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Understanding a set Z C N

1. how much does Z know? (computational complexity). Either
place Z in a level of an absolute complexity hierarchy, for instance

recognizing that the set is computable, c.e., ..., Af, II7.

Or measure its relative computational complexity, by comparing it

to other sets, via <,,, <, ...

2. how well is Z organized? (degree of randomness). Again there is
an absolute hierarchy, consisting of notions such as computably
random, Martin-Lof-random, ..., A{-ML random, II{-ML-random.

And there are ways to compare the degree of randomness of sets,

using <s, <f, . ..



K(y)

e A machine is a partial recursive function M : {0,1}* — {0, 1}*,

e M is prefix free if its domain is an antichain under inclusion of

strings.

Let (Mg)a>0 be an effective listing of all prefix free machines. The
standard universal prefix free machine U is given by

U(0%0) = My(o).
The prefix free version of Kolmogorov complexity is
K(y) = min{|o| : U(o) = y}.

Thus, K (y) is the length of a shortest prefix free description of .



Initial segments
ZIn=270)...Z(n—1)

We often try to understand sets by looking at their finite initial

segments.

e For computational complexity we have the use principle (a

computation relative to Z only depends on finitely much of Z)

e for the degree of randomness we look at the length of

descriptions of the finite initial segments.



Martin-Lof randomness

e Consider only null classes that are effectively c.e., namely, of
the form (), R,, where

— R, C 2% is uniformly XY and
— uR, <27™.
e / is ML-random if Z is not in any effectively c.e. null class.
Schnorr’s Theorem:
Z is Martin-Lof random iff for some ¢, Vn K(Z [ n) > n —c.
Example of a ML-random set:
Q=3 27,

where U is a universal prefix free machine.



Connections

I discuss results connecting
e computability and randomness.

o effective descriptive set theory and randomness.

Direction “—”: Use concepts from the left side to restrict null
classes, in order to obtain test concept that is effective in some

SEILSE.

Direction “+<”: use concepts related to randomness to obtain
interesting objects (examples): €2, the class of K-trivials, ...
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K-trivial sets

A set A is K-trivial if there is ¢ € N such that
Vn K(An) < K0O")+c
(Chaitin, 1975).

e By Schnorr’s theorem, Z is ML-random if for each n, K(Z [ n)

is near its maximal value n + K (0™).

e To be K-trivial means to be far from ML-random, because

K(A | n) is minimal (all up to constants).
Solovay (1976) constructed a noncomputable K-trivial.

The cost function construction gives a noncomputable c.e. example.



Cost function construction

Downey, Hirschfeldt, Nies, Stephan 2001 gave a short “definition”
of a noncomputable c.e. K-trivial set, which had been anticipated
by various researchers (Kummer, Zambella). We use the “cost

function”

C(gj, 3) — Za:<y<s Q_Ks(y) )
This determines a non-computable set A:

As = As_1U{x: e

WesNAs—1 =10 we haven’t met e-th non-computability requirement
x € Wes we can meet it, via «
T > 2e make A co-infinite

c(x,s) <272} | ensure A is K-trivial.




Properties of the K-trivials

The K-trivial sets form an ideal K in the A Turing degrees. It has
the following properties (N, “Lowness properties and randomness”,
Adv. in Math 197, 2005):

e K is the downward closure of its c.e. members

e cach A € K is super-low: A" < (.
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A story that repeats

A lowness property of a set A specifies a sense in which the set is

computationally weak.

The following has happened 4 times, so far.

e A research group G introduces a lowness property £, and
shows there is a non-computable c.e. set A € L.

e L turns out to be the same as K.

Often the property says “Low for C”, where C is a reasonable class
(for instance, rd’ness notion): A is low for C if C4 = C.

