
CALCULUS OF COST FUNCTIONS

ANDRÉ NIES

Abstract. Cost functions provide a framework for constructions of sets
Turing below the halting problem that are close to computable. We
carry out a systematic study of cost functions. We relate their algebraic
properties to their expressive strength. We show that the class of addi-
tive cost functions describes the K-trivial sets. We prove a cost function
basis theorem, and give a general construction for building computably
enumerable sets that are close to being Turing complete.

Contents

1. Introduction 2
1.1. Background on cost functions 3
1.2. Overview of our results 5
2. Basics 6
2.1. Some easy facts on cost functions 6
2.2. The limit condition and the existence theorem 7
2.3. The cost function for K-triviality 8
2.4. Basic properties of the class of sets obeying a cost function 9
3. Look-ahead arguments 10
3.1. Downward closure under

ibT

11
3.2. Conjunction of cost functions 11
3.3. Implication between cost functions 12
4. Additive cost functions 14
4.1. K-triviality and the cost function ch⌦i 14
4.2. Solovay reducibility 15
4.3. The strength of an additive cost function 16
5. Randomness, lowness, and K-triviality 17
5.1. A cost function implying strong jump traceability 18
5.2. Strongly jump traceable sets and d.n.c. functions 19
5.3. A proper implication between cost functions 20
6. A cost function-related basis theorem for ⇧0

1 classes 23
7. A dual cost function construction 26
7.1. Preliminaries on cost functionals 27
7.2. The dual existence theorem 27
References 30

1991 Mathematics Subject Classification. Primary: 03F60; Secondary: 03D30.
Key words and phrases. computability, randomness, lowness, cost functions.
Research partially supported by the Marsden Fund of New Zealand, grant no. 08-

UOA-187, and by the Hausdor↵ Institute of Mathematics, Bonn.

1

2 ANDRÉ NIES

1. Introduction

In the time period from 1986 to 2003, several constructions of computably
enumerable (c.e.) sets appeared. They turned out to be closely related.

(a) Given a Martin-Löf random (ML-random for short) �0
2 set Y ,

Kučera [15] built a c.e. incomputable set A
T

Y . His construction
is interesting because in the case that Y <

T

;0, it provides a c.e.
set A such that ; <

T

A <
T

;0, without using injury to requirements
as in the traditional proofs. (;0 denotes the halting problem.)

(b) Kučera and Terwijn [17] built a c.e. incomputable set A that is low
for ML-randomness: every ML-random set is already ML-random
relative to A.

(c) A is called K-trivial if K(A �
n

) K(n) + O(1), where K denotes
prefix-free descriptive string complexity. This means that the initial
segment complexity of A grows as slowly as that of a computable
set. Downey et al. [8] gave a very short construction (almost a
“definition”) of a c.e., but incomputable K-trivial set.

The sets in (a) and (b) enjoy a so-called lowness property, which says that
the set is very close to computable. Such properties can be classified accord-
ing to various paradigms introduced in [23, 10]. The set in (a) obeys the
Turing-below-many paradigm which says that A is close to being computable
because it is easy for an oracle set to compute it. A frequent alternative is
the weak-as-an-oracle paradigm: A is weak in a specific sense when used as
an oracle set in a Turing machine computation. An example is the oracle
set in (b), which is so weak that it useless as an extra computational device
when testing for ML-randomness. On the other hand, K-triviality in (c) is
a property stating that the set is far from random: by the Schnorr-Levin
Theorem, for a random set Z the initial segment complexity grows fast in
that K(Z �

n

) � n � O(1). For background on the properties in (a)-(c) see
[7] and [22, Ch. 5].1

A central point for starting our investigations is the fact that the con-
structions in (a)–(c) look very similar. In hindsight this is not surprising:
the classes of sets implicit in (a)-(c) coincide! Let us discuss why.

(b) coincides with (c): Nies [21], with some assistance by Hirschfeldt, showed
that lowness for ML-randomness is the same as K-triviality. For this he
introduced a method now known as the “golden run”.

(a) coincides with (b): The construction in (a) is only interesting if Y 6�
T

;0.
Hirschfeldt, Nies and Stephan [13] proved that if A is a c.e. set such that
A

T

Y for some ML-random set Y 6�
T

;0, then A is K-trivial, confirming
the intuition sets of the type built by Kučera are close to computable. They
asked whether, conversely, for every K-trivial set A there is a ML-random
set Y �

T

A with Y 6�
T

;0. This question became known as the ML-covering
problem. Recently the question was solved in the a�rmative by combining
the work of seven authors in two separate papers. In fact, there is a single

1We note that the result (c) has a complicated history. Solovay [25] built a �0
2 incom-

putable set A that is K-trivial. Constructing a c.e. example of such a set was attempted
in various sources such as [4], and unpublished work of Kummer.

CALCULUS OF COST FUNCTIONS 3

ML-random �0
2 set Y 6�

T

;0 that is Turing above all the K-trivials. A
summary is given in [1].

The common idea for these constructions is to ensure lowness of A dynam-
ically, by restricting the overall manner in which numbers can be enumerated
into A. This third lowness paradigm has been called inertness in [23]: a set
A is close to computable because it is computably approximable with a small
number of changes.

The idea is implemented as follows. The enumeration of a number x
into A at a stage s bears a cost c(x, s), a non-negative rational that can be
computed from x and s. We have to enumerate A in such a way that the
sum of all costs is finite. A construction of this type will be called a cost
function construction.

If we enumerate at a stage more than one number into A, only the cost
for enumerating the least number is charged. So, we can reduce cost by
enumerating A in “chunks”.

1.1. Background on cost functions. The general theory of cost functions
began in [22, Section 5.3]. It was further developed in [11, 10, 6]. We use
the language of [22, Section 5.3] which already allows for the constructions
of �0

2 sets. The language is enriched by some notation from [6]. We will
see that most examples of cost functions are based on randomness-related
concepts.

Definition 1.1. A cost function is a computable function

c : N⇥ N ! {x 2 Q : x � 0}.

Recall that a computable approximation is a computable sequence of finite
sets hA

s

i
s2N such that lim

s

A
s

(x) exists for each x.

Definition 1.2. (i). Given a computable approximation hA
s

i
s2N and a cost

function c, for s > 0 we let

c
s

(A
s

) = c(x, s) where x < s & x is least s.t. A
s�1(x) 6= A

s

(x);

if there is no such x we let c
s

(A
s

) = 0. This is the cost of changing A
s�1

to A
s

. We let

chA
s

i
s2N =

X

s>0

c
s

(A
s

)

be the total cost of all the A-changes. We will often write chA
s

i as a short-
hand for chA

s

i
s2N.

(ii) We say that hA
s

i
s2N obeys c if chA

s

i is finite. We denote this by

hA
s

i |= c.

(iii) We say that a �0
2 set A obeys c, and write A |= c, if some computable

approximation of A obeys c.

A cost function c acts like a global restraint, which is successful if the
condition chA

s

i < 1 holds. Kučera’s construction mentioned in (a) above
needs to be recast in order to be viewed as a cost-function construction
[11, 22]. In contrast, (b) and (c) can be directly seen as cost function
constructions. In each of (a)–(c) above, one defines a cost function c such
that any set A obeying c has the lowness property in question. For, if

4 ANDRÉ NIES

A |= c, then one can enumerate an auxiliary object that has in some sense
a bounded weight.

In (a), this object is a Solovay test that accumulates the errors in an
attempted computation of A with oracle Y . Since Y passes this test, Y
computes A.

In (b), one is given a ⌃0
1(A) class V ✓ 2! such that the uniform measure

�V is less than 1, and the complement of V consists only of ML-randoms.
Using that A obeys c, one builds a ⌃0

1 class S ✓ 2! containing V such that
still �S < 1. This implies that A is low for ML-randomness.

In (c) one builds a bounded request set (i.e., Kraft-Chaitin set) which
shows that A is K-trivial.

The cost function in (b) is adaptive in the sense that c(x, s) depends
on A

s�1. In contrast, the cost functions in (a) and (c) can be defined in
advance, independently of the computable approximation of the set A that
is built.

The main existence theorem, which we recall as Theorem 2.7 below, states
that for any cost function c with the limit condition lim

x

lim inf
s

c(x, s) = 0,
there is an incomputable c.e. set A obeying c. The cost functions in (a)-(c)
all have the limit condition. Thus, by the existence theorem, there is an
incomputable c.e. set A with the required lowness property.

Besides providing a unifying picture of these constructions, cost functions
have many other applications. We discuss some of them.

Weak 2-randomness is a notion stronger than ML-randomness: a set Z is
weakly 2-random if Z is in no ⇧0

2 null class. In 2006, Hirschfeldt and Miller
gave a characterization of this notion: a ML-random is weakly 2-random
if and only if it forms a minimal pair with ;0. The implication from left
to right is straightforward. The converse direction relies on a cost function
related to the one for Kučera’s result (a) above. (For detail see e.g. [22,
Thm. 5.3.6].) Their result can be seen as an instance of the randomness
enhancement principle [23]: the ML-random sets get more random as they
lose computational complexity.

The author [21] proved that the single cost function cK introduced in [8]
(see Subsection 2.3 below) characterises the K-trivials. As a corollary, he
showed that everyK-trivial setA is truth-table below a c.e.K-trivialD. The
proof of this corollary uses the general framework of change sets spelled out
in Proposition 2.14 below. While this is still the only known proof yielding
A tt D, Bienvenu et al. [2] have recently given an alternative proof using
Solovay functions in order to obtain the weaker reduction A

T

D.
In model theory, one asks whether a class of structures can be described

by a first order theory. Analogously, we ask whether an ideal of the Turing
degrees below 00 is given by obedience to all cost functions of an appropriate
type. For instance, the K-trivials are axiomatized by cK.

Call a cost function c benign if from n one can compute a bound on the
number of disjoint intervals [x, s) such that c(x, s) � 2�n. Figueira et al. [9]
introduced the property of being strongly jump traceable (s.j.t.), which is
an extreme lowness property of an oracle A, even stronger than being low
for K. Roughly speaking, A is s.j.t. if the jump JA(x) is in T

x

whenever
it is defined, where hT

x

i is a uniformly c.e. sequence of sets such that any

CALCULUS OF COST FUNCTIONS 5

given order function bounds the size of almost all the T
x

. Greenberg and
Nies [11] showed that the class of benign cost functions axiomatizes the c.e.
strongly jump traceable sets.

Greenberg et al. [10] used cost functions to show that each strongly jump-
traceable c.e. set is Turing below each !-c.e. ML-random set. As a main
result, they also obtained the converse. In fact they showed that any set
that is below each superlow ML-random set is s.j.t.

