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K-trivials: synopsis

During the last 10 years, the combination of algorithmic
randomness and computability led to a novel class:
the K-trivial sets.

» They are at the same time far from random, and close to
computable.

» Coincidences with other classes.

» Construction of an incomputable c.e. K-trivial is injury-free.

» The K-trivials are closed downward under <.

» X9 ideal in the (c.e.) Turing degrees, contained in superlow.

Several problems on the relationship of K-trivials to Martin-Lof
randoms have been solved recently, or appear close to a solution.
This relies on surprising new connections of Martin-Lof

randomness with the analytic concept of density in a closed class.
The Incomputable 2/ 1



Descriptive string complexity K

Consider a partial computable function from binary strings to
binary strings (called machine). It is called prefix-free if its
domain is an antichain under the prefix relation of strings.

There is a universal prefix-free machine U:
for every prefix-free machine M,

M (o) = y implies U(7) = y for some 7 with |7| < |o| + dy,

and the constant dj; only depends on M.

The prefix-free Kolmogorov complexity of string y is the length of
a shortest U-description of y:

K(y) = min{|o|: U(o) =y}
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Definition of K-triviality

In the following, we identify a natural number n with the string
that is its binary representation. For a string 7, up to additive
const we have K(|7|) < K(7), since we can compute |7| from 7.

Definition (going back to Chaitin, 1975)

An infinite sequence of bits A is K-trivial if, for some b € N,

Vn[K(Al,) < K(n) +b],

namely, all its initial segments have minimal K-complexity.

It is not hard to see that K(n) < 2log,n + O(1).

Zis random & Vn[K(Z],) >n —-0(1)]
Ais K-trivial & Vn[K(Al,) < K(n) +0(1)]

Thus, being K-trivial means being far from random.
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Why prefix-freeness?
Why not use plain Kolmogorov complexity C?

» Vn[C(Z1,) >n—O(1): there is no such Z (Katzev).

» Vn[C(AT],) < C(n)+0O(1)]: the only such A are the
computable sets (Chaitin, 1976).
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Farly results on the K-trivials (before 2002)

» Chaitin (1975) proved that for each constant b there are only
O(2%) K-trivials. This implies that each K-trivial set is Turing
below the halting problem ().

» Solovay (1976) built an incomputable K-trivial set.

» Zambella (1990 ILLC technical report), Kummer (unpubl),
and Calude-Coles (1999) all gave examples of such sets that

were computably enumerable.
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The awakening of triviality (2002-2004)

» Downey, Hirschfeldt, Nies, and Stephan® gave a simple “cost
function” construction of an incomputable c.e. K-trivial set.

\\_‘ The construction was similar to the construection of a low for
random set due to Kucera and Terwu /99
» Downey et al. also showed that no K-trivial is Turing

equivalent to the halting problem (). For this they introduced
what was later called the decanter method 2.

ITrivial x and 8th Asian Logic
Conferences, (2003), 103-131.
2Downey, R., Hirschfeldt, D., Nies, A and Terwijn, S. Calibrating

randomness. Bull. Symb. Logic. 12 (2006), 411-491.
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Building an incomputable c.e. K-trivial set A
Let K (w) = min{|o| : U(c) = win s steps}.

To make A non-computable, we may have to put a number z of
our choice into A at a stage s in order to diagonalize against the

e-th computable function that claims to be the characteristic
function of A.

In this case, for any w € N, w > x, we have to provide short
descriptions, of length K (w) + O(1), of the new A [,.

For each e, eventually we can choose a number x so large that

ZS 2—K5(w) < 9—e—2

w=z+1

Because > 272 = 1/2, we will never run out of measure for
new descriptions in the prefix-free machine we are building.

o’
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Lowness for Martin-Lof randomness

The following specifies a sense in which a set A is computationally
weak when used as an oracle.
Definition
A is low for Martin-Lof randomness if
every ML-random set Z is already ML-random with oracle A.

» This property was introduced by Zambella (1990).

» Kucera and Terwijn (1999) built a c.e. incomputable set of this
kind.
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Far from random = close to computable

Theorem (N, Adv. in Math., 2005)
Let A CN. Then

A is K-trivial <= A is low for Martin-Lof randomness.

» The implication “=" is joint with Hirschfeldt.

» The proof combined the decanter with the “golden run”
method, where an oracle ()" would be needed to find the node
in a tree of runs that satisfies the conditions required.

» Since low for ML-randomness is closed downward under <r,
this implies that the K-trivials are closed downward under <g.

