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Understanding a set Z ⊆ N
1. how much does Z know? (computational complexity). Either
place Z in a level of an absolute complexity hierarchy, for instance
recognizing that the set is computable, c.e., . . ., ∆1

1, Π1
1.

Or measure its relative computational complexity, by comparing it
to other sets, via ≤m, ≤T , . . .

2. how well is Z organized? (degree of randomness). Again there is
an absolute hierarchy, consisting of notions such as computably
random, Martin-Löf-random, . . ., ∆1

1-ML random, Π1
1-ML-random.

And there are ways to compare the degree of randomness of sets,
using ≤S , ≤K , . . .
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K(y)

• A machine is a partial recursive function M : {0, 1}∗ 7→ {0, 1}∗.

• M is prefix free if its domain is an antichain under inclusion of
strings.

Let (Md)d≥0 be an effective listing of all prefix free machines. The
standard universal prefix free machine U is given by

U(0d1σ) = Md(σ).

The prefix free version of Kolmogorov complexity is

K(y) = min{|σ| : U(σ) = y}.

Thus, K(y) is the length of a shortest prefix free description of y.
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Initial segments

Z � n = Z(0) . . . Z(n− 1)

We often try to understand sets by looking at their finite initial
segments.

• For computational complexity we have the use principle (a
computation relative to Z only depends on finitely much of Z)

• for the degree of randomness we look at the length of
descriptions of the finite initial segments.
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Martin-Löf randomness

• Consider only null classes that are effectively c.e., namely, of
the form

⋂
n Rn, where

– Rn ⊆ 2ω is uniformly Σ0
1 and

– µRn ≤ 2−n.

• Z is ML-random if Z is not in any effectively c.e. null class.

Schnorr’s Theorem:

Z is Martin-Löf random iff for some c, ∀n K(Z � n) ≥ n− c.

Example of a ML-random set:

Ω =
∑

U(σ)↓ 2−|σ|,

where U is a universal prefix free machine.
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Connections

I discuss results connecting

• computability and randomness.

• effective descriptive set theory and randomness.

Direction “→”: Use concepts from the left side to restrict null
classes, in order to obtain test concept that is effective in some
sense.

Direction “←”: use concepts related to randomness to obtain
interesting objects (examples): Ω, the class of K-trivials, . . .
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K-trivial sets

A set A is K-trivial if there is c ∈ N such that

∀n K(A � n) ≤ K(0n) + c

(Chaitin, 1975).

• By Schnorr’s theorem, Z is ML-random if for each n, K(Z � n)
is near its maximal value n + K(0n).

• To be K-trivial means to be far from ML-random, because
K(A � n) is minimal (all up to constants).

Solovay (1976) constructed a noncomputable K-trivial.

The cost function construction gives a noncomputable c.e. example.
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Cost function construction

Downey, Hirschfeldt, Nies, Stephan 2001 gave a short “definition”
of a noncomputable c.e. K-trivial set, which had been anticipated
by various researchers (Kummer, Zambella). We use the “cost
function”

c(x, s) =
∑

x<y≤s 2−Ks(y) .

This determines a non-computable set A:

As = As−1 ∪ {x : ∃e

We,s ∩As−1 = ∅ we haven’t met e-th non-computability requirement

x ∈We,s we can meet it, via x

x ≥ 2e make A co-infinite

c(x, s) ≤ 2−(e+2)} ensure A is K-trivial.
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Properties of the K-trivials

The K-trivial sets form an ideal K in the ∆0
2 Turing degrees. It has

the following properties (N, “Lowness properties and randomness”,
Adv. in Math 197, 2005):

• K is the downward closure of its c.e. members

• each A ∈ K is super-low: A′ ≤tt ∅′.
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A story that repeats

A lowness property of a set A specifies a sense in which the set is
computationally weak.

The following has happened 4 times, so far.

• A research group G introduces a lowness property L, and
shows there is a non-computable c.e. set A ∈ L.

• L turns out to be the same as K.

Often the property says “Low for C”, where C is a reasonable class
(for instance, rd’ness notion): A is low for C if CA = C.

A as an oracle does not change C.
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1. Low for ML-random

For instance, Zambella introduced the class of low for MLrandom
sets A (i.e., MLRandA = MLRand)

• Kučera, Terwijn 1998 showed existence of a noncomputable c.e.
low for ML-random

• N 2003 showed coincidence with low for K.
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2. Low for K

Andrej A. Muchnik (1999) defined A to be low for K if

∀y K(y) ≤ KA(y) + O(1),

and proved that there is a c.e. noncomputable A that is low for K.