A as an oracle does not change C.
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1. Low for ML-random

For instance, Zambella introduced the class of low for MLrandom
sets A (i.e., MLRand“* = MLRand)

e Kucera, Terwijn 1998 showed existence of a noncomputable c.e.

low for ML-random

e N 2003 showed coincidence with low for K.
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2. Low for K

Andrej A. Muchnik (1999) defined A to be low for K if
Yy K(y) < K4(y) + O(1),
and proved that there is a c.e. noncomputable A that is low for K.

e Low for K = K-trivial is easily seen.

e Hirschfeldt and N, modifying the proof in (N 2003) that I is
closed downwards, proved the converse direction.

e Low for K = low for ML-random is also easy, using Schnorr’s

Theorem in relativized form.
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3. Bases for ML-randomness

Kucera (APAL, 1993) studied sets A such that
A <t Z for some Z € MLRand”.

That is, A can be computed from a set random relative to it.

We will call such a set a basis for ML-randomness. Each low for

ML-random set A is a basis for ML-randomness.

e There is a noncomputable c.e. basis for ML-randomness
(Kucera 1993).

e Each basis for ML-randomness is low for K (Hirschfeldt, N,

Stephan, “Using random sets as oracles”, ta).
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Existence

Theorem[Kucera| Let Z be AY and ML-random. Then there is a

non-computable c.e. set A <p Z.

Apply this to a low ML-random set (say), and use that

Lemma 1 (Hirschfeldt.N.Stephan ta) If Z <7 () is
ML-random and A s c.e. and A <p Z, then Z is already
ML-random relative to A.
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4: low for weak

2-randomness

Z is weakly 2-random if Z is in no IIj null class.
Each such Z is ML-random.

A is low for weak 2-randomness if

weakly 2-random relative to A = weakly 2-random.

Theorem 2 (Downey,N,Weber,Yu 2005)

e There is a c.e. noncomputable set that is low for weak

2-randommness

e cach low for weak 2-randommness set is low for K.
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Also same as K-trivials!

Theorem 3 (N, Miller independently) Fach K-trivial set is
low for weak 2-randomness.

The two proofs are very different.

e Nies’ proof used the golden run machinery that proved
K-trivial = low for K

e Miller’s proof is measure theoretic. He shows low for
ML-randomness = low for weak 2-randomness

e He used similar methods to show the coincidence of
reducibilities: <pg is equivalent to <px (a generalization of
the fact that low for ML-random implies low for K). Here

A<pk BifVy KP(y) < K4(y) +0(1)
A <;r B if MLRand® C MLRand“.
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ML-coverable

A set A is ML-coverable if there is a ML-random Z such that
A<r Z <p 0.

If A is also c.e., then Z is ML-random relative to A (H,N,S ta).

Hence A is a basis for ML-randomness, so K-trivial.

Theorem (Kucera 1985) Let Z be AY and ML-random. Then

there is a noncomputable c.e. set A < Z.

Taking Z low, we obtain a low noncomputable c.e. set A that is
ML-coverable.

Question 4 If a (c.e.) set A is K-trivial, is A ML-coverable?
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Almost complete sets

The following is dual to K-triviality.

B is almost complete if ()’ is K-trivial relative to B. That is, there
is ¢ € N such that

Vn KB I n) < KP(n)+c

Such a set is super-high: 0" < B’.
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Existence

Theorem 5 (Jockusch/Shore 1983) For each c.e. operator W

there is a c.e. set C such that

WC@CET @l.

e Apply this to the c.e. operator W given by the cost function
construction to obtain an incomplete but almost complete c.e.
set.

Theorem 6 (N 2006) The conclusion of the theorem also holds
for “C'" ML-random”.

e Thus, there is a ML-random almost complete AY-set.
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The class L

Let

L={A: VZ (Z ML-random, almost complete = A <p Z}.

e Hirschfeldt proved that there is a promptly simple set in L.

e Since there is a ML-random almost complete AS-set, each
A € L is ML-coverable, and hence K-trivial.

e Like /C, the class £ C IC is an ideal.
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>3 null classes

The proof that there is a noncomputable c.e. set in £ was

simplified and generalized.

Theorem 7 (Hirschfeldt, Miller) Let C be a 3 null class.
Then there is a noncomputable c.e. A such that A <p Z for each
ML-random Z € C.

