denjoy-Young-Saks.

I For Rademacher, I conjecture it is computable randomness in [0, 1]n.

I For the Ergodic Theorem, the notion is Schnorr randomness.
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Background on computable analysis
and algorithmic randomness
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Computable reals

In the definition of computable functions, N can be replaced by domains
that are effectively encoded by natural numbers, such as the rationals Q.

I A real r ∈ R is computable if there is a computable sequence (qn)n∈N
of rational numbers such that |r − qn| < 2−n−1 for each n.

I Computable reals are
√
2, π, e, . . .

I To define a non-computable real, one needs computability theory.
Examples of such reals are

I
∑

n∈H 2−n, where H is the halting problem
I Chaitin’s Ω.
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Computable functions on the unit interval

Definition
We say that a function f : [0, 1]→ R is computable if

(a) For each rational q ∈ [0, 1], the real f (q) is computable uniformly in q.

(b) f is effectively uniformly continuous: for input a rational ε > 0 we can
compute a rational δ > 0 such that

|x − y | < δ implies |f (x)− f (y)| < ε.

In general, the condition (a) by itself is too weak. However,

I if a nondecreasing function f satisfies (a) and is continuous, then it is
already computable.

I For a Lipschitz function f , (a) is also sufficient.

For instance, the functions ex , and
√
x , and sin x are computable.
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Randomness via betting strategies

Computable betting strategies are certain computable functions M from
binary strings to the non-negative reals.

I Let Z be a sequence of bits. When the player has seen the string σ of
the first n bits of Z , she can make a bet q, where 0 ≤ q ≤ M(σ), on
what the next bit Z (n) is.

I If she is right, she gets q. Otherwise she loses q. Thus, we have

M(σ0) + M(σ1) = 2M(σ)

for each string σ.

I She wins on Z if M is unbounded along Z . We call a set Z
computably random if no computable betting strategy wins on Z .

Martin-Löf random ⇒ computably random, but not conversely.
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Effective versions of almost everywhere theorems
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Effective form of ’s theorem

Theorem (Brattka, Miller, N; submitted)
Let f : [0, 1]→ R be non-decreasing and computable.
Then f ′(z) exists for every computably random real z.

If we merely assume that f has bounded variation, then f ′(z) exists for
each Martin-Löf random real z (Demuth, 1975).

In BMN (submitted) we obtained a new proof of this, combining our result
above with Jordan (f of bounded variation is the difference of two
nondecreasing functions).

I don’t know how Demuth proved it. He may have used “Bauer’s thesis”.
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Andrej Bauer’s thesis

Computable mathematics is the “realizability interpretation” (Kleene)
of constructive mathematics.

According to this, you can take the proof of any theorem from Bishop’s
1967 book (Foundations of constructive Analysis) and use it to prove a
theorem in computable analysis.

V’yugin (1997/1998) used Bishop’s proof of the Birkhoff ergodic theorem
to show that it holds at each ML-random. (This was pointed out to me by
Jason Rute.)

Maybe Demuth did the same to prove his theorem?
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The theorem from Bishop’s book
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Proving the effective form of ’s theorem

Theorem (Brattka, Miller, N; submitted)
Let f : [0, 1]→ R be non-decreasing and computable.
Then f ′(z) exists for every computably random real z.
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Turning nondecreasing functions into martingales

For the simplest case suppose that Dg(z) =∞ for g computable
nondecreasing. Then martingale M succeeds on z , where for a string σ, we
let

M(σ) =
g(0.σ + 2−|σ|)− g(0.σ)

2−|σ|
.

Thus M(σ) is the slope of g
between the points 0.σ and
0.σ + 2−|σ|. It is clear that this
is a martingale. For instance,
the following shows
2M(1) = M(10) + M(11).

Slope = M(10)

Sl
op

e 
= 

M
(11

)

Slo
pe

 = 
M(1)

0.10 0.11 1.0
g

1
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To prove the full result is much harder
It may happen that f ′(z) fails to exist, but the dyadic slope Mf doesn’t
“notice”.
Solution: use finitely many computable martingales. How many depends on
Df (z)/Df (z).

I Shifts: Mf ,α(σ) = slope at interval α + [0.σ, 0.σ + 2−|σ|], α ∈ Q fixed

I we also need scaling of intervals by a fixed rational δ ∈ [1/2, 1].

We think the scaling is necessary in general. However, sometimes shifting
definitely suffices:

Theorem (N and Solecki)
Suppose f is a nondecreasing function which is not differentiable at
z ∈ [0, 1]. Suppose that Df (z) = 0, or Df (z)/Df (z) > 72.
Then one of the martingales Mf , Mf ,1/3 does not converge on the binary
expansion of z.
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Converse of the effective form of Lebesgue’s theorem

.

Theorem (BMN, submitted)
If z is not computably random, then there is a computable nondecreasing
function g such that g ′(z) does not exist.

Sketch the reason why.
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Turning martingales into nondecreasing functions

I Let M be a computable betting strategy
(also called a computable martingale).

I Let µ be the measure induced by M. It is determined by its values on
the basic clopen sets: µ([σ]) = M(σ)2−|σ|.

I Let
gM(x) = µ[0, x).