The question remained whether a general s.j.t. set is Turing below each
!-c.e. ML-random set. Diamondstone et al. [6] showed that each s.j.t. set
A is Turing below a c.e., s.j.t. set D. To do so, as a main technical result
they provided a benign cost function c such that each set A obeying c is
Turing below a c.e. set D which obeys every cost function that A obeys. In
particular, if A is s.j.t., then A |= c, so the c.e. cover D exists and is also
s.j.t. by the above-mentioned result of Greenberg and Nies [11]. This gives
an a�rmative answer to the question. Note that this answer is analogous
to the result [1] that every K-trivial is below an incomplete random.

1.2. Overview of our results. The main purpose of the paper is a system-
atic study of cost functions and the sets obeying them. We are guided by the
above-mentioned analogy from first-order model theory: cost functions are
like sentences, sets are like models, and obedience is like satisfaction. So far
this analogy has been developed only for cost functions that are monotonic
(that is, non-increasing in the first component, non-decreasing in the stage
component). In Section 3 we show that the conjunction of two monotonic
cost functions is given by their sum, and implication c ! d is equivalent to
d = O(c) where c(x) = sup

s

c(x, s) is the limit function.
In Section 4 we show that a natural class of cost functions introduced

in Nies [23] characterizes the K-trivial sets: a cost function c is additive
if c(x, y) + c(y, z) = c(x, z) for all x < y < z. We show that such a cost
function is given by an enumeration of a left-c.e. real, and that implication
corresponds to Solovay reducibility on left-c.e. reals. Additive cost functions
have been used prominently in the solution of the ML-covering problem [1].
The fact that a given K-trivial A obeys every additive cost function is used
to show that A

T

Y for the Turing incomplete ML-random set constructed
by Day and Miller [5].

Section 5 contains some more applications of cost functions to the study
of computational lowness and K-triviality. For instance, strengthening the
result in [10] mentioned above, we show that each c.e., s.j.t. set is below any
complex !-c.e. set Y , namely, a set Y such that there is an order function
g with g(n) + K(Y �

n

) for each n. In addition, the use of the reduction is
bounded by the identity. Thus, the full ML-randomness assumed in [10] was
too strong a hypothesis. We also discuss the relationship of cost functions
and a weakening of K-triviality.

In the remaining part of the paper we obtain two existence theorems.
Section 6 shows that given an arbitrary monotonic cost function c, any
nonempty ⇧0

1 class contains a �0
2 set Y that is so low that each c.e. set

A
T

Y obeys c. In Section 7 we relativize a cost function c to an oracle
set Z, and show that there is a c.e. set D such that ;0 obeys cD relative
to D. This much harder “dual” cost function construction can be used to

6 ANDRÉ NIES

build incomplete c.e. sets that are very close to computing ;0. For instance,
if c is the cost function cK for K-triviality, then D is LR-complete.

2. Basics

We provide formal background, basic facts and examples relating to the
discussion above. We introduce classes of cost functions: monotonic, and
proper cost functions. We formally define the limit condition, and give a
proof of the existence theorem.

2.1. Some easy facts on cost functions.

Definition 2.1. We say that a cost function c is nonincreasing in the main
argument if

8x, s [c(x+ 1, s) c(x, s)].

We say that c is nondecreasing in the stage if c(x, s) = 0 for x > s and

8x, s [c(x, s) c(x, s+ 1)].

If c has both properties we say that c is monotonic. This means that the
cost c(x, s) does not decrease when we enlarge the interval [x, s].

Fact 2.2. Suppose A |= c. Then for each ✏ > 0 there is a computable
approximation hA

s

i
s2N of A such that chA

s

i
s2N < ✏. ⇤

Proof. Suppose h bA
s

i
s2N |= c. Given x0 consider the modified computable

approximation hA
s

i
s2N of A that always outputs the final value A(x) for

each x x0. That is, A
s

(x) = A(x) for x x0, and A
s

(x) = bA
s

(x) for
x > x0. Choosing x0 su�ciently large, we can ensure chAi

s

< ✏. ⇤
Definition 2.3. Suppose that a cost function c(x, t) is non-increasing in
the main argument x. We say that c is proper if 8x 9t c(x, t) > 0.

If a cost function that is non-increasing in the main argument is not
proper, then every �0

2 set obeys c. Usually we will henceforth assume that
a cost function c is proper. Here is an example how being proper helps.

Fact 2.4. Suppose that c is a proper cost function and S = chA
s

i < 1 is a
computable real. Then A is computable.

Proof. Given an input x, compute a stage t such that � = c(x, t) > 0 and
S � chA

s

i
st

< �. Then A(x) = A
t

(x). ⇤
A computable enumeration is a computable approximation hB

s

i
s2N such

that B
s

✓ B
s+1 for each s.

Fact 2.5. Suppose c is a monotonic cost function and A |= c for a c.e.

set A. Then there is a computable enumeration h eA
s

i that obeys c.

Proof. Suppose hA
s

i |= c for a computable approximation hA
s

i of A. Let
hB

t

i be a computable enumeration of A. Define h eA
s

i as follows. Let eA0(x) =
0; for s > 0 let eA

s

(x) = eA
s�1(x) if eA

s�1(x) = 1; otherwise let eA
s

(x) = A
t

(x)
where t � s is least such that A

t

(x) = B
t

(x).
Clearly h eA

s

i is a computable enumeration of A. If eA
s

(x) 6= eA
s�1(x) then

A
s�1(x) = 0 and A

s

(x) = 1. Therefore ch eA
s

i chA
s

i < 1. ⇤

CALCULUS OF COST FUNCTIONS 7

2.2. The limit condition and the existence theorem.
For a cost function c, let

c(x) = lim inf
s

c(x, s). (1)

Definition 2.6. We say that a cost function c satisfies the limit condition
if lim

x

c(x) = 0. That is, for each e, for almost every x we have

91s [c(x, s) 2�e].

In previous works such as [22], the limit condition was defined in terms
of sup

s

c(x, s), rather than lim inf
s

c(x, s). The cost functions previously
considered were usually nondecreasing in the stage component, in which
case sup

s

c(x, s) = lim inf
s

c(x, s) and hence the two versions of the limit
condition are equivalent. Note that the limit condition is a ⇧0

3 condition on
cost functions that are nondecreasing in the stage, and ⇧0

4 in general.
The basic existence theorem says that a cost function with the limit con-

dition has a c.e., incomputable model. This was proved by various authors
for particular cost functions. The following version of the proof appeared in
[8] for the particular cost function cK defined in Subsection 2.3 below, and
then in full generality in [22, Thm 5.3.10].

Theorem 2.7. Let c be a cost function with the limit condition.

(i) There is a simple set A such that A |= c. Moreover, A can be
obtained uniformly in (a computable index for) c.

(ii) If c is nondecreasing in the stage component, then we can make A
promptly simple.

Proof. (i) We meet the usual simplicity requirements

S
e

: #W
e

= 1) W
e

\A 6= ;.

To do so, we define a computable enumeration hA
s

i
s2N as follows. Let

A0 = ;. At stage s > 0, for each e < s, if S
e

has not been met so far and
there is x � 2e such that x 2 W

e,s

and c(x, s) 2�e, put x into A
s

. Declare
S
e

met.

To see that hA
s

i
s2N obeys c, note that at most one number is put into A

for the sake of each requirement. Thus chA
s

i
P

e

2�e = 2.
If W

e

is infinite, then there is an x � 2e and s > x such that x 2 W
e,s

and
c(x, s) 2�e, because c satisfies the limit condition. So we meet S

e

. Clearly
the construction of A is uniform in an index for the computable function c.

(ii) Now we meet the prompt simplicity requirements

PS
e

: #W
e

= 1) 9s 9x [x 2 W
e,s

�W
e,s�1 & x 2 A

s

].

Let A0 = ;. At stage s > 0, for each e < s, if PS
e

has not been met so
far and there is x � 2e such that x 2 W

e,s

�W
e,s�1 and c(x, s) 2�e, put x

into A
s

. Declare PS
e

met.
If W

e

is infinite, there is an x � 2e in W
e

such that c(x, s) 2�e for all
s > x, because c satisfies the limit condition and is nondecreasing in the
stage component. We enumerate such an x into A at the stage s > x when x
appears in W

e

, if PS
e

has not been met yet by stage s. Thus A is promptly
simple. ⇤

8 ANDRÉ NIES

Theorem 2.7(i) was strengthened in [22, Thm 5.3.22]. As before let c be a
cost function with the limit condition. Then for each low c.e. set B, there is
a c.e. set A obeying c such that A 6

T

B. The proof of [22, Thm 5.3.22] is for
the case of the stronger version of the limit condition lim

x

sup
s

c(x, s) = 0,
but in fact works for the version given above.

The assumption that B be c.e. is necessary: there is a low set Turing above
all the K-trivial sets by [16], and the K-trivial sets can be characterized as
the sets obeying the cost function cK of Subsection 2.3 below.

The following fact implies the converse of Theorem 2.7 in the monotonic
case.

Fact 2.8. Let c be a monotonic cost function. If a computable approxi-
mation hA

s

i
s2N of an incomputable set A obeys c, then c satisfies the limit

condition.

Proof. Suppose the limit condition fails for e. There is s0 such that
P

s�s0

P
x<s

c
s

(A
s

) 2�e.

To compute A, on input n compute s > max(s0, n) such that c(n, s) > 2�e.
Then A

s

(n) = A(n). ⇤
Convention 2.9. For a monotonic cost function c, we may forthwith as-
sume that c(x) < 1 for each x. For, firstly, if 8x [c(x) = 1], then A |= c
implies that A is computable. Thus, we may assume there is x0 such that
c(x) is finite for all x � x0 since c(x) is nonincreasing. Secondly, changing
values c(x, s) for the finitely many x < x0 does not alter the class of sets A
obeying c. So fix some rational q > c(x0) and, for x < x0 redefine c(x, s) = q
for all s.

2.3. The cost function for K-triviality.
Let K

s

(x) = min{|�| : U
s

(�) = x} be the value of prefix-free descriptive
string complexity of x at stage s. We use the conventions K

s

(x) = 1 for
x � s and 2�1 = 0. Let

cK(x, s) =
sX

w=x+1

2�Ks(w). (2)

Sometimes cK is called the standard cost function, mainly because it was
the first example of a cost function that received attention. Clearly, cK is
monotonic. Note that cK(x) =

P
w>x

2�K(w). Hence cK satisfies the limit

condition: given e 2 N, since
P

w

2�K(w) 1, there is an x0 such that
P

w�x0
2�K(w) 2�e.