Apply this to the X null class C = almost complete in order to

obtain a noncomputable c.e. A € L.
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A proper subclass of the c.e.
K-trivials?

e Figueira, N, Stephan (2004) introduced the following

strengthening of super-lowness:

e For each function A that is computable, nondecreasing,
unbounded, A’ has an approximation that changes at most
h(x) times at x.

e They build a c.e. noncomputable such set, via a construction
that resembles the cost function construction.

e Downey and Greenberg have announced that each c.e. set of
this kind is K-trivial, and

e they form a proper subclass.
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Effective descriptive set

theory

I11 sets of numbers are a high-level analog of c.e. sets, where the

steps of an effective enumeration are recursive ordinals. Hjorth and
Nies (2005, Proc. LMS) have studied the analogs of K and of
ML-randomness based on IIi-sets.

e The Kraft-Chaitin theorem and Schnorr’s Theorem still hold,
but the proofs takes considerable extra effort because of limit

stages

e There is a ITi set of numbers which is K-trivial (in this new

sense) and not hyperarithmetic.
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The classes are different now

Theorem 8 If A is low for II1-ML-random, then A is

hyperarithmetic.

First we show that w{® = w¢%. This is used to prove that A is in

fact K-trivial at some n < w¢' ¥, namely

Vn K,(A | n) < Ky(n)+b.

Then A is hyperarithmetic, by the same argument Chaitin used in
the c.e. case to show that K-trivial sets are AY:

The collection of Z which are K-trivial at n form a
hyperarithmetical tree of width O(2°) (because there are very few
short descriptions). So Z is an isolated path.
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Bases for M L-randomness

Consider the following reducibility <g,_1n, a possible high level

analog of <r:

e given by partial functions ® : 2<% — 2<% with II} graph such
that the domain is closed under prefixes, and, if ®(¢) |, then
s Xt= P(s) X D(1).

o A<gy n Zif A& Vnim ®(Z [ m) = A [ n.

Kucera-Gacs: for each A there is ML-random Z such that
A <gn_n Z. Thus low for ML implies basis for ML (where “basis”

is defined in terms of <g, 1)

Theorem 9 Fach basis for ML-randomness is hyperarithmetical.
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A further randomness notion

suggested by Martin-Lof

e In a little known paper (1970), Martin-Lof suggested the
(lightface) Ai-classes of measure 0 as tests: Z is Aj-random if
Z is in no null Al-class.

e By an observation of Yu Liang, for each null Al-class S one
can find a A;-ML-test {U;},., such that S C ), U;.

e In particular, II{-ML-random implies Ai-random.

e Al-random is the effective descriptive set theory analog of both

computably random and Schnorr random.

e There is a Aj-random Z of slowly growing initial segment

complexity (in sense of Ky1). Thus Z is not I11-ML-random.
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A very strong rd’ness notion

Sacks (1990) in Exercise 2.5.IV suggested the II1 null classes as
tests. This is the strongest randomness notion we have seen so far.
The exercise was to separate this from Ai-random. While the
exercise has been solved, only a few other things are known at
present.

e Each II}-random Z satisfies w? = w{ . In particular, the
I1{-ML-random set Qpp1 1s not I1{-random.

e By Gandy’s basis theorem, some strongly random set satisfies

0% <, O.

e Analog of van Lambalgen’s Theorem

Theorem 10 (Hjorth,N) There is a greatest I11-class Q C 2% of
measure 0. Thus Q is a universal test for 111 -randomness.
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Assoclated lowness notions

e Yu and Chong have announced that there is a perfect class of
sets that are low for Al-randomness. This contrasts with the
Nies result that the only low for computably random sets are

the computable ones.

e Not known if there is a nonhyperarithmetical set that is low for

I11-randomness
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Summary

We have introduced the class of K-trivials (far from random)
and the 4 classes: low for K, low for ML, basis for ML, low for
weakly 2-random (all lowness properties, saying

“computationally weak” )
All coincide

In the effective descriptive set theory case, we have seen the
concepts Al-random D II{-ML-random D ITi-random.

K-trivial # hyperarithmetic, while
Low for ITI}-ML-random = base for II}-ML-random=
hyperarithmetic
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