
Closure of resource-bounded randomness notions
under polynomial time permutations
André Nies1 and Frank Stephan2

1 Department of Computer Science, The University of Auckland, Private Bag
92019, Auckland, New Zealand, andre@cs.auckland.ac.nz

2 Department of Mathematics and Department of Computer Science, National
University of Singapore, 10 Lower Kent Ridge Road, Block S17, Singapore
119076, Republic of Singapore, fstephan@comp.nus.edu.sg

Abstract
An infinite bit sequence is called recursively random if no computable strategy betting along
the sequence has unbounded capital. It is well-known that the property of recursive randomness
is closed under computable permutations. We investigate analogous statements for randomness
notions defined by betting strategies that are computable within resource bounds. Suppose that
S is a polynomial time computable permutation of the set of strings over the unary alphabet
(identified with N). If the inverse of S is not polynomially bounded, it is easy to build a polynomial
time random bit sequence Z such that Z ◦S is not polynomial time random. So one should only
consider permutations S satisfying the extra condition that the inverse is polynomially bounded.
Now the closure depends on additional assumptions in complexity theory.

Our first result, Theorem 4, shows that if BPP contains a superpolynomial deterministic
time class, such as DTIME(nlogn), then polynomial time randomness is not preserved by some
permutation S such that in fact both S and its inverse are in P. Our second result, Theorem 10,
shows that polynomial space randomness is preserved by polynomial time permutations with
polynomially bounded inverse, so if P = PSPACE then polynomial time randomness is preserved.

1998 ACM Subject Classification 03D32,68Q30

Keywords and phrases Computational complexity, Randomness via resource-bounded betting
strategies, Martingales, Closure under permutations

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Formal randomness notions for infinite bit sequences can be studied via algorithmic tests.
A hierarchy of such notions has been introduced. See e.g. Downey and Hirschfeldt [4] or
Nies [12, Ch. 3] for definitions and basic properties, and also Li and Vitányi [9]. Criteria for
good randomness notions include robustness under certain computable operations on the
bit sequences. In the simplest case, such an operation is a computable permutation of the
bits. For a permutation S of N and an infinite bit sequence Z, identified with a subset of N,
by Z ◦ S we denote the sequence Y such that Y (n) = Z(S(n)). (Note that, when viewed as
a subset of N, Z ◦ S equals S−1(Z).) We say that a class C of bit sequences is closed under
all members of a class G of permutations if Z ∈ C implies Z ◦ S ∈ C for each S ∈ G.

A central notion of randomness was introduced by Martin-Löf [10]. A Martin-Löf test is
a uniformly Σ0

1 sequence 〈Gm〉m∈N such that the uniform measure of Gm is at most 2−m.
Z fails such a test if Z ∈

⋂
mGm; otherwise Z passes the test. Z is Martin-Löf random if

it passes each such test. Clearly this randomness notion is closed under computable per-
mutations S: if Z ◦S fails a Martin-Löf-test 〈Gm〉m∈N, then Z fails the test 〈S−1(Gm)〉m∈N.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Closure of resource-bounded randomness notions under polynomial time permutations

The weaker notion of Schnorr randomness [14], where one also requires that the measure
of Gm is a computable real uniformly in m, is closed under computable permutations by
a similar argument. Recursive randomness [14] (see e.g. [12, Ch. 7] as a recent reference)
is defined via failure of all computable betting strategies (martingales), rather than by a
variant of Martin-Löf’s test notion. Nonetheless, by a more involved argument, implicit in
[3, Section 4.1], it is closed under computable permutations. Also see Nies [12, Thm. 7.6.24]
and Kjos-Hanssen, Nguyen and Rute [7].

Our main purpose is to study analogs in computational complexity theory of this result.
In order to guarantee compatibility with the theory developed in Downey and Hirschfeldt [4]
and Nies [12] we view sets of numbers (i.e., infinite bit sequences), rather than sets of strings
over an alphabet of size at least 2, as our principal objects of study. We note that work
of Lutz, Mayordomo, Ambos-Spies and others, beginning in the 1980s and surveyed in
Ambos-Spies and Mayordomo [1], studied sets of strings: martingales bet on the strings in
length-lexicographical order. Such languages can be identified with bit sequences via this
order of strings, but the time bounds imposed on martingales are exponentially larger when
they bet on strings.