Therefore cK(x) 2�e for all x � x0.
The following example illustrates that in Definition 1.2, obeying cK, say,

strongly depends on the chosen enumeration. Clearly, if we enumerate A =
N by putting in x at stage x, then the total cost of changes is zero.

Proposition 2.10. There is a computable enumeration hA
s

i
s2N of N in the

order 0, 1, 2, . . . (i.e., each A
s

is an initial segment of N) such that hA
s

i
s2N

does not obey cK.

CALCULUS OF COST FUNCTIONS 9

Proof. Since K(2j) + 2 log j, there is an increasing computable function f
and a number j0 such that 8j � j0K

f(j)(2
j) j � 1. Enumerate the set

A = N in order, but so slowly that for each j � j0 the elements of (2j�1, 2j]
are enumerated only after stage f(j), one by one. Each such enumeration
costs at least 2�(j�1), so the cost for each interval (2j�1, 2j] is 1. ⇤

Intuitively speaking, an infinite c.e. set A can obey the cost function cK
only because during an enumeration of x at stage s one merely pays the
current cost cK(x, s), not the limit cost cK(x).

Fact 2.11. If a c.e. set A is infinite, then
P

x2A cK(x) = 1.

Proof. Let f be a 1-1 computable function with range A. Let L be the
bounded request set {hr,max

i2r+1 f(i)i : r 2 N}. Let M be a machine for
L according to the Machine Existence Theorem, also known as the Kraft-
Chaitin Theorem. See e.g. [22, Ch. 2] for background. ⇤

In [21] (also see [22, Ch. 5]) it is shown that A is K-trivial i↵ A |= cK.
So far, the class of K-trivial sets has been the only known natural class
that is characterized by a single cost function. However, recent work with
Greenberg and Miller suggests that for a c.e. set A, being below both halves
Z0, Z1 of some Martin-Löf-random Z = Z0�Z1 is equivalent to obeying the
cost function c(x, s) =

p
⌦
s

� ⌦
x

.

2.4. Basic properties of the class of sets obeying a cost function.
In this subsection, unless otherwise stated, cost functions will be mono-
tonic. Recall from Definition 2.3 that a cost function c is called proper if
8x 9t c(x, t) > 0. We investigate the class of models of a proper cost func-
tion c. We also assume Convention 2.9 that c(x) < 1 for each x.

The first two results together show that A |= c implies that A is weak
truth-table below a c.e. set C such that C |= c. Recall that a �0

2 set A
is called !-c.e. if there is a computable approximation hA

s

i such that the
number of changes #{s : A

s

(x) 6= A
s�1(x)} is computably bounded in x;

equivalently, A wtt ;0 (see [22, 1.4.3]).

Fact 2.12. Suppose that c is a proper monotonic cost function. Let A |= c.
Then A is !-c.e.

Proof. Suppose hA
s

i |= c. Let g be the computable function given by g(x) =
µt. c(x, t) > 0. Let bA

s

(x) = A
g(x)(x) for s < g(x), and bA

s

(x) = A
s

(x)

otherwise. Then the number of times bA
s

(x) can change is bounded by
chA

s

i/c(x, g(x)). ⇤
Let V

e

denote the e-th !-c.e. set (see [22, pg. 20]).

Fact 2.13. For each cost function c, the index set {e : V
e

|= c} is ⌃0
3.

Proof. Let D
n

denote the n-th finite set of numbers. We may view the i-th
partial computable function �

i

as a (possibly partial) computable approxi-
mation hA

t

i by letting A
t

' D�i(t) (the symbol ' indicates that ’undefined’
is a possible value). Saying that �

i

is total and a computable approximation
of V

e

is a ⇧0
2 condition of i and e. Given that �

i

is total, the condition that
hA

t

i |= c is ⌃0
2. ⇤

10 ANDRÉ NIES

The change set (see [22, 1.4.2]) for a computable approximation hA
s

i
s2N

of a �0
2 set A is a c.e. set C �

T

A defined as follows: if s > 0 and A
s�1(x) 6=

A
s

(x) we put hx, ii into C
s

, where i is least such that hx, ii 62 C
s�1. If A is

!-c.e. via this approximation then C �
tt

A. The change set can be used to
prove the implication of the Shoenfield Limit Lemma that A 2 �0

2 implies
A

T

;0; moreover, if A is !-c.e., then A wtt ;0.

Proposition 2.14 ([22], Section 5.3). Let the cost function c be non-increasing
in the first component. If a computable approximation hA

s

i
s2N of a set A

obeys c, then its change set C obeys c as well.

Proof. Since x < hx, ii for each x, i, we have

C
s�1(x) 6= C

s

(x) ! A
s�1 �x 6= A

s

�
x

for each x, s. Then, since c(x, s) is non-increasing in x, we have chC
s

i
chA

s

i < 1. ⇤
This yields a limitation on the expressiveness of cost functions. Recall

that A is superlow if A0 tt ;0.

Corollary 2.15. There is no cost function c monotonic in the first compo-
nent such that A |= c i↵ A is superlow.

Proof. Otherwise, for each superlow set A there is a c.e. superlow set C �
T

A. This is clearly not the case: for instance A could be ML-random, and
hence of diagonally non-computable degree, so that any c.e. set C �

T

A is
Turing complete. ⇤

ForX ✓ N let 2X denote {2x : x 2 X}. Recall that A�B = 2A[(2B+1).
We now show that the class of sets obeying c is closed under � and closed
downward under a restricted form of weak truth-table reducibility.

Clearly, E |= c & F |= c implies E [F |= c.

Proposition 2.16. Let the cost function c be monotonic in the first com-
ponent. Then A |= c & B |= c implies A�B |= c.

Proof. Let hA
s

i by a computable appoximation of A. By the monotonicity
of c we have chA

s

i � c(2A
s

). Hence 2A |= c. Similarly, 2B + 1 |= c. Thus
A�B |= c. ⇤

Recall that there are superlow c.e. sets A0, A1 such that A0�A1 is Turing
complete (see [22, 6.1.4]). Thus the foregoing result yields a a stronger form
of Cor. 2.15: no cost function characterizes superlowness within the c.e. sets.

3. Look-ahead arguments

This core section of the paper introduces an important type of argument.
Suppose we want to construct a computable approximation of a set A that
obeys a given monotonic cost function. If we can anticipate that A(x) needs
to be changed in the future, we try to change it as early as possible, because
earlier changes are cheaper. Such an argument will be called a look-ahead
argument. (Also see the remark before Fact 2.11.) The main application
of this method is to characterize logical properties of cost functions alge-
braically.

CALCULUS OF COST FUNCTIONS 11

3.1. Downward closure under
ibT

. Recall that A
ibT

B if A wtt B
with use function bounded by the identity. We now show that the class of
models of c is downward closed under

ibT

.

Proposition 3.1. Let c be a monotonic cost function. Suppose that B |= c
and A = �B via a Turing reduction � such that each oracle query on an
input x is at most x. Then A |= c.

Proof. Suppose B |= c via a computable approximation hB
s

i
s2N. We define

a computable increasing sequence of stages hs(i)i
i2N by s(0) = 0 and

s(i+ 1) = µs > s(i) [�B �
s(i) [s] #].

In other words, s(i + 1) is the least stage s greater than s(i) such that at
stage s, �B(n) is defined for each n < s(i). We will define A

s(k)(x) for each
k 2 N. Thereafter we let A

s

(x) = A
s(k)(x) where k is maximal such that

s(k) s.
Suppose s(i) x < s(i + 1). For k < i let A

s(k)(x) = v, where v =

�B(x)[s(i + 2)]. For k � i, let A
s(k)(x) = �B(x)[s(k + 2)]. (Note that

these values are defined. Taking the �B(x) value at the large stage s(k+2)
represents the look-ahead.)

Clearly lim
s

A
s

(x) = A(x). We show that chA
s

i chB
t

i. Suppose that x
is least such that A

s(k)(x) 6= A
s(k)�1(x). By the use bound on the reduction

procedure �, there is y x such that B
t

(y) 6= B
t�1(y) for some t, s(k+1) <

t s(k + 2). Then c(x, s(k)) c(y, t) by monotonicity of c. Therefore
hA

s

i |= c. ⇤
3.2. Conjunction of cost functions. In the remainder of this section
we characterize conjunction and implication of monotonic cost functions
algebraically. Firstly, we show that a set A is a model of c and d if and
only if A is a model of c+ d. Then we show that c implies d if and only if
d = O(c).

Theorem 3.2. Let c,d be monotonic cost functions. Then

A |= c & A |= d , A |= c+ d.

Proof. (: This implication is trivial.
): We carry out a look-ahead argument of the type introduced in the proof
of Proposition 3.1. Suppose that hE

s

i
s2N and hF

s

i
s2N are computable ap-

proximations of a set A such that hE
s

i |= c and hF
s

i |= d. We may assume
that E

s

(x) = F
s

(x) = 0 for s < x because changing E(x), say, to 1 at stage
x will not increase the cost as c(x, s) = 0 for x > s. We define a computable
increasing sequence of stages hs(i)i

i2N by letting s(0) = 0 and

s(i+ 1) = µs > s(i) [E
s

�
s(i)= F

s

�
s(i)].

We define A
s(k)(x) for each k 2 N. Thereafter we let A

s

(x) = A
s(k)(x) where

k is maximal such that s(k) s.
Suppose s(i) x < s(i+1). Let A

s(k)(x) = 0 for k < i. To define A
s(k)(x)

for k � i, let j(x) be the least j � i such that v = E
s(j+1)(x) = F

s(j+1)(x).

A
s(k)(x) =

(
v if i k j(x)

E
s(k+1)(x) = F

s(k+1)(x) if k > j(x).

12 ANDRÉ NIES

Clearly lim
s

A
s

(x) = A(x). To show (c + d)hA
s

i < 1, suppose that
A

s(k)(x) 6= A
s(k)�1(x). The only possible cost in the case i k j(x) is at

stage s(i) when v = 1. Such a cost is bounded by 2�x. XX Now consider a
cost in the case k > j(x). There is a least y such that E

t

(y) 6= E
t�1(y) for

some t, s(k) < t s(k + 1). Then y x, whence c(x, s(k)) c(y, t) by the
monotonicity of c. Similarly, using hF

s

i one can bound the cost of changes
due to d. Therefore (c+ d)hA

s

i 4 + chE
s

i+ dhF
s

i < 1. ⇤
3.3. Implication between cost functions.

Definition 3.3. For cost functions c and d, we write c ! d if A |= c implies
A |= d for each (�0

2) set A.

If a cost function c is monotonic in the stage component, then c(x) =
sup

s

c(x, s). By Remark 2.9 we may assume c(x) is finite for each x. We
will show c ! d is equivalent to d(x) = O(c(x)). In particular, whether or
not A |= c only depends on the limit function c.