• Low for K ⇒ K-trivial is easily seen.

• Hirschfeldt and N, modifying the proof in (N 2003) that K is
closed downwards, proved the converse direction.

• Low for K ⇒ low for ML-random is also easy, using Schnorr’s
Theorem in relativized form.
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3. Bases for ML-randomness

Kucera (APAL, 1993) studied sets A such that

A ≤T Z for some Z ∈ MLRandA.

That is, A can be computed from a set random relative to it.

We will call such a set a basis for ML-randomness. Each low for
ML-random set A is a basis for ML-randomness.

• There is a noncomputable c.e. basis for ML-randomness
(Kučera 1993).

• Each basis for ML-randomness is low for K (Hirschfeldt, N,
Stephan, “Using random sets as oracles”, ta).
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Existence

Theorem[Kučera] Let Z be ∆0
2 and ML-random. Then there is a

non-computable c.e. set A ≤T Z.

Apply this to a low ML-random set (say), and use that

Lemma 1 (Hirschfeldt.N.Stephan ta) If Z <T ∅′ is
ML-random and A is c.e. and A ≤T Z, then Z is already
ML-random relative to A.
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4: low for weak

2-randomness

Z is weakly 2-random if Z is in no Π0
2 null class.

Each such Z is ML-random.

A is low for weak 2-randomness if

weakly 2–random relative to A = weakly 2-random.

Theorem 2 (Downey,N,Weber,Yu 2005)

• There is a c.e. noncomputable set that is low for weak
2-randomness

• each low for weak 2-randomness set is low for K.
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Also same as K-trivials!

Theorem 3 (N, Miller independently) Each K-trivial set is
low for weak 2-randomness.

The two proofs are very different.

• Nies’ proof used the golden run machinery that proved
K-trivial = low for K

• Miller’s proof is measure theoretic. He shows low for
ML-randomness ⇒ low for weak 2–randomness

• He used similar methods to show the coincidence of
reducibilities: ≤LR is equivalent to ≤LK (a generalization of
the fact that low for ML-random implies low for K). Here

A ≤LK B if ∀y KB(y) ≤ KA(y) + O(1)

A ≤LR B if MLRandB ⊆ MLRandA.
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ML-coverable

A set A is ML-coverable if there is a ML-random Z such that

A ≤T Z <T ∅′.

If A is also c.e., then Z is ML-random relative to A (H,N,S ta).
Hence A is a basis for ML-randomness, so K-trivial.

Theorem (Kučera 1985) Let Z be ∆0
2 and ML-random. Then

there is a noncomputable c.e. set A ≤T Z.

Taking Z low, we obtain a low noncomputable c.e. set A that is
ML-coverable.

Question 4 If a (c.e.) set A is K-trivial, is A ML-coverable?
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Almost complete sets

The following is dual to K-triviality.

B is almost complete if ∅′ is K-trivial relative to B. That is, there
is c ∈ N such that

∀n KB(∅′ � n) ≤ KB(n) + c

Such a set is super-high: ∅′′ ≤tt B′.
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Existence

Theorem 5 (Jockusch/Shore 1983) For each c.e. operator W

there is a c.e. set C such that

WC ⊕ C ≡T ∅′.

• Apply this to the c.e. operator W given by the cost function
construction to obtain an incomplete but almost complete c.e.
set.

Theorem 6 (N 2006) The conclusion of the theorem also holds
for “C ML-random”.

• Thus, there is a ML-random almost complete ∆0
2-set.
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The class L
Let

L = {A : ∀Z (Z ML-random, almost complete ⇒ A ≤T Z}.

• Hirschfeldt proved that there is a promptly simple set in L.

• Since there is a ML-random almost complete ∆0
2-set, each

A ∈ L is ML-coverable, and hence K-trivial.

• Like K, the class L ⊆ K is an ideal.
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Σ0
3 null classes

The proof that there is a noncomputable c.e. set in L was
simplified and generalized.

Theorem 7 (Hirschfeldt, Miller) Let C be a Σ0
3 null class.

Then there is a noncomputable c.e. A such that A ≤T Z for each
ML-random Z ∈ C.

Apply this to the Σ0
3 null class C = almost complete in order to

obtain a noncomputable c.e. A ∈ L.
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A proper subclass of the c.e.

K-trivials?