» Nies also used the golden run method to show that each
K-trivial A is superlow (A’ < ('), and truth-table below a
c.e. K-trivial.
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Bases for randomness (2005-2006)
Definition (Kucera, 1993)

A is a base for randomness if A <t Y for some Y that is
Martin-Lof random relative to A.

Theorem (Hirschfeldt, N, Stephan, publ. 2007)

Base for randomness <= K -trivial.

Corollary

Let'Y be an incomplete Martin-Lof random. Let A <t Y be a c.e.
set. Then A is K-trivial.

4

Converse?

Covering question

Is every (c.e.) K-trivial below an incomplete ML-random?

V.
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The years 2007 -2010

» No progress on the covering question and related questions,
such as non-cupping by ML-randoms.

» Results of Kucera and Slaman:

» there is a low set Turing above all the K-trivials.

» They used K-trivials to show that in every Scott set,
every non-computable member is Turing incomparable
with some other member.

» Bienvenu and Downey (STACS 2009),
Bienvenu, Merkle and N (STACS 2011): Solovay functions.
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Solovay functions

Definition (going back to Solovay, 75)

A computable function f: N — N is a Solovay function if
Vn K(n) < f(n), and infinitely often equal (all within constants).

4

Theorem (Bienvenu, Downey, Nies, Merkle)
Let f be any Solovay function. Then

A is K-trivial <= Vn K(A[,) <* f(n).

Program: redo theorems on K-trivials using Solovay functions.
E.g, there is a new proof that every K-trivial is Turing below a

c.e. K-trivial due to Bienvenu, 2010, unpubl.
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The non-cupping question

Theorem (N, 2007; improved by N and Hirschfeldt)

There is an incomputable c.e. A such that

(x) A®Y >1 0" for ML-random'Y implies Y > (V.

Any such A is K-trivial.

Non-cupping question
Does the property (x) hold for every K-trivial set A? J
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2010 - now
» Franklin and Ng (2010) show

‘difference random <= ML-random & Turing incomplete.

» Bienvenu, Holzl, Miller and N (STACS 2012) characterize
difference randomness of a ML-random real via the analytic
concept of positive density in an effectively closed class.

» Day and Miller (2011) solve the noncupping question. They
use BHMN ’12 for the implication “=" of their result:

‘K -trivial <= Martin-Lof noncuppable.‘

» Bienvenu, Greenberg, Kucera, N and Turetsky (2012) build a
“smart” K-trivial A:

every ML-random Y >7 A is LR-hard (close to T-complete).
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Positive density in a I1 class

Let z € P C [0,1], where P is a II{ class. Let 3 € (0,1].
We say that z has (lower) density 5 in P if the portion of P
around z as we zoom in is eventually 3:

= liminf )\[PH—M

p<2<q,q—p—0 q—0p

Lebesgue’s density theorem: a.e. z € P has density 1 in P.
Theorem (Bienvenu, Holzl, Miller and N)

Let z be ML-random. Then z is difference random <=
2 has positive density in every 119 class P > z.

Day-Miller used this analytic understanding of Turing
incompleteness among the ML-randoms for the non-cupping

question.
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Bienvenu, Greenberg, Kucera, N and Turetsky

We introduced “Oberwolfach randomness” of a real (2012), a
notion possibly stronger than difference randomness. It implies
having density 1 in ITY classes containing the real (full Lebesgue).
An effective null set (test) is given by a computable sequence of
positive rationals (3;)zen with 8 = sup, 3, finite, and a uniformly ¢

sequence (V,)zen with the conditions V, O V41 and AV, < 5 — 5,.
We build a “smart” K-trivial A:

There is K-trivial A such that no Y >7 A is Oberwolfach random.J

Recall that Y is LR-hard if every Y-random set is random relative
to (/. Random incomplete LR-hard sets exist, but are very close
to Turing complete. We improved a result of BHMN 2012:

If Y is ML-random but not OW-random, then Y is LR-hard. )
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More developments

Bienvenu, Greenberg, Kucera, Miller, N and Turetsky (2012):

If a Martin-Lof random z has lower density < 1 in some I1{ class
P > z, then z computes every K-trivial set.

Barmpalias and Downey (2012) showed that the ideal of
K-trivials has no exact pair in the c.e. degrees.

Melnikov and N (Proc. AMS, in press) extended K-triviality to
functions, and then to points in a computable metric space.
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Recent references
» “The Denjoy alternative for computable functions”, with
Bienvenu, Hoelzl, and Miller, STACS 2012. “K-triviality,

Oberwolfach randomness, and differentiability”. Oberwolfach
preprint by BGKNT.

My book “Computability and Randomness”.
Updated and affordable paperback version has appeared
(March 2012).

» Book by Downey and Hirschfeldt (2010).
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