Theorem 3.4. Let c,d be cost functions that are monotonic in the stage
component. Suppose c satisfies the limit condition in Definition 2.6. Then

c ! d , 9N 8x
⇥
Nc(x) > d(x)

⇤
.

Proof. (: We carry out yet another look-ahead argument. We define a
computable increasing sequence of stages s(0) < s(1) < . . . by s(0) = 0 and

s(i+ 1) = µs > s(i).8x < s(i)
⇥
Nc(x, s) > d(x, s)

⇤
.

Suppose A is a �0
2 set with a computable approximation hA

s

i |= c. We show

that h eA
t

i |= d for some computable approximation h eA
t

i of A. As usual, we
define eA

s(k)(x) for each k 2 N. We then let eA
s

(x) = eA
s(k)(x) where k is

maximal such that s(k) s.
Suppose s(i) x < s(i + 1). If k < i + 1 let eA

s(k)(x) = A
s(i+2)(x). If

k � i+ 1 let eA
s(k)(x) = A

s(k+1)(x).

Given k, suppose that x is least such that eA
s(k)(x) 6= eA

s(k)�1(x). Let
i be the number such that s(i) x < s(i + 1). Then k � i + 1. We
have A

t

(x) 6= A
t�1(x) for some t such that s(k) < t s(k + 1). Since

x < s(i+ 1) s(k), by the monotonicity hypothesis this implies Nc(x, t) �
Nc(x, s(k)) > d(x, s(k)). So dh eA

s

i N · chA
s

i < 1. Hence A |= d.

): Recall from the proof of Fact 2.13 that we view the e-th partial com-
putable function �

e

as a (possibly partial) computable approximation hB
t

i,
where B

t

' D�e(t).
Suppose that 9N 8x

⇥
Nc(x) > d(x)

⇤
fails. We build a set A |= c such

that for no computable approximation �
e

of A we have d�
e

 1. This
su�ces for the theorem by Fact 2.2. We meet the requirements

R
e

: �
e

is total and approximates A) �
e

6|= d.

The idea is to change A(x) for some fixed x at su�ciently many stages
s with Nc(x, s) < d(x, s), where N is an appropriate large constant. After
each change we wait for recovery from the side of �

e

. In this way our c-cost
of changes to A remains bounded, while the opponent’s d-cost of changes
to �

e

exceeds 1.

CALCULUS OF COST FUNCTIONS 13

For a stage s, we let init
s

(e) s be the largest stage such that R
e

has been
initialized at that stage (or 0 if there is no such stage). Waiting for recovery
is implemented as follows. We say that s is e-expansionary if s = init

s

(e),
or s > init

s

(e) and, where u is the greatest e-expansionary stage less than s,

9t 2 [u, s) [�
e,s

(t) # & �
e,s

(t)�
u

= A
u

�
u

].

The strategy for R
e

can only change A(x) at an e-expansionary stage u such
that x < u. In this case it preserves A

u

�
u

until the next e-expansionary
stage. Then, �

e

also has to change its mind on x: we have

x 2 �
e

(u� 1) $ x 62 �
e

(t) for some t 2 [u, s).

We measure the progress of R
e

at stages s via a quantity ↵
s

(e). When
R

e

is initialized at stage s, we set ↵
s

(e) to 0. If R
e

changes A(x) at stage
s, we increase ↵

s

(e) by c(x, s). R
e

is declared satisfied when ↵
s

(e) exceeds
2�b�e, where b is the number of times R

e

has been initialized.

Construction of hA
s

i and h↵
s

i. Let A0 = ;. Let ↵0(e) = 0 for each e.
Stage s > 0. Let e be least such that s is e-expansionary and ↵

s�1(e) 2�b�e

where b is the number of times R
e

has been initialized so far. If e exists do
the following.

Let x be least such that init
s

(e) x < s, c(x, s) < 2�b�e and

2b+ec(x, s) < d(x, s).

If x exists let A
s

(x) = 1 � A
s�1(x). Also let A

s

(y) = 0 for x < y < s. Let
↵
s

(e) = ↵
s�1(e) + c(x, s). Initialize the requirements R

i

for i > e and let
↵
s

(i) = 0. (This preserves A
s

�
s

unless R
e

itself is later initialized.) We say
that R

e

acts.

Verification. If s is a stage such that R
e

has been initialized for b times, then
↵
s

(e) 2�b�e+1. Hence the total cost of changes of A due to R
e

is at mostP
b

2�b�e+1 = 2�e+2. Therefore hA
s

i |= c.
We show that each R

e

only acts finitely often, and is met. Inductively,
init

s

(e) assumes a final value s0. Let b be the number of times R
e

has been
initialized by stage s0.

Since the condition 9N 8x [Nc(x) > d(x)] fails, there is x � s0 such that
for some s1 � x, we have 8s � s1 [2b+ec(x, s) < d(x, s)]. Furthermore, since
c satisfies the limit condition, we may suppose that c(x) < 2�b�e. Choose
x least.

If �
e

is a computable approximation of A, there are infinitely many e-
expansionary stages s � s1. For each such s, we can choose this x at stage s
in the construction. So we can add at least c(x, s1) to ↵(e). Therefore ↵

t

(e)
exceeds the bound 2�b�e for some stage t � s1, whence R

e

stops acting at
t. Furthermore, since d is monotonic in the second component and by the
initialization due to R

e

, between stages s0 and t we have caused d�
e

to
increase by at least 2b+e↵

t

(e) > 1. Hence R
e

is met. ⇤

The foregoing proof uses in an essential way the ability to change A(x),
for the same x, for a multiple number of times. If we restrict implication to
c.e. sets, the implication from left to right in Theorem 3.4 fails. For a trivial

14 ANDRÉ NIES

example, let c(x, s) = 4�x and d(x, s) = 2�x. Then each c.e. set obeys d,
so c ! d for c.e. sets. However, we do not have d(x) = O(c(x)).

We mention that Melnikov and Nies (unpublished, 2010) have obtained a
su�cient algebraic condition for the non-implication of cost functions via a
c.e. set. Informally speaking, the condition d(x) = O(c(x)) fails “badly”.

Proposition 3.5. Let c and d be monotonic cost functions satisfying the
limit condition such that

P
x2N d(x) = 1 and, for each N > 0,

X
d(x)[[Nc(x) > d(x)]] < 1.

Then there exists a c.e. set A that obeys c, but not d.

The hope is that some variant of this will yield an algebraic criterion for
cost function implication restricted to the c.e. sets.

4. Additive cost functions

We discuss a class of very simple cost functions introduced in [23]. We
show that a �0

2 set obeys all of them if and only if it is K-trivial. There
is a universal cost function of this kind, namely c(x, s) = ⌦

s

� ⌦
x

. Recall
Convention 2.9 that c(x) < 1 for each cost function c.

Definition 4.1 ([23]). We say that a cost function c is additive if c(x, s) = 0
for x > s, and for each x < y < z we have

c(x, y) + c(y, z) = c(x, z).

Additive cost functions correspond to nondecreasing e↵ective sequences
h�

s

i
s2N of non-negative rationals, that is, to e↵ective approximations of left-

c.e. reals �. Given such an approximation h�i = h�
s

i
s2N, let for x s

ch�i(x, s) = �
s

� �
x

.

Conversely, given an additive cost function c, let �
s

= c(0, s). Clearly the
two e↵ective transformations are inverses of each other.

4.1. K-triviality and the cost function ch⌦i. The standard cost function
cK introduced in (2) is not additive. We certainly have cK(x, y)+cK(y, z)
cK(x, z), but by stage z there could be a shorter description of, say, x + 1
than at stage y, so that the inequality may be proper. On the other hand,
let g be a computable function such that

P
w

2�g(w) < 1; this implies that
K(x) + g(x). The “analog” of cK when we write g(x) instead of K

s

(x),
namely c

g

(x, s) =
P

s

w=x+1 2
�g(w) is an additive cost function.

Also, cK is dominated by an additive cost function ch⌦i we introduce next.
Let U be the standard universal prefix-free machine (see e.g. [22, Ch. 2]). Let
h⌦i denote the computable approximation of ⌦ given by ⌦

s

= � dom(U
s

).
(That is, ⌦

s

is the Lebesgue measure of the domain of the universal prefix-
free machine at stage s.)

Fact 4.2. For each x s, we have cK(x, s) ch⌦i(x, s) = ⌦s

� ⌦
x

.

Proof. Fix x. We prove the statement by induction on s � x. For s = x we
have cK(x, s) = 0. Now

cK(x, s+1)�cK(x, s) =
P

s+1
w=x+1 2

�Ks+1(w)�
P

s

w=x+1 2
�Ks(w) ⌦

s+1�⌦s

,

CALCULUS OF COST FUNCTIONS 15

because the di↵erence is due to convergence at stage s of new U-computations.
⇤

Theorem 4.3. Let A be �0
2. Then the following are equivalent.

(i) A is K-trivial.
(ii) A obeys each additive cost function.
(iii) A obeys ch⌦i, where ⌦s

= �dom(U
s

).

Proof. (ii) ! (iii) is immediate, and (iii) ! (i) follows from Fact 4.2. It
remains to show (i)!(ii).

Fix some computable approximation hA
s

i
s2N of A. Let c be an additive

cost function. We may suppose that c(0) 1.
For w > 0 let r

w

2 N [1 be least such that 2�rw c(w � 1, w) (where
2�1 = 0). Then

P
w

2�rw 1. Hence by the Machine Existence Theorem
we have K(w) + r

w

for each w. This implies 2�rw = O(2�K(w)), soP
w>x

2�rw = O(cK(x)) and hence c(x) =
P

w>x

c(w � 1, w) = O(cK(x)).
Thus cK ! c by Theorem 3.4, whence the K-trivial set A obeys c. (See [3]
for a proof not relying on Theorem 3.4.) ⇤

Because of Theorem 3.4, we have ch⌦i $ cK. That is,

⌦� ⌦
x

⇠
P1

w=x+1 2
�K(w).

This can easily be seen directly: for instance, cK ch⌦i by Fact 4.2.

4.2. Solovay reducibility. Let Q2 denote the dyadic rationals, and let
the variable q range over Q2. Recall Solovay reducibility on left-c.e. reals:
�

S

↵ i↵ there is a partial computable � : Q2 \ [0,↵) ! Q2 \ [0,�) and
N 2 N such that

8q < ↵
⇥
� � �(q) < N(↵� q)

⇤
.

Informally, it is easier to approximate � from the left, than ↵. See e.g. [22,
3.2.8] for background.