• Figueira, N, Stephan (2004) introduced the following
strengthening of super-lowness:

• For each function h that is computable, nondecreasing,
unbounded, A′ has an approximation that changes at most
h(x) times at x.

• They build a c.e. noncomputable such set, via a construction
that resembles the cost function construction.

• Downey and Greenberg have announced that each c.e. set of
this kind is K-trivial, and

• they form a proper subclass.
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Effective descriptive set

theory

Π1
1 sets of numbers are a high-level analog of c.e. sets, where the

steps of an effective enumeration are recursive ordinals. Hjorth and
Nies (2005, Proc. LMS) have studied the analogs of K and of
ML-randomness based on Π1

1-sets.

• The Kraft-Chaitin theorem and Schnorr’s Theorem still hold,
but the proofs takes considerable extra effort because of limit
stages

• There is a Π1
1 set of numbers which is K-trivial (in this new

sense) and not hyperarithmetic.

24



The classes are different now

Theorem 8 If A is low for Π1
1-ML-random, then A is

hyperarithmetic.

First we show that ωA
1 = ωCK

1 . This is used to prove that A is in
fact K-trivial at some η < ωCK

1 , namely

∀n Kη(A � n) ≤ Kη(n) + b.

Then A is hyperarithmetic, by the same argument Chaitin used in
the c.e. case to show that K-trivial sets are ∆0

2:

The collection of Z which are K-trivial at η form a
hyperarithmetical tree of width O(2b) (because there are very few
short descriptions). So Z is an isolated path.
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Bases for ML-randomness

Consider the following reducibility ≤fin−h, a possible high level
analog of ≤T :

• given by partial functions Φ : 2<ω → 2<ω with Π1
1 graph such

that the domain is closed under prefixes, and, if Φ(t) ↓, then
s � t⇒ Φ(s) � Φ(t).

• A ≤fin−h Z if ∃Φ ∀n∃m Φ(Z � m) � A � n.

Kucera-Gacs: for each A there is ML-random Z such that
A ≤fin−h Z. Thus low for ML implies basis for ML (where “basis”
is defined in terms of ≤fin−h)

Theorem 9 Each basis for ML-randomness is hyperarithmetical.
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A further randomness notion

suggested by Martin-Löf
• In a little known paper (1970), Martin-Löf suggested the

(lightface) ∆1
1-classes of measure 0 as tests: Z is ∆1

1-random if
Z is in no null ∆1

1-class.

• By an observation of Yu Liang, for each null ∆1
1-class S one

can find a ∆1
1-ML-test {Ui}i∈N such that S ⊆

⋂
i Ui.

• In particular, Π1
1-ML-random implies ∆1

1-random.

• ∆1
1-random is the effective descriptive set theory analog of both

computably random and Schnorr random.

• There is a ∆1
1-random Z of slowly growing initial segment

complexity (in sense of KΠ1
1
). Thus Z is not Π1

1-ML-random.
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A very strong rd’ness notion
Sacks (1990) in Exercise 2.5.IV suggested the Π1

1 null classes as
tests. This is the strongest randomness notion we have seen so far.
The exercise was to separate this from ∆1

1-random. While the
exercise has been solved, only a few other things are known at
present.

• Each Π1
1-random Z satisfies ωZ

1 = ωCK
1 . In particular, the

Π1
1-ML-random set ΩΠ1

1
is not Π1

1-random.

• By Gandy’s basis theorem, some strongly random set satisfies
OZ ≤h O.

• Analog of van Lambalgen’s Theorem

Theorem 10 (Hjorth,N) There is a greatest Π1
1-class Q ⊆ 2ω of

measure 0. Thus Q is a universal test for Π1
1-randomness.
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Associated lowness notions

• Yu and Chong have announced that there is a perfect class of
sets that are low for ∆1

1-randomness. This contrasts with the
Nies result that the only low for computably random sets are
the computable ones.

• Not known if there is a nonhyperarithmetical set that is low for
Π1

1-randomness
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Summary

• We have introduced the class of K-trivials (far from random)
and the 4 classes: low for K, low for ML, basis for ML, low for
weakly 2-random (all lowness properties, saying
“computationally weak”)

• All coincide

• In the effective descriptive set theory case, we have seen the
concepts ∆1

1-random ⊃ Π1
1-ML-random ⊃ Π1

1-random.

• K-trivial 6= hyperarithmetic, while

Low for Π1
1-ML-random = base for Π1

1-ML-random=
hyperarithmetic
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