Then the function gM is nondecreasing, and gM(q) is uniformly
computable in a dyadic rational q.

I We have M(σ) = (gM(0.σ1)− gM(0.σ))/2−|σ|. So if M succeeds on a
real z and µM is atomless, we have DgM(z) =∞.

Now suppose z is not computably random. Then some computable
martingale M with µM atomless succeeds on z .
In this case gM is continuous, and hence computable. And g ′M(z) does not
exist because DgM(z) =∞.

André Nies (The University of Auckland)Randomness interacts with computable and polynomial time analysisJanuary 25, 2012 20 / 31



Computable randomness and differentiability:
Lipschitz functions

Different classes of functions can describe the same randomness notion:
instead of monotone, we can take Lipschitz functions.

Theorem (Freer, Kjos-Hanssen, N: in prep)
A real z is computably random ⇐⇒ each computable Lipschitz function

f : [0, 1]→ R is differentiable at z.

⇒ follows from the BMN result because f (x) + cx is nondecreasing
computable, where c ∈ N is a Lipschitz constant.

For ⇐ we have to work harder than in the previous case: if computable
martingale M succeeds on the binary expansion z , first change it into a
bounded computable martingale N that oscillates between 1 and 2 along z .
Then gN is Lipschitz and g ′N(z) doesn’t exist.
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Computable randomness and the Denjoy alternative

Recall that f satisfies the Denjoy alternative at x if

either f ′(x) exists,

or Df (x) =∞ and Df (x) = −∞.

Theorem (Bienvenu, Hoelzl, Miller, Nies, STACS 2012 )
A real z is computably random ⇐⇒ each computable function

f : [0, 1]→ R satisfies the Denjoy alternative at z.

⇐ follows from BMN result.
⇒ uses a result of Demuth I don’t know how to prove at present.
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Summary of correspondence between martingales and
nondecreasing functions (1)

Given martingale M
gM(x) is µM [0, x) where µM is
the measure on [0, 1]

corresponding to M.

Mg is the slope of g at dyadic
rationals:

Mg (σ) =
g(0.σ + 2−|σ|)− g(0.σ)

2−|σ|
.

Given nondecreasing function g
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Correspondence between martingales and nondecreasing
functions (2)

M succeeds on binary
expansion of z

Dg(z) =∞

M oscillates (i.e., fails to
converge) on binary expansion
of z , but doesn’t succeed

Dg(z) < Dg(z) <∞.

BUT, remember that functions are the more complex objects because the
martingales only look at dyadic rationals. We need finitely many
martingales (with shift + scaling) to detect non-differentiablity of the
function.
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Other models of computation
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I Polynomial time: from string σ can compute the rational M(σ) in poly.
time

I computable: from string σ can compute the real M(σ)

I hyperarithmetical, or ∆1
1: from string σ can compute an index for

M(σ) as a ∆1
1 real.

Definition
A real z is BLA random (where BLA ∈ { polytime, computable, ∆1

1 }) if
no BLA martingale succeeds on its binary expansion.
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What’s known on poly time random reals?

I Can be computable; in fact exists in all time classes properly
containing P

I Incomparable with Schnorr randomness!

I Has nice statistical properties, such as absolutely normal.
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Effectiveness notions for functions g : [0, 1]→ R

We can define effectiveness notions similar to the ones for martingales, for
functions g .

I Represent a real x by a Cauchy name (pi )i∈N. pß∈Q, and
∀k > i |pi − pk | ≤ 2−i .

I g is { polytime, computable, ∆1
1 } if there is a procedure at the right

level turning every Cauchy name for x into a Cauchy name for g(x).

I Same notion of “computable” as before.

I For poly time, need to restrict to a compact set of Cauchy names
(signed digit representation does it).

Functions like ex , x2, sin x are polynomial time.
∆1

1 means number of steps is a recursive ordinal, such as ω. This gives
time to look at the whole real x to see whether x ≥ 1/2. So ∆1

1 functions
can be discontinuous.
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Tests-to-functions, again

Recall that for a martingale M, µM is the measure, and gM(x) = µM [0, x).
M has the savings property if M(σ) ≥ M(τ)− 2 whenever σ � τ . This
implies M(σ) = O(|σ|) so M grows slowly. In particular, µM has no atoms.

I If M is poly time and has savings property, then gM is poly time.

I If M is computable and µM atomless then gM is computable.

I If M is ∆1
1 then so is g .
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Characterization via the lower Dini derivative

Theorem (N + others)

A real z is NOT { polytime, computable, ∆1
1 } random ⇔

some nondecreasing continous function g at the
same level of effectivity satisfies Dg(z) = +∞.

We can develop the theory of martingales with bases other than 2. We get
the same connections with nondecreasing functions. Since the right side of
the theorem is base invariant, we obtain

Corollary
{ polytime, computable, ∆1

1 } randomness of a real is base invariant.

Figueira + student Javier have direct proof for polytime.
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Questions on polytime randomness

Let z be a polynomial time random real.

I Does f ′(z) exist for each nondecreasing polytime computable f ?

I Easier: does f ′(z) exist for each Lipschitz polytime computable f ?

I Does the Denjoy alternative hold for each polytime computable f ?
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