We will show that reverse implication of additive cost functions corre-
sponds to Solovay reducibility on the corresponding left-c.e. reals. Given a
left-c.e. real �, we let the variable h�i range over the nondecreasing e↵ective
sequences of rationals converging to �.

Proposition 4.4. Let ↵,� be left-c.e. reals. The following are equivalent.

(i) �
S

↵
(ii) 8h↵i9h�i [ch↵i ! ch�i]
(iii) 9h↵i9h�i [ch↵i ! ch�i].

Proof. (i) ! (ii). Given an e↵ective sequence h↵i, by the definition of
S

there is an e↵ective sequence h�i such that � � �
x

= O(↵� ↵
x

) for each x.
Thus ch�i = O(ch↵i). Hence ch↵i ! ch�i by Theorem 3.4.

(iii) ! (i). Suppose we are given h↵i and h�i such that ch�i = O(ch↵i).
Define a partial computable function � by �(q) = �

x

if ↵
x�1 q < ↵

x

.
Then �

S

↵ via �. ⇤

16 ANDRÉ NIES

4.3. The strength of an additive cost function. Firstly, we make some
remarks related to Proposition 4.4. For instance, it implies that an additive
cost function can be weaker than ch⌦i without being obeyed by all the �0

2

sets.

Proposition 4.5. There are additive cost functions c,d such that ch⌦i ! c,
ch⌦i ! d and c,d are incomparable under the implication of cost functions.

Proof. Let c,d be cost functions corresponding to enumerations of Turing
(and hence Solovay) incomparable left-c.e. reals. Now apply Prop. 4.4. ⇤

Clearly, if � is a computable real then any c.e. set obeys ch�i. The intuition
we garner from Prop. 4.4 is that a more complex left-c.e. real � means that
the sets A |= ch�i become less complex, and conversely. We give a little
more evidence for this principle: if � is non-computable, we show that a set
A |= ch�i cannot be weak truth-table complete. However, we also build a
non-computable � and a c.e. Turing complete set that obeys ch�i

Proposition 4.6. Suppose � is a non-computable left-c.e. real and A |=
ch�i. Then A is not weak truth-table complete.

Proof. Assume for a contradiction that A is weak truth-table complete. We
can fix a computable approximation hA

s

i of A such that ch�ihAs

i 1. We
build a c.e. set B. By the recursion theorem we can suppose we have a weak
truth-table reduction � with computable use bound g such that B = �A.
We build B so that � � �

g(2e+1) 2�e, which implies that � is computable.
Let I

e

= [2e, 2e+1). If ever a stage s appears such that �
s

��
g(2e+1) 2�e,

then we start enumerating into B \ I
e

su�ciently slowly so that A �
g(2e+1)

must change 2e times. To do so, each time we enumerate into B, we wait
for a recovery of B = �A up to 2(e+1). The A-changes we enforce yield a
total cost > 1 for a contradiction. ⇤
Proposition 4.7. There is a non-computable left-c.e. real � and a c.e. set
A |= ch�i such that A is Turing complete.

Proof. We build a Turing reduction � such that ;0 = �(A). Let �
k,s

+ 1
be the use of the computation �;

0
(k)[s]. We view �

k

as a movable marker
as usual. The initial value is �

k,0 = k. Throughout the construction we
maintain the invariant

�
s

� �
�k,s 2�k.

Let h�
e

i be the usual e↵ective list of partial computable functions. By
convention, at each stage at most one computation �

e

(k) converges newly.
To make � non-computable, it su�ces to meet the requirements

R
k

: �
k

(k) #) � � �
�k(k) � 2�k.

Strategy for R
k

. If �
k

(k) converges newly at stage s, do the following.

1. Enumerate �
k,s

into A. (This incurs a cost of at most 2�k.)
2. Let �

s

= �
s�1 + 2�k.

3. Redefine �
i

(i � k) to large values in an increasing fashion.

CALCULUS OF COST FUNCTIONS 17

In the construction, we run the strategies for the R
k

. If k enters ;0 at stage
s, we enumerate �

k,s

into A.
Clearly each R

k

acts at most once, and is met. Therefore � is non-
computable. The markers �

k

reach a limit. Therefore ;0 = �(A). Finally,
we maintain the stage invariant, which implies that the total cost of enu-
merating A is at most 4. ⇤

As pointed out by Turetsky, it can be verified that � is in fact Turing
complete.

Next, we note that if we have two computable approximations from the
left of the same real, we obtain additive cost functions with very similar
classes of models.

Proposition 4.8. Let h↵i, h�i be left-c.e. approximations of the same real.
Suppose that A |= ch↵i. Then there is B ⌘

m

A such that B |= ch�i. If A is
c.e., then B can be chosen c.e. as well.

Proof. Firstly, suppose that A is c.e. By Fact 2.5 choose a computable
enumeration hA

s

i |= ch↵i.
By the hypothesis on the sequences h↵i and h�i, there is a computable

sequence of stages s0 < s1 < . . . such that |↵
si � �

si | 2�i. Let f be a
strictly increasing computable function such that ↵

x

 �
f(x) for each x.

To define B, if x enters A at stage s, let i be greatest such that s
i

 s. If
f(x) s

i

put f(x) into B at stage s
i

.
Clearly

↵
s

� ↵
x

� ↵
si � ↵

x

� ↵
si � �

f(x) � �
si � �

f(x) � 2�i.

So ch�ihBs

i ch↵ihAs

i+
P

i

2�i.
Let R be the computable subset of A consisting of those x that are enu-

merated early, namely x enters A at a stage s and f(x) > s
i

where i is
greatest such that s

i

 s. Clearly B = f(A�R). Hence B ⌘
m

A.
The argument can be adapted to the case that A is �0

2. Given a com-
putable approximation hA

s

i obeying ch↵i, let t be the least s
i

such that
s
i

� f(x). For s t let B
s

(f(x)) = A
t

(x). For s > t let B
s

(f(x)) = A
si(x)

where s
i

 s < s
i+1. ⇤

5. Randomness, lowness, and K-triviality

Benign cost functions were briefly discussed in the introduction.

Definition 5.1 ([11]). A monotonic cost function c is called benign if there
is a computable function g such that for all k,

x0 < x1 < . . . < x
k

& 8i < k [c(x
i

, x
i+1) � 2�n] implies k g(n).

Clearly such a cost function satisfies the limit condition. Indeed, c satisfies
the limit condition if and only if the above holds for some g

T

;0. For
example, the cost function cK is benign via g(n) = 2n. Each additive cost
function is benign where g(n) = O(2n). For more detail see [11] or [22,
Section 8.5].

For definitions and background on the extreme lowness property called
strong jump traceability, see [11, 10] or [22, Ch. 8]. We will use the main

18 ANDRÉ NIES

result in [11] already quoted in the introduction: a c.e. set A is strongly
jump traceable i↵ A obeys each benign cost function.

5.1. A cost function implying strong jump traceability. The follow-
ing type of cost functions first appeared in [11] and [22, Section 5.3]. Let
Z 2 �0

2 be ML-random. Fix a computable approximation hZ
s

i of Z and
let c

Z

(or, more accurately, chZsi) be the cost function defined as follows.
Let c

Z

(x, s) = 2�x for each x � s; if x < s, and e < x is least such that
Z
s�1(e) 6= Z

s

(e), we let

c
Z

(x, s) = max(c
Z

(x, s� 1), 2�e). (3)

Then A |= c
Z

implies A
T

Z by the aforementioned result from [11], which
is proved like its variant above.

A Demuth test is a sequence of c.e. open sets (S
m

)
m2N such that

• 8m�S
m

 2�m, and there is a function f such that S
m

is the ⌃0
1

class [W
f(m)]

�;
• f(m) = lim

s

g(m, s) for a computable function g such that the size
of the set {s : g(m, s) 6= g(m, s � 1)} is bounded by a computable
function h(m).

A set Z passes the test if Z 62 S
m

for almost every m. We say that Z is
Demuth random if Z passes each Demuth test. For background on Demuth
randomness see [22, pg. 141].

Proposition 5.2. Suppose Y is a Demuth random �0
2 set and A |= c

Y

.
Then A

T

Z for each !-c.e. ML-random set Z.

In particular, A is strongly jump traceable by [10].

Proof. Let Gs

e

= [Y
t

�
e

] where t s is greatest such that Z
t

(e) 6= Z
t�1(e).

Let G
e

= lim
s

Gs

e

. (Thus, we only update G
e

when Z(e) changes.) Then
(G

e

)
e2N is a Demuth test. Since Y passes this test, there is e0 such that

8e � e0 8t [Zt

(e) 6= Z
t�1(e) ! 9s > t Y

s�1 �e 6= Y
s

�
e

].

We use this fact to define a computable approximation (bZ
u

) of Z as follows:
let bZ

u

(e) = Z(e) for e e0; for e > e0 let bZ
u

(e) = Z
s

(e) where s u is
greatest such that Y

s�1 �e 6= Y
s

�
e

.
Note that c b

Z

(x, s) c
Y

(x, s) for all x, s. Hence A |= c b
Z

and therefore
A

T

Z. ⇤

Recall that some Demuth random set is �0
2. Kučera and Nies [18] in their

main result strengthened the foregoing proposition in the case of a c.e. sets
A: if A

T

Y for some Demuth random set Y , then A is strongly jump
traceable. Greenberg and Turetsky [12] obtained the converse of this result:
every c.e. strongly jump traceable is below a Demuth random.

Remark 5.3. For each �0
2 set Y we have c

Y

(x) = 2�F (x) where F is the
�0

2 function such that

F (x) = min{e : 9s > xY
s

(e) 6= Y
s�1(e)}.

Thus F can be viewed as a modulus function in the sense of [24].

CALCULUS OF COST FUNCTIONS 19

For a computable approximation � define the cost function c� as in (3).
The following (together with Rmk. 5.3) implies that any computable ap-
proximation � of a ML-random Turing incomplete set changes late at small
numbers, because the convergence of ⌦

s

to ⌦ is slow.

Corollary 5.4. Let Y <
T

;0 be a ML-random set. Let � be any computable
approximation of Y . Then c� ! cK and therefore O(c�(x)) = ch⌦i(x).

Proof. If A |= c� then C |= c� where C �
T

A is the change set of the given
approximation of A as in Prop. 2.14. By [13] (also see [22, 5.1.23]), C and
therefore A is K-trivial. Hence A |= ch⌦i. ⇤

5.2. Strongly jump traceable sets and d.n.c. functions. Recall that
we write X

ibT

Y if X
T

Y with use function bounded by the identity.
When building prefix-free machines, we use the terminology of [22, Sec-
tion 2.3] such as Machine Existence Theorem (also called the Kraft-Chaitin
Theorem), bounded request set etc.