To be able to apply the notions of resource bounded computability to bit sequences and
permutations, we will identify infinite bit sequences with subsets of the set {0}∗ of unary
strings. Such sets are called tally languages. We view permutations as acting on {0}∗. A
bit sequence is polynomial time random if no polynomial time computable bettings strategy
succeeds on the sequence. This notion was briefly introduced by Schnorr [14], studied
implicitly in the above-mentioned work of Lutz, Mayordomo, Ambos-Spies and others, and
in more explicit form in Yongge Wang’s 1996 thesis [15].

Our leading question is: under which polynomial time computable permutations S is poly-
nomial time randomness closed? If S−1 is not polynomially bounded, we build a polynomial
time random bit sequence Z such that Z ◦ S is not polynomial time random. After that we
assume that S satisfies the extra condition that its inverse is polynomially bounded. Now
the closure depends on additional assumptions in complexity theory:

The first result, Theorem 4, shows that if BPP contains a superpolynomial deterministic
time class, such as DTIME(nlogn), then polynomial time randomness is not preserved by
some permutation S such that both S and its inverse are in P.
The second result, Theorem 10, shows that PSPACE-randomness is preserved by poly-
nomial time permutations with polynomially bounded inverse; so if P = PSPACE then
polynomial time randomness is preserved by such permutations.

Broadly speaking, the idea for Theorem 4 is as follows. Choose an O(nlogn) time computable
martingale M only betting on odd positions 1, 3, 5, . . . that dominates (up to a positive
factor) all polynomial time computable martingales that only bets on odd positions. Use
the hypothesis in order to take a language A ∈ BPP which tells at which extension of a
string of odd length M does not increase. Now let B be a highly random set (albeit B can
be chosen in E). Let Z be the bit sequence that copies B(n) at position 2n, and takes the
value of A at the string Z(0) . . . Z(2n) at position 2n + 1. Then one can verify that Z is
polynomial time random. If Ẑ is a rearrangement of the bits of Z so that a sufficiently large
block of bits of B is interspersed between bits determined by A, then we can use these bits
of B as random bits required in a randomised polynomial time algorithm for A. This will
show that Ẑ is not polynomial time random.

Theorem 10 closely follows Buhrman, van Melkebeek, Regan, Sivakumar and Strauss
[3, Section 4.1], which introduces and studies resource-bounded betting games. It actually
shows that PSPACE-randomness is closed under certain polynomial time scanning functions,

A. Nies and F. Stephan XX:3

which, unlike permutations, can uncover the bits of a set in an order determined by previous
bits. Each permutation in question can be seen as a scanning function of the appropriate
kind. (We note that removing the resource bounds from Theorem 10 yields a proof that
recursive randomness is closed under computable permutations, and in fact under comput-
able scanning functions that scan each position.) Thm. 5.6 in Buhrman et al. [3] is a related
result based on the same methods developed there; however, in that result an assumption
on the existence of certain pseudorandom generators is made, while our Theorem 10 does
not rest on any unproven assumptions.

We note another notion of robustness for randomness notions. One can easily adapt
all the randomness notions to an alphabet other than {0, 1}. Base invariance says that
the notion is preserved when one replaces a sequence over one alphabet by a sequence
in a different alphabet that denotes the same real number. Brattka, Miller and Nies [2]
have shown this for recursive randomness, and Figueira and Nies [5] have shown it for
polynomial time randomness, each time relying on the connection of randomness of a real
with differentiability at the real of certain effective functions.

Using Figueira and Nies [5], Nies [13] provides a characterisation of polynomial time
randomness for real numbers in terms of differentiability of all polynomial time computable
nondecreasing functions on the reals.

2 Preliminaries

For a bound h, as usual DTIME(h) denotes the languages A computable in time O(h). In-
formally we often say that A is computable in time h. As in Ambos-Spies and Mayordomo [1],
we require that martingales have rational values.