Theorem 5.5. Suppose an !-c.e. set Y is diagonally noncomputable via a
function that is weak truth-table below Y . Let A be a strongly jump traceable
c.e. set. Then A

ibT

Y .

Proof. By [14] (also see [22, 4.1.10]) there is an order function h such that
2h(n) + K(Y �

n

) for each n. The argument of the present proof goes back
to Kučera’s injury free solution to Post’s problem (see [22, Section 4.2]).
Our proof is phrased in the language of cost functions, extending the similar
result in [11] where Y is ML-random (equivalently, the condition above holds
with h(n) = bn/2c+ 1.

Let hY
s

i be a computable approximation via which Y is !-c.e. To help
with building a reduction procedure for A

ibT

Y , via the Machine Existence
Theorem we give prefix-free descriptions of initial segments Y

s

�
e

. On input
x, if at a stage s > x, e is least such that Y (e) has changed between stages x
and s, then we still hope that Y

s

�
e

is the final version of Y �
e

. So whenever
A(x) changes at such a stage s, we give a description of Y

s

�
e

of length h(e).
By hypothesis A is strongly jump traceable, and hence obeys each benign
cost function. We define an appropriate benign cost function c so that a set
A that obeys c changes little enough that we can provide all the descriptions
needed.

To ensure that A
ibT

Y , we define a computation �(Y �
x

) with output
A(x) at the least stage t � x such that Y

t

�
x

has the final value. If Y
satisfies the hypotheses of the theorem, A(x) cannot change at any stage
s > t (for almost all x), for otherwise Y �

e

would receive a description of
length h(e) + O(1), where e is least such that Y (e) has changed between x
and s.

We give the details. Firstly we give a definition of a cost function c which
generalizes the definition in (3). Let c(x, s) = 0 for each x � s. If x < s,
and e < x is least such that Y

s�1(e) 6= Y
s

(e), let

c(x, s) = max(c(x, s� 1), 2�h(e)). (4)

Since Y is !-c.e., c is benign. Thus each strongly jump traceable c.e. set
obeys c by the main result in [11]. So it su�ces to show that A |= c implies

20 ANDRÉ NIES

A
ibT

Y for any set A. Suppose that chA
s

i 2u. Enumerate a bounded
request set L as follows. When A

s�1(x) 6= A
s

(x) and e is least such that
e = x or Y

t�1(e) 6= Y
t

(e) for some t 2 [x, s), put the request hu+ h(e), Y
s

�
e

i
into L. Then L is indeed a bounded request set.

Let d be a coding constant for L (see [22, Section 2.3]). Choose e0 such
that h(e) + u+ d < 2h(e) for each e � e0. Choose s0 � e0 such that Y �

e0 is
stable from stage s0 on.

To show A
ibT

Y , given an input x � s0, using Y as an oracle, compute
t > x such that Y

t

�
x

= Y �
x

. We claim that A(x) = A
t

(x). Otherwise
A

s

(x) 6= A
s�1(x) for some s > t. Let e x be the largest number such

that Y
r

�
e

= Y
t

�
e

for all r with t < r s. If e < x then Y (e) changes
in the interval (t, s] of stages. Hence, by the choice of t � s0, we cause
K(y) < 2h(e) where y = Y

t

�
e

= Y �
e

, contradiction. ⇤

Example 5.6. For each order function h and constant d, the class

P
h,d

= {Y : 8n 2h(n) K(Y �
n

) + d}
is ⇧0

1. Thus, by the foregoing proof, each strongly jump traceable c.e. set is
ibT below each !-c.e. member of P

h,d

.

We discuss the foregoing Theorem 5.5, and relate it to results in [10, 11].

1. In [10, Thm 2.9] it is shown that given a non-empty ⇧0
1 class P , each

jump traceable set A Turing below each superlow member of P is already
strongly jump traceable. In particular this applies to superlow c.e. sets A,
since such sets are jump traceable [20]. For many non-empty ⇧0

1 classes such
a set is in fact computable. For instance, it could be a class where any two
distinct members form a minimal pair. In contrast, the nonempty among
the ⇧0

1 classes P = P
h,d

are examples where being below each superlow (or
!-c.e.) member characterizes strong jump traceability for c.e. sets.

2. Each superlow set A is weak truth-table below some superlow set Y as in
the hypothesis of Theorem 5.5. For let P be the class of {0, 1}-valued d.n.c.
functions. By [22, 1.8.41] there is a set Z 2 P such that (Z � A)0 tt A

0.
Now let Y = Z � A. This contrasts with the case of ML-random covers:
if a c.e. set A is not K-trivial, then each ML-random set Turing above A
is already Turing above ;0 by [13]. Thus, in the case of ibT reductions,
Theorem 5.5 applies to more oracle sets Y than [11, Prop. 5.2].

3. Greenberg and Nies [11, Prop. 5.2] have shown that for each order func-
tion p, each strongly jump traceable c.e. set is Turing below below each
!-c.e. ML-random set, via a reduction with use bounded by p. We could
also strengthen Theorem 5.5 to yield such a “p-bounded” Turing reduction.

5.3. A proper implication between cost functions. In this subsection
we study a weakening of K-triviality using the monotonic cost function

cmax(x, s) = max{2�Ks(w) : x < w s}.

Note that cmax satisfies the limit condition, because

cmax(x) = max{2�K(w) : x < w}.

CALCULUS OF COST FUNCTIONS 21

Clearly cmax(x, s) cK(x, s), whence cK ! cmax. We will show that this
implication of cost functions is proper. Thus, some set obeys cmax that is
not K-trivial.

Firstly, we investigate sets obeying cmax. For a string ↵, let g(↵) be the
longest prefix of ↵ that ends in 1, and g(↵) = ; if there is no such prefix.

Definition 5.7. We say that a set A is weakly K-trivial if

8n [K(g(A�
n

)) + K(n)].

Clearly, every K-trivial set is weakly K-trivial. By the following, every
c.e. weakly K-trivial set is already K-trivial.

Fact 5.8. If A is weakly K-trivial and not h-immune, then A is K-trivial.

Proof. By the second hypothesis, there is an increasing computable func-
tion p such that [p(n), p(n+ 1)) \A 6= ; for each n. Then

K(A�
p(n)) + K(g(A�

p(n+1))) + K(p(n+ 1)) + K(p(n)).

This implies that A is K-trivial by [22, Ex. 5.2.9]. ⇤
We say that a computable approximation hA

s

i
s2N is erasing if for each x

and each s > 0, A
s

(x) 6= A
s�1(x) implies A

s

(y) = 0 for each y such that
x < y s. For instance, the computable approximation built in the proof
of the implication “)” of Theorem 3.4 is erasing by the construction.

Proposition 5.9. Suppose hA
s

i
s2N is an erasing computable approximation

of a set A, and hA
s

i |= cmax. Then A is weakly K-trivial.

Proof. This is a modification of the usual proof that every set A obeying cK
is K-trivial (see, for instance, [22, Thm. 5.3.10]).

To show that A is weakly K-trivial, one builds a bounded request set W .
When at stage s > 0 we have r = K

s

(n) < K
s�1(n), we put the request

hr + 1, g(A �
n

)i into W . When A
s

(x) 6= A
s�1(x), let r be the number such

that cmax(x, s) = 2�r, and put the request hr + 1, g(A�
x+1)i into W .

Since the computable approximation hA
s

i
s2N obeys cmax, the set W is

indeed a bounded request set; since hA
s

i
s2N is erasing, this bounded request

set shows that A is weakly K-trivial. ⇤
We now prove that cmax 6! cK. We do so via proving a reformulation

that is of interest by itself.

Theorem 5.10. For every b 2 N there is an x such that cK(x) � 2bcmax(x).
In other words,P

{2�K(w) : x < w} � 2bmax{2�K(w) : x < w}.

By Theorem 3.4, the statement of the foregoing Theorem is equivalent to
cmax 6! cK. Thus, as remarked above, some set A obeys cmax via an erasing
computable approximation, and does not obey cK. By Proposition 5.9 we
obtain a separation.

Corollary 5.11. Some weakly K-trivial set fails to be K-trivial.

Melnikov and Nies [19, Prop. 3.7] have given an alternative proof of the
preceding result by constructing a weakly K-trivial set that is Turing com-
plete.

22 ANDRÉ NIES

Proof of Theorem 5.10. Assume that there is b 2 N such that

8x [cK(x) < 2bcmax(x)].

To obtain a contradiction, the idea is that cK(x, s), which is defined as a
sum, can be made large in many small bits; in contrast, cmax(x, s), which
depends on the value 2�Ks(w) for a single w, cannot.

We will define a sequence 0 = x0 < x1 < . . . < x
N

for a certain number
N . When x

v

has been defined for v < N , for a certain stage t > x
v

we cause
cK(xv, t) to exceed a fixed quantity proportional to 1/N . We wait until the
opponent responds at a stage s > t with some w > x

v

such that 2�Ks(w)

corresponding to that quantity. Only then, we define x
v+1 = s. For us, the

cost cK(xi, xj) will accumulate for i < j, while the opponent has to provide
a new w each time. This means that eventually he will run out of space in
the domain of the prefix-free machine giving short descriptions of such w’s.

In the formal construction, we will build a bounded request set L with the
purpose to cause cK(x, s) to be large when it is convenient to us. We may
assume by the recursion theorem that the coding constant for L is given in
advance (see [22, Remark 2.2.21] for this standard argument). Thus, if we
put a request hn, y + 1i into L at a stage y, there will be a stage t > y such
that K

t

(y + 1) n+ d, and hence cK(x, t) � cK(x, y) + 2�n�d.
Let k = 2b+d+1. Let N = 2k .

Construction of L and a sequence 0 = x0 < x1 < . . . < x
N

of numbers.

Suppose v < N and x
v

has already been defined. Put hk , x
v

+1i into L. As
remarked above, we may wait for a stage t > x

v

such that cK(xv, t) � 2�k�d.
Now, by our assumption, we have cK(xi) < 2bcmax(xi) for each i v. Hence
we can wait for a stage s > t such that

8i v 9w
⇥
x
i

< w s & cK(xi, s) 2b�Ks(w)]. (5)

Let x
v+1 = s. This ends the construction.

Verification. Note that L is indeed a bounded request set. Clearly we have
cK(xi, xi+1) � 2�k�d for each i < N .

Claim 5.12. Let r k . Write R = 2r. Suppose p+R N . Let s = x
p+R

.
Then we have

x(p+R)X

w=xp+1

min(2�Ks(w), 2�k�b�d+r) � (r + 1)2�k�b�d+r�1. (6)

For r = k , the right hand side equals (k + 1)2�(b+d+1) > 1, which is a
contradiction because the left hand side is at most ⌦ 1.

We prove the claim by induction on r. To verify the case r = 0, note
that by (5) there is w 2 (x

p

, x
p+1] such that cK(xp, xp+1) 2b�Ks(w). Since

2�k�d cK(xp, xp+1), we obtain

2�k�b�d 2�Ks(w) (where s = x
p+1).

Thus the left hand side in the inequality (6) is at least 2�k�b�d, while the
right hand side equals 2�k�b�d�1, and the claim holds for r = 0.

CALCULUS OF COST FUNCTIONS 23

In the following, for i < j N , we will write S(x
i

, x
j

) for a sum of the
type occurring in (6) where w ranges from x

i

+ 1 to x
j

.
Suppose inductively the claim has been established for r < k . To verify

the claim for r + 1, suppose that p+ 2R N where R = 2r as before. Let
s = x

p+2R. Since cK(xi, xi+1) � 2�k�d, we have

cK(xp, s) � 2R2�k�d = 2�k�d+r+1.

By (5) this implies that there is w, x
p

< w s, such that

2�k�b�d+r+1 2�Ks(w). (7)

Now, in sums of the form S(x
q

, x
q+R

), because of taking the minimum, the
“cut-o↵” for how much w can contribute is at 2�k�b�d+r. Hence we have

S(x
p

, x
p+2R) � 2�k�b�d+r + S(x

p

, x
p+R

) + S(x
p+R

, x
p+2R).

The additional term 2�k�b�d+r is due to the fact that w contributes at
most 2�k�b�d+r to S(x

p

, x
p+R

) + S(x
p+R

, x
p+2R), but by (7), w contributes

2�k�b�d�r+1 to S(x
p

, x
p+2R). By the inductive hypothesis, the right hand

side is at least

2�k�b�d+r + 2 · (r + 1)2�k�b�d+r�1 = (r + 2)2�k�b�d+r,

as required. ⇤

6. A cost function-related basis theorem for ⇧0
1 classes

The following strengthens [10, Thm 2.6], which relied on the extra as-
sumption that the ⇧0

1 class is contained in the ML-randoms.

Theorem 6.1. Let P be a nonempty ⇧0
1 class, and let c be a monotonic

cost function with the limit condition. Then there is a �0
2 set Y 2 P such

that each c.e. set A
T

Y obeys c.

Proof. We may assume that c(x, s) � 2�x for each x s, because any c.e.
set that obeys c also obeys the cost function c(x, s) + 2�x.

Let hA
e

,
e

i
e2N be an e↵ective listing of all pairs consisting of a c.e. set

and a Turing functional. We will define a �0
2 set Y 2 P via a computable

approximation Y
s

s2N, where Y
s

is a binary string of length s. We meet the
requirements

N
e

: A
e

=
e

(Y)) A
e

obeys c.

We use a standard tree construction at the ;00 level. Nodes on the tree 2<!

represent the strategies. Each node ↵ of length e is a strategy for N
e

. At
stage s we define an approximation �

s

to the true path. We say that s is an
↵-stage if ↵ � �

s

.
Suppose that a strategy ↵ is on the true path. If ↵0 is on the true path,

then strategy ↵ is able to build a computable enumeration of A
e

via which
A

e

obeys c. If ↵1 is on the true path, the strategy shows that A
e

6=
e

(Y).
Let P; be the given class P. A strategy ↵ has as an environment a ⇧0

1

class P↵. It defines P↵0 = P↵, but usually let P↵1 be a proper refinement of
P↵.

24 ANDRÉ NIES

Let |↵| = e. The length of agreement for e at a stage t is min{y : A
e,t

(y) 6=

e,t

(Y
t

)}. We say that an ↵-stage s is ↵-expansionary if the length of agree-
ment for e at stage s is larger than at u for all previous ↵-stages u.

Let wn

0 = n, and

wn

i+1 ' µv > wn

i

. c(wn

i

, v) � 4�n. (8)

Since c satisfies the limit condition, for each n this sequence breaks o↵.
Let a = wn

i

be such a value. The basic idea is to certify A
e,s

�
w

, which
means to ensure that all X � Y

s

�
n+d

on P↵ compute A
e,s

�
w

. If A�
w

changes
later then also Y �

n+d

has to change. Since Y �
n+d

can only move to the
right (as long as ↵ is not initialized), this type of change for n can only
contribute a cost of 4�n+12n+d = 2�n+d+2.

By [22, p. 55], from an index Q for a ⇧0
1 class in 2! we can obtain a

computable sequence (Q
s

)
s2N of clopen classes such that Q

s

◆ Q
s+1 and

Q =
T

s

Q
s

. In the construction below we will have several indices for ⇧1
1

classes Q that change over time. At stage s, as usual by Q[s] we denote the
value of the index at stage s. Thus (Q[s])

s

is the clopen approximation of
Q[s] at stage s.

Construction of Y .
Stage 0. Let �0 = ; and P; = P. Let Y0 = ;.
Stage s > 0. Let P; = P.
For each � such that �

s�1 <
L

� we initialize strategy �. We let Y
s

be
the leftmost path on the current approximation to P�s�1 , i.e., the leftmost
string y of length s� 1 such that [y] \ (P�s�1 [s� 1])

s

6= ;. For each ↵, n, if
Y
s

�
n+d

6= Y
s�1 �

n+d

where d = init
s

(↵), then we declare each existing value
wn

i

to be (↵, n)-unsatisfied.
Substage k, 0 k < s. Suppose we have already defined ↵ = �

s

�
k

. Run
strategy ↵ (defined below) at stage s, which defines an outcome r 2 {0, 1}
and a ⇧0

1 class P↵r. Let �
s

(k) = r.
We now describe the strategies ↵ and procedures S↵

n

they call. To initialize
a strategy ↵ means to cancel the run of this procedure. Let

d = init
s

(↵) = |↵|+the last stage when ↵ was initialized.

Strategy ↵ at an ↵-stage s.

(a) If no procedure for ↵ is running, call procedure S↵
n

with parameter w,
where n is least, and i is chosen least for n, such that w = wn

i

 s
is not (↵, n)-satisfied. Note that n exists because ws

0 = s and this
value is not (↵, n)-satisfied at the beginning of stage s. By calling
this procedure, we attempt to certify A

e,s

�
w

as discussed above.
(b) While such a procedure S↵

n

is running, give outcome 1.
(This procedure will define the current class P↵1.)

(c) If a procedure S↵
n

returns at this stage, goto (d).
(d) If s is ↵-expansionary, give outcome 0, let P↵0 = P↵, and continue

at (a) at the next ↵-stage. Otherwise, give outcome 1, let P↵1 = P↵,
and stay at (d).

Procedure S↵
n

with parameter w at a stage s.
If n+ d � s� 1 let P↵1 = P↵. Otherwise, let

Q = P↵ \ {X � z : X

e

6� A
e,s

�
w

}, (9)

CALCULUS OF COST FUNCTIONS 25

where z = Y
s

�
n+d

. (Note that each time Y �
n+d

or A
e

�
w

has changed, we
update this definition of Q.)

(e) If Q
s

6= ; let P↵1 = Q. If the definition of P↵1 has changed since the
last ↵-stage, then each � such that ↵1 � � is initialized.

(f) If Q
s

= ;, declare w to be (↵, n)-satisfied and return. (A
e,s

�
w

is
certified as every X 2 P↵ extending z computes A

e,s

�
w

via
e

. If
A

e

�
w

changes later, the necessarily z 6� Y .)

Claim 6.2. Suppose a strategy ↵ is no longer initialized after stage s0. Then
for each n, a procedure S↵

n

is only called finitely many times after s0.

There are only finitely many values w = wn

i

because c satisfies the limit
condition. Since ↵ is not initialized after s0, P↵ and d = init

s

(↵) do not
change. When a run of S↵

n

is called at a stage s, the strategies � ⌫ ↵1 are
initialized, hence init

t

(�) � s > n + d for all t � s. So the string Y
s

�
n+d

is the leftmost string of length n + d on P↵ at stage s. This string has
to move to the right between the stages when S↵

n

is called with the same
parameter w, because w is declared (↵, n)-unsatisfied before S↵

n

is called
again with parameter w. Thus, procedure S↵

n

can only be called 2n+d times
with parameter w.

Claim 6.3. hY
s

i
s2N is a computable approximation of a �0

2 set Y 2 P.

Fix k 2 N. For a stage s, if Y
s

�
k

is to the left of Y
s�1 �

k

then there are
↵, n with n+ init

s

(↵) k such that P↵[s] 6= P↵[s� 1] because of the action
of a procedure S↵

n

at (e) or (f).
There are only finitely many pairs ↵, s such that init

s

(↵) k. Thus by
Claim 6.2 there is stage s0 such that at all stages s � s0, for no ↵ and n
with n+ init

s

(↵) k, a procedure S↵
n

is called.
While a procedure S↵

n

is running with a parameter w, it changes the
definition of P↵1 only if A

e

�
w

changes (e = |↵|), so at most w times. Thus
there are only finitely many s such that Y

s

�
k

6= Y
s�1 �

k

.
By the definition of the computable approximation hY

s

i
s2N we have Y 2

P. This completes Claim 6.3.
As usual, we define the true path f by f(k) = lim inf

s

�
s

(k). By Claim 6.2
each ↵ � f is only initialized finitely often, because each � such that �1 � ↵

eventually is stuck with a single run of a procedure S�
m

.

Claim 6.4. If e = |↵| and ↵1 � f , then A
e

6= Y

e

.

Some procedure S↵
n

was called with parameter w, and is eventually stuck
at (e) with the final value A

e

�
w

. Hence the definition Q = P↵1 eventually
stabilizes at ↵-stages s. Since Y 2 Q, this implies A

e

6= Y

e

.

Claim 6.5. If e = |↵| and ↵0 � f , then A
e

obeys c.

Let A = A
e

. We define a computable enumeration (bA
p

)
p2N of A via which

A obeys c.
Since ↵0 � f , each procedure S↵

n

returns. In particular, since c has the
limit condition and by Claims 6.2 and 6.3, each value w = wn

i

becomes
permanently (↵, n)-satisfied. Let d = init

s

(↵). Let s0 be the least ↵0-stage
such that s0 � d, and let

s
p+1 = µs � s

p

+ 2 [s is ↵0-stage &

26 ANDRÉ NIES

8n, i (w = wn

i

< s
p

! w is (↵, n)-satisfied at s)].

As in similar constructions such as [22], for p 2 N we let

bA
p

= A
sp+2 \ [0, p).