I Definition 1. A martingale M is a function from {0, 1}∗ to {q ∈ Q : q > 0} satisfying
M(x) = (M(x0) + M(x1))/2 for all x ∈ {0, 1}∗. A martingale succeeds on a set Z if
lim supnM(Z � n) =∞. One says that a martingale does not bet at a position n ifM(x0) =
M(x1) for each x ∈ {0, 1}n.

One says that Z is recursively random if no computable martingale succeeds on Z.
Each polynomial in this paper will be non-constant and have natural number coefficients.

For a polynomial time version of recursive randomness, we have to be careful how to define
polynomial time computability for a martingale: as in [3], a positive rational number q
is presented by a pair 〈k, n〉 of denominator and numerator (written in binary) such that
q = k/n in lowest terms. A martingale M is polynomial time computable if on input x one
can determine M(x) in this format in polynomial time. Z is polynomial time random if no
such martingale succeeds on Z. In a similar way one defines exponential time randomness.

A martingaleM is polynomial space computable ifM(x) can be computed in polynomial
space (including the space needed to write the output). Z is polynomial space random if no
such martingale succeeds on Z.

We first show that polynomial time randomness fails to be closed under polynomial time
computable permutations S that are “dishonest” in the sense that S(n) can be much less
than n.

I Theorem 2. Let S be a polynomial time permutation of {0}∗ such that for each polynomial
p, there are infinitely many n with p(S(n)) ≤ n. There is a polynomial time random Z

computable in time 2O(n) such that Z ◦ S is not polynomial time random.

Clearly a permutation S as in Proposition 2 exists: Let (pk) list the non-constant polynomials
with natural coefficients in such a way that for u ≤ n, O(n2) steps suffice to verify whether

XX:4 Closure of resource-bounded randomness notions under polynomial time permutations

pk(u) ≤ n. On input n of the form 〈k, i〉, see whether pk(〈k, 0〉) ≤ n. If not let S(n) =
〈k, i+ 1〉. If so and n is least such, let S(n) = 〈k, 0〉. Otherwise S(n) = n.

Proof of Proposition 2. Nies [12, Section 7.4] provided a construction template for recurs-
ively random sets, going back to Schnorr’s work. We adapt some parts of this template to
the resource bounded setting.

Let 〈Bk〉 be an effective listing of the polynomial time martingales with positive rational
values. We may assume that Bk is computable in time pk(n) = k(nk + 1).

For each n, let Bk,n be the martingale with initial capital 1 that does not bet until its
input reaches length n, and then uses the same betting factors as Bk. Thus,

Bk,n(x) = Bk(x)
Bk(x � n)

for any string x of length at least n. Let p̃k,n be a polynomial so that Bk,n(x) for |x| ≥ n

can be computed in time p̃k,n(|x|).
We inductively define a sequence of numbers. Let n0 = 0, and let nk+1 be the least

n > nk such that qk(S(n) + 1) ≤ n, where qk is a polynomial time bound for the martingale∑
r≤k 2−rBr,nr

and qk(n) ≥ n + 2. Let L =
∑
r 2−rBr,nr

. Note that L is a rational-
valued martingale, because on inputs of length at most nk, all the Br,nr for r > k together
contribute 2−k.

Let now Z be the left-most non-ascending path of L: Z(m) = 0 if L(Z � m 0̂) ≤
L(Z � m), and Z(m) = 1 otherwise. Since L does not succeed on Z and L multiplicatively
dominates each Bk, the set Z is polynomial time random.

Note that since S ∈ P, from n we can in polynomial time recursively recover the sequence
n0, q0, n1, q1, . . . and thereby compute the maximal k such that nk < n. In particular we
can decide whether n is of the form nk+1 for some k. By definition, for n = nk+1 we have
qk(S(n) + 1) ≤ n and hence S(n) + 1 < nk+1. Since qk as a time bound is sufficient to
determine L(y) for strings y of length S(n) + 1, the bit Z ◦ S(n) can be computed in time
polynomial in n. Hence Z ◦ S is not polynomially random.