Consider the situtation that p > 0 and x p is least such that bA
p

(x) 6=
bA
p�1(x). We call this situation an n-change if n is least such that x < wn

i

<

s
p

for some i. (Note that n p + 1 because wp+1
0 = p + 1.) Thus (x, s

p

)
contains no value of the form wn�1

j

, whence c(x, p) c(x, s
p

) 4�n+1. We

are done if we can show there are at most 2n+d many n-changes, for in that
case the total cost ch bA

p

i is bounded by
P

n

4�n+12n+d = O(2d).
Recall that P↵ is stable by stage s0. Note that Y �

n+d

can only move to
the right after the first run of S↵

n

, as observed in the proof of Claim 6.2.
Consider n-changes at stages p < q via parameters w = wn

i

and w0 = wn

k

(where possibly k < i). Suppose the last run of S↵
n

with parameter w that
was started before s

p+1 has returned at stage t s
p+2, and similarly, the

last run of S↵
n

with parameter w0 that was started before s
q+1 has returned

at stage t0. Let z = Y
t

�
n+d

and z0 = Y
t

0 �
n+d

. We show z <
L

z0; this implies
that there are at most 2n+d many n-changes.

At stage t, by definition of returning at (f) in the run of S↵
n

, we have
Q = ;. Therefore X

e,t

� A
e,t

�
w

for each X on P↵

t

such that X � z. Now

bA
p

(x) 6= bA
p�1(x), x < w and t s

p+1,

so A
sp+2 �w 6= A

t

�
w

, The stage s
p+2 is ↵0-expansionary, and Y

sp+2 is on P↵

t

.
Therefore

Y
r�1 �

n+d

<
L

Y
r

�
n+d

for some stage r such that t < r s
p+2. Thus, at stage r, the value w0

was declared (↵, n)-unsatisfied. Hence a new run of S↵
n

with parameter w0

is started after r, which has returned by stage s
q+1 � s

p+2. Thus r < t0. So
z

L

Y
r�1 �

n+d

<
L

Y
r

�
n+d

L

z0, whence z <
L

z0 as required. This concludes
Claim 6.5 and the proof. ⇤

7. A dual cost function construction

Given a relativizable cost function c, let D ! WD be the c.e. oper-
ator given by the cost function construction in Theorem 2.7 relative to
the oracle D. By pseudo-jump inversion there is a c.e. set D such that
WD � D ⌘

T

;0, which implies D <
T

;0. Here, we give a direct construc-
tion of a c.e. set D <

T

;0 so that the total cost of ;0-changes as measured
by cD is finite. More precisely, there is a D-computable enumeration of ;0
obeying cD.

If c is su�ciently strong, then the usual cost function construction builds
an incomputable c.e. set A that is close to being computable. The dual cost
function construction then builds a c.e. set D that is close to being Turing
complete.

CALCULUS OF COST FUNCTIONS 27

7.1. Preliminaries on cost functionals. Firstly we clarify how to rela-
tivize cost functions, and the notion of obedience to a cost function. Sec-
ondly we provide some technical details needed for the main construction.

Definition 7.1. (i) A cost functional is a Turing functional cZ(x, t) such
that for each oracle Z, cZ either is partial, or is a cost function relative
to Z. We say that c is non-increasing in main argument if this holds for
each oracle Z such that cZ is total. Similarly, c is non-decreasing in the
stage argument if this holds for each oracle Z such that cZ is total. If both
properties hold we say that c is monotonic.
(ii) Suppose A

T

Z 0. Let hA
s

i be a Z-computable approximation of A.
We write hA

s

i |=Z cZ if

cZhA
s

i =
P

x,s

cZ(x, s)

[[x < s & cZ(x, s) # & x is least s.t. A
s�1(x) 6= A

s

(x)]]

is finite. We write A |=Z cZ if hA
s

i |=Z cZ for some Z-computable approxi-
mation hA

s

i of A.

For example, cZK(x, s) =
P

x<ws

2�K

Z
s (w) is a total monotonic cost func-

tional. We have A |=Z cZK i↵ A is K-trivial relative to Z.

We may convert a cost functional c into a total cost functional ec such
that ecZ(x) = cZ(x) for each x with 8t cZ(x, t) #, and, for each Z, x, t, the
computation ecZ(x, t) converges in t steps. Let

ecZ(x, s) = cZ(x, t) where t s is largest such that cZ(x, t)[s] #.
Clearly, if c is monotonic in the main/stage argument then so is ec.

Suppose that D is c.e. and we compute cD(x, t) via hat computations [24,
p. 131]: the use of a computation cD(x, t)[s] # is no larger than the least
number entering D at stage s. Let N

D

be the set of non-deficiency stages;
that is, s 2 N

D

i↵ there is x 2 D
s

�D
s�1 such that D

s

�
x

= D �
x

. Any hat
computation existing at a non-deficiency stage is final. We have

cD(x) = sup
s2ND

ecDs(x, s). (10)

For, if cD(x, t)[s0] # with D stable below the use, then cD(x, t) ecDs(x, s)
for each s 2 N

D

. Therefore cD(x) sup
s2ND

ecDs(x, s). For the converse
inequality, note that for s 2 N

D

we have ecDs(x, s) = cD(x, t) for some t s
with D stable below the use.

7.2. The dual existence theorem.

Theorem 7.2. Let c be a total cost functional that is nondecreasing in the
stage component and satisfies the limit condition for each oracle. Then there
is a Turing incomplete c.e. set D such that ;0 |=D cD.

Proof. We define a cost functional �Z(x, s) that is nondecreasing in the
stage. We will have �D(x) = cD(x) for each x, where �D(x) = lim

t

�D(x, t),
and ;0 with its given computable enumeration obeys �D. Then ;0 |=D cD

by the easy direction ‘(’ of Theorem 3.4 relativized to D.
Towards �D(x) � cD(x), when we see a computation ecDs(x, s) = ↵ we

attempt to ensure that �D(x, s) � ↵. To do so we enumerate relative to D
a set G of “wishes” of the form

28 ANDRÉ NIES

⇢ = hx,↵iu,

where x 2 N, ↵ is a nonnegative rational, and u+ 1 is the use. We say that
⇢ is a wish about x. If such a wish is enumerated at a stage t and D

t

�
u

is stable, then the wish is granted, namely, �D(x, t) � ↵. The converse
inequality �D(x) cD(x) will hold automatically.

To ensure D <
T

;0, we enumerate a set F , and meet the requirements

N
e

: F 6= �D

e

.

Suppose we have put a wish ⇢ = hx,↵iu into GD. To keep the total �D-cost
of the given computable enumeration of ;0 down, when x enters ;0 we want to
remove ⇢ from GD by putting u into D. However, sometimes D is preserved
by some N

e

. This will generate a preservation cost. N
e

starts a run at a
stage s via some parameter v, and “hopes” that ;0

s

�
v

is stable. If ;0 �
v

changes after stage s, then this run of N
e

is cancelled. On the other hand,
if x � v and x enters ;0, then the ensuing preservation cost can be a↵orded.
This is so because we choose v such that ecDs

s

(v, s) is small. Since ecD has
the limit condition, eventually there is a run N

e

(v) with such a low-cost v
where ;0 �

v

is stable. Then the diagonalization of N
e

will succeed.

Construction of c.e. sets F,D and a D-c.e. set G of wishes.
Stage s > 0. We may suppose that there is a unique n 2 ;0

s

� ;0
s�1.

1. Canceling N
e

’s. Cancel all currently active N
e

(v) with v > n.
2. Removing wishes. For each ⇢ = hx,↵iu 2 GD[s � 1] put in at a stage
t < s, if ;0

s

�
x+1 6= ;0

t

�
x+1 and ⇢ is not held by any N

e

(v), then put u � 1
into D

s

, thereby removing ⇢ from GD.
3. Adding wishes. For each x < s pick a large u (in particular, u 62 D

s

) and
put a wish hx,↵iu into G where ↵ = ecDs(x, s). The set of queries to the
oracle D for this enumeration into G is contained in [0, r) [{u}, where r is
the use of ecDs(x, s) (which may be much smaller than s). Then, from now
on this wish is kept in GD unless (a) D �

r

changes , or (b) u enters D.
4. Activating N

e

(v). For each e < s such that N
e

is not currently active,
see if there is v, e v n such that

– ecDs(v, s) 3�e/2,
– v > w for each w such that N

i

(w) is active for some i < e, and
– �D

e

�
x+1= F �

x+1 where x = he, v, |;0 \ [0, v)|i,
If so, choose v least and activate N

e

(v). Put x into F . Let N
e

hold all wishes
for some y � v that are currently in GD. Declare that such a wish is no
longer held by any N

i

(w) for i 6= e. (We also say that N
e

takes over the
wish.)

Go to stage s0 where s0 is larger than any number mentioned so far.

Claim 1. Each requirement N
e

is activated only finitely often, and met.
Hence F 6

T

D.
Inductively suppose that N

i

for i < e is no longer activated after stage
t0. Assume for a contradiction that F = �D

e

. Since cD satisfies the limit
condition, by (10) there is a least v such that ecDs(v, s) 3�e/2 for infinitely
many s > t0. Furthermore, v > w for any w such that some N

i

(w), i < e,
is active at t0. Once N

e

(v) is activated, it can only be canceled by a change

CALCULUS OF COST FUNCTIONS 29

of ;0 �
v

. Then there is a stage s > t0, ecDs(v, s) 3�e/2, such that ;0 �
v

is
stable at s and �D

e

�
x+1= F �

x+1 where x = he, v, |;0\ [0, v)|i. If some N
e

(v0)
for v0 v is active after (1.) of stage s then it remains active, and N

e

is
met. Now suppose otherwise.

Since we do not activate N
e

(v) in (4) of stage s, some N
e

(w) is active for
w > v. Say it was activated last at a stage t < s via x = he, w, |;0

t

\ [0, w]|.
Then x0 = he, v, |;0

t

\ [0, v)|i was available to activate N
e

(v) as x0 x and
hence �D

e

�
x

0+1= F �
x

0+1 [t]. Since w was chosen minimal for e at stage
t, we had ecDt(v, t) > 3�e/2. On the other hand, ecDs(v, s) 3�e/2, hence
D

t

�
t

6= D
s

�
t

. When N
e

(w) became active at t it tried to preserve D �
t

by
holding all wishes about some y � w that were in GD[t]. Since N

e

(w) did
not succeed, it was cancelled by a change ;0

t

�
w

6= ;0
s

�
w

. Hence N
e

(w) is not
active at stage s, contradiction. 3

We now define �Z(x, t) for an oracle Z (we are interested only in the case
that Z = D). Let s be least such that D

s

�
t

= Z �
t

. Output the maximum ↵
such that some wish hx,↵iu for u t is in GD[s].

Claim 2. (i) �D(x, t) is nondecreasing