We can ensure such a set Z is computable in time 2O(n) by choosing the listing 〈Bk〉
appropriately. J

I Remark. We note that methods involving the 〈Bk,n〉 similar to the above can be used
to show that each class DTIME(h) with superpolynomial time constructible h contains a
polynomial time random (tally) set. We have to initiate a copy 〈Bk,n〉 of Bk finitely many
times until a length n is reached such that for m ≥ n, h(m) time is sufficient to simulate its
behaviour on strings of length m.

3 If BPP Contains a Superpolynomial Time Class Then Closure Fails

I Definition 3. A permutation S of {0}∗ is called fully polynomial time computable if both
S and S−1 are polynomial time computable.

A complexity theoretic assumption considerably weaker than BPP = EXP suffices for
non-closure.

I Theorem 4. Suppose that DTIME(h) ⊆ BPP for some time constructible function h

that dominates all the polynomials. Then there are a polynomial time random set Z ∈
DTIME(23n) and a fully polynomial time computable permutation S such that Z ◦ S is not
polynomial time random.

A. Nies and F. Stephan XX:5

Proof. We may assume that h(n) ≤ nlogn. It is well-known that whenever a martingale in
a certain complexity class succeeds on a set Z then there is also a successful martingale in
the same class betting only on even positions, or there is a successful martingale betting
only on the odd positions.

The construction has two steps. Firstly, by standard methods discussed at the end of
Section 2, one can build a martingale M in DTIME(h) which bets only on odd positions,
and dominates up to a multiplicative constant all polynomial time martingales betting on
odd positions. Let

A = {x ∈ {0, 1}∗ : x has odd length and M(x1) < M(x0)}.

The set A is in DTIME(h) and hence by assumption in BPP.
Secondly, let B ⊆ {0}∗ be a language on which no martingale in DTIME(24·n) succeeds.

Again by standard methods one can ensure that B is in DTIME(25·n). Define a set Z ⊆ N
as follows:

Z(2n) = B(n); Z(2n+ 1) = A(Z � 2n+ 1).

We may visualise Z as follows:

B A B A B A B A B A B A B . . .

B(0) A(Z � 1) B(1) A(Z � 3) B(2) A(Z � 5) . . .

Clearly Z ∈ DTIME(23n). It is claimed that Z is polynomial time random. As the martingale
M only bets on odd positions, Z is defined such that M never gains capital on Z. As M
is universal among the martingales computable in polynomial time with this property, no
martingale betting on the odd positions succeeds on Z.

Suppose now that L is a polynomial time martingale which bets on the even positions and
note that one can compute in time O(h(n)) from B(0), B(1), . . . , B(n) inductively the values
Z(0), Z(1), . . . , Z(2n + 1), as for every x of length 2n + 1 the value A(x) can be computed
in time h(n). Thus if L succeeds on Z then there is a new martingale N succeeding on B
which satisfies that

N(B � n+ 1) = L(Z � 2n)

and which uses that Z(2n) = B(n) while the bits of Z at odd positions on which L does not
bet can be computed as indicated above from the other bits. To computeN(x) for x of length
2n takes q(n)+

∑
i<n h(2i+1) steps for some polynomial q. So N ∈ DTIME(nO(logn)), which

contradicts the assumption that no such martingale computable in time O(24n) succeeds on
B. This verifies the claim.

Since A ∈ BPP, there is a polynomial p such that an appropriate randomised algorithm
R on input x ∈ {0, 1}2n+1 computes A(x) in time p(n), with error probability 2−4n−2, using
p(n) random bits. Now consider the sequence Ẑ consisting for n = 0, 1, . . . of p(n) bits taken
from B followed by the bit Z(2n+ 1). Again we visualise Ẑ:

B A B B B A B B B B B B A . . .

p(0) p(1) p(2)

Formally one can define Ẑ from Z as follows:

for m < p(n),
Ẑ((

∑
k<n

p(k)) + n+m) = B((
∑
k<n

p(k)) +m) = Z(2(
∑
k<n

p(k) +m));

Ẑ((
∑
k≤n

p(k)) + n) = Z(2n+ 1) = A(Z � 2n+ 1).

XX:6 Closure of resource-bounded randomness notions under polynomial time permutations

This mapping is given by a permutation S so that Ẑ(r) = Z(S(r)) for all positions r. So if
r = (

∑
k<n p(k)) + n+m then S(r) = 2(

∑
k<n p(k)) + 2m and if r = (

∑
k≤n p(k)) + n then

S(r) = 2n + 1, for all m,n with m < p(n). The permutation S and its inverse satisfy that
the mappings 0k 7→ 0S(k) and 0k 7→ 0S−1(k) on the unary strings {0}∗ are polynomial time
computable, thus the S is of the form as required; to see this note that for a polynomial
p also the mapping n 7→

∑
k<n p(k) is a polynomial; similarly for a function bounded by a

polynomial.
Now it will be shown that Ẑ is not polynomial time random. Note that there are 22n+1

strings of length 2n+1. Given a string of p(n) random bits, the probability that when using
these bits the randomised algorithm R computes A(x) correctly for all x ∈ {0, 1}2n+1 is at
least 1− 22n+1 · 2−4n−2 = 1− 2−2n−1. We want to show that B provides random bits that
allow R to correctly compute A for almost all inputs. Otherwise, we can build a martingale
M computable in time 210·n which succeeds on B: The martingale M splits its capital into
bins of value 2−n−1 and for each block of p(n) bits starting at

∑
k<n p(k), it takes the value

2−n−1 from the corresponding bin and bets it on the strings y consisting of p(n) bits that
do not compute all values of A(x) with x ∈ {0, 1}2n+1 correctly using R. This condition
can be checked for these bits in the time bound given as it involves running R with y as
the random bits on all strings x of length 2n+ 1 and comparing the result with A(x) for all
2p(n) choices of random bits y. After these simulations, M distributes the capital from the
bin evenly on those strings of random bits which cause R to make an error. After having
processed the bits from the block of p(n) bits, the capital in this bin remains unchanged by
future bets. The set of random strings y on which the computation of some of the A(x) in
x ∈ {0, 1}2n+1 is false has at most the probability 2−4n−2 · 22n+1 = 2−2n−1. Therefore the
capital from the bin multiplies at least by 2n+1 during the block and reaches the value 1.

For the time bound on M , whenever the input has length between
∑
k<n p(k) and∑

k≤n p(k), the martingale computes 2n+1 values A(x) for x ∈ {0, 1}2n+1 with respect
to p(n) random bits taking 2p(n) possible choices. However, for all polynomials and almost
all n, p(n) ≤

∑
k<n p(k), as the degree of the sum-polynomial of p is by one above the degree

of p and the polynomial p is positive. Thus, for such n, when n′ =
∑
k<n p(k) is a lower

bound on the length of the input to the martingale M then p(n) ≤ n′ and 2n+ 1 ≤ n′ and
thus the whole computations can be handled in time O(23n′).

If there are infinitely many blocks in B where the random bits of this block do not
compute all A(x) with x of the corresponding length correctly, then this martingale succeeds,
contrary to the assumption on B. So, for almost all n, the block of p(n) random bits in Ẑ
before A(Z � 2n) permits to compute this value correctly.

Now this property will be used to construct a polynomial time martingale H which
succeeds on Ẑ. Let Ã(n) denote A(Z � 2n+ 1). Given p(n) random bits from B preceding
Ã(n) in Ẑ, the martingale H archives these bits without betting on them. It then bets half
of its capital on the value for Ã(n) computed from these random bits; note that due to
Ã(0), Ã(1), . . . , Ã(n− 1) and B(0), B(1), . . . , B(n) being coded in Ẑ in positions before that
of Ã(n), when the bet for Ã(n) = Z(2n + 1) has to be made, one can retrieve besides the
random bits also Z(0)Z(1) . . . Z(2n) from the history. So one can use the random bits to
compute the value almost always correctly. Thus the martingale H will only finitely often
place a wrong bet and lose some of its capital, but for almost all Ã(n) predict the value
correctly and multiply its capital by 3/2. Thus the martingale succeeds. As all the operations
above are polynomial time computable, the set Ẑ is not polynomial time random. J

The proof of Theorem 4 can be adjusted to obtain a corollary.

A. Nies and F. Stephan XX:7

I Corollary 5. Let A,B ⊆ {0}∗. Suppose that A is in BPP and B is EXP-random relative
to A. Then A is polynomial time computable relative to B, and in particular not polynomial
time random relative to B.

Proof. For the ease of notation, we often write A(n) in place of A(0n) and so on; however,
both A and B are viewed as subsets of {0}∗.

There is a polynomial time algorithm and a polynomial p such that the algorithm uses
p(n) random bits to compute A(n) with error probability 2−n. As in the theorem above, one
can now query B for getting the random bits and the places where the queries are asked are
different for n,m whenever n 6= m. So there is a polynomial q with q(n) + p(n) = q(n+ 1)
for all n and where the algorithm asks the bits of B at q(n), q(n) + 1, . . . , q(n) + p(n)− 1 to
compute A(n).

If now there is an error, then an exponential time martingale relative to A can make
sufficient profit, as only a slim minority of the possiblities of the bits of B from q(n) to
q(n) + p(n)− 1 are realised. This contradicts the assumption that B is random relative to
A. Hence A can be computed relative to B by this algorithm with only finitely many errors;
these can then be corrected by a finite table holding the correct values for the positions
where the algorithm makes an error. J

I Remark. In the proof of Theorem 4, Z = Ã⊕B is polynomial time random; however, Ã is
not polynomial time random relative toB, as the rearrangement with S shows. Note that van
Lambalgen’s Theorem [8] says that in a recursion-theoretic setting, Ã⊕B is random iff (a) B
is random and (b) Ã is random relative to B. Thus, under the assumption that BPP = EXP,
one of the directions of the van Lambalgen Theorem does not hold for polynomial time
randomness.

The corollary also shows that one can choose, under the assumption that BPP contains
a superpolynomial time class, sets A,B ⊆ {0}∗ such that A is polynomial time random,
B is polynomial time random relative to A and A is polynomial time computable relative
to B. Hence this assumption implies that A is a basis for polynomial time randomness
even though A is polynomial time random itself. This contrasts with the setting of Martin-
Löf randomness randomness in recursion theory: a basis for Martin-Löf randomness has
to be trivial and therefore cannot be random [6, 11]. On the other hand, the bases for
recursive randomness include every set below the halting problem that is not diagonally
noncomputable (DNC), but no set of PA degree [6]. Every high set computes a recursively
random set, and an incomplete high r.e. set is not DNC. So a recursively random set can be
a basis for recursive randomness.

4 If P = PSPACE Then Closure Holds

We say that Z ⊆ N is polynomial space random if no martingale computable in polynomial
space succeeds on Z. In this section we show that polynomial space randomness is closed
under fully polynomial time computable permutations in the sense of Definition 3. If P =
PSPACE this closure property applies to polynomial time randomness as well.

In fact we show a stronger closure property where the permutations are generalised to
certain non-monotonic scanning rules (adaptively specifying an order in which bits are read).
We modify the argument given by Buhrman, van Melkebeek, Regan, Sivakumar and Strauss
[3, Section 4.1], which was not concerned with polynomial space randomness, but rather was
geared to the context of Lutz’s theory of resource bounded measure. As already mentioned,
in that theory, the positions a martingale bets on are strings in some non-unary alphabet.

XX:8 Closure of resource-bounded randomness notions under polynomial time permutations

Such strings can be suitably encoded by natural numbers; however, the resource bounds
change when one converts such a martingale into one in the sense of our Definition 1.

I Definition 6. A scanning function is a function V : {0, 1}∗ → {0}∗ such that V (α) 6=
V (α � i) for each α ∈ {0, 1}∗ and each i < |α|. In the context of V , we will call a string α
a run of V , thinking of α as a sequence of answers to oracle queries. We will call V (α � i)
the i-th query in the run of V on α.

As before, subsets of N will be identified with languages over the unary alphabet {0}. For
Z ⊆ N let Z ◦ V ⊆ N be the set Y such that Y (i) = Z(V (Y � i)) for each i. In the following
we review some key technical concepts [3, Section 4.1], somewhat changing the terminology
in order to make it compatible with the one of Nies [12, Section 7.5] where non-monotonic
randomness notions are studied.

For a function g : N → N, one says that V is g-filling if for each n and each run α of
length g(n),

∀r < n ∃i V (α � i) = r.

IDefinition 7. A non-monotonic betting strategy G is a pair (V,B) such that V is a scanning
function and B is a martingale. G succeeds on Z ⊆ {0}∗ if limnB(Z ◦ V � n) =∞.

One says that a non-monotonic betting strategy G is computable in polynomial space
if both V and B are computable in polynomial space. One says that Z ⊆ N is non-
monotonically polynomial space random if no such betting strategy succeeds on Z.

The final concept we need is that of consistency between a run α of V and a string w.

I Definition 8. For bit strings α,w, we write α ∼V w if for each j < |α|, if the j-th query
x in the run of V on α is less than |w|, then w(x) = α(j).

I Lemma 9. Suppose V is g-filling. Let |α| ≥ i := g(|w|). Then α ∼V w iff α � i ∼V w.

To see this, note that any query q with q < |w| has to be asked before stage g(|w|) by the
definition of the function g.

I Theorem 10. Let V be a scanning function in PSPACE that is g-filling for a polynomial
bound g. If Z is polynomial space random, then so is Z ◦ V .

Proof. Suppose Z ◦V is not polynomial space random. Let G = (V,B) be a betting strategy
in PSPACE that succeeds on Z; thus, B succeeds on Z ◦ V .

We define a martingale D in PSPACE that succeeds on Z. We may assume that g(n) ≥ n.
For t ≥ g(|w|) let

D(w) = 2|w|−t
∑

|α|=t ∧ α∼V w

B(α).

By the claim above and since B is a martingale, this definition is independent of t. Note
that among the runs α of length t, a fraction of 2−|w| satisfy that α ∼V w; so D(w) is simply
the average value of B(α) over all such α.

If we let t = g(|w|), by the hypotheses that G is in PSPACE and that g is a polynomial,
D is in PSPACE.

The rest of the argument somewhat simplifies the one of [3] in the present context.

I Lemma 11. D is a martingale.

A. Nies and F. Stephan XX:9

Let w be a string of length n. If |α| = g(n + 1) and α ∼V w, then either α ∼V w0 or
α ∼V w1. Letting u = g(n+ 1), for each r = 0, 1 we have

D(wr) = 2|w|+1−u ∑
|α|=u ∧ α∼V wr

B(α).

Hence, since the definition of D(w) does not depend on the choice of t ≥ g(|w|),

D(w0) +D(w1) = 2|w|+1−u ∑
|α|=u ∧ α∼V w

B(α) = 2D(w).

I Lemma 12. D succeeds on Z.

We may assume that B(x) > 0 for each x. The Savings Lemma (see e.g. Nies [12, 7.1.14])
states that each computable martingale M can be turned into a computable martingale M̂
that succeeds on the same sets, and has the extra property that M̂(β) ≥ M̂(α)− 2 for each
strings β ⊇ α (namely, M̂ never loses more than 2). It is easy to see from the proof that
if M is computable in polynomial space, then so is M̂ . So we may assume that B has this
property.

This implies that for each c ∈ N there is a prefix α of Z ◦ V such that

B(β) ≥ c for each string β � α.

By definition of Z◦V we have α(i) = Z(V (α � i)) for each i < |α|. Let r = 1+maxi<|α| V (α �
i) be 1+ the maximum query asked in the run of V on α, and let w = Z � r. So g(r) ≥ |α|.

If β ∼V w is a string such that |β| = g(r), then β � α, for α(r) 6= β(r) for some r < |α|
would imply that β 6∼V w as w answers all such queries correctly. So B(β) ≥ c. Hence
D(w) ≥ c because D(w) is the average over values B(β) for all such β. J

I Corollary 13. Let S be a polynomial time computable permutation of {0}∗ such that S−1

is polynomially bounded. If Z is polynomial space random, then so is Z ◦ S.

Proof. The permutation S can be viewed as a scanning function VS that only looks at the
length of the input: VS(α) = S(|α|). By hypothesis on S, the scanning function VS is
polynomially filling. So Z ◦ S = Z ◦ VS is polynomial space random by the theorem. J

The foregoing corollary can be restated in terms of randomness on languages in the sense
of [1]: Let S be a exponential time computable permutation of {0, 1}∗ such that |S−1(x)| =
O(|x|) for each string x. If a language Z is exponential space random, then so is Z ◦ S.

We end with a question. Recall that PP denotes probabilistic polynomial time, a subclass
of PSPACE. If P = PP, is polynomial time randomness closed under permutations S of {0}∗
such that S, S−1 are polynomial time computable?

Acknowledgments. The authors would like to thank Eric Allender, Klaus Ambos-Spies,
Alexander Galicki, Elvira Majordomo, and Wolfgang Merkle for discussions and comments.

A. Nies is supported in part by the Marsden Fund of the Royal Society of New Zealand,
UoA 13-184. F. Stephan is supported in part by the Singapore Ministry of Education
Academic Research Fund Tier 2 grant MOE2016-T2-1-019 / R146-000-234-112. Part of this
work was done while F. Stephan was on sabbatical leave at the University of Auckland.
The work was completed while Nies visited the Institute for Mathematical Sciences at NUS
during the 2017 programme “Aspects of Computation”.

XX:10 Closure of resource-bounded randomness notions under polynomial time permutations

References
1 Klaus Ambos-Spies and Elvira Mayordomo. Resource-bounded measure and randomness.

Lecture Notes in Pure and Applied Mathematics, pages 1–48, 1997.
2 Vasco Brattka, Joseph S. Miller and André Nies. Randomness and differentiability. Trans-

actions of the American Mathematical Society, 368:581–605, 2016. See also technical report
on http://arxiv.org/abs/1104.4465.

3 Harry Buhrman, Dieter Van Melkebeek, Kenneth W. Regan, D. Sivakumar and Mar-
tin Strauss. A generalization of resource-bounded measure, with application to the BPP
vs. EXP problem. SIAM Journal on Computing, 30(2):576–601, 2000.

4 Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness and Complexity,
Springer, 2010.

5 Santiago Figueira and André Nies. Feasible analysis, randomness, and base invariance.
Theory of Computing Systems, 56(3):439–464, 2015, DOI 10.1007/s00224-013-9507-7.

6 Denis R. Hirschfeldt, André Nies and Frank Stephan. Using random sets as oracles. Journal
of the London Mathematical Society, 75(3):610–622, 2007.

7 Bjørn Kjos-Hanssen, Paul Kim Long V. Nguyen and Jason M. Rute. Algorithmic random-
ness for Doob’s martingale convergence theorem in continuous time. Logical Methods in
Computer Science, 10(4:12):1–35, 2014.

8 Michiel van Lambalgen. The axiomatization of randomness. The Journal of Symbolic Logic,
55(3):1143–1167, 1990.

9 Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and its Applications.
Third Edition. Springer, 2008.

10 Per Martin-Löf. The definition of random sequences. Information and Control, 9:602–619,
1966.

11 André Nies. Lowness properties and randomness. Advances in Mathematics, 197(1):274–
305, 2005.

12 André Nies. Computability and Randomness, volume 51 of Oxford Logic Guides. Oxford
University Press, Oxford, 2009. 444 pages. Paperback version 2011.

13 André Nies. Differentiability of polynomial time computable functions. In Ernst W. Mayr
and Natacha Portier, editors, 31st International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2014), volume 25 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 602–613, Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

14 Claus-Peter Schnorr. Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung
der Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, 1971. Lecture Notes in Mathem-
atics, Vol. 218.

15 Yongge Wang. Randomness and Complexity. PhD dissertation, University of Heidelberg,
1996.

	Introduction
	Preliminaries
	If BPP Contains a Superpolynomial Time Class Then Closure Fails
	If ¶= PSPACE Then Closure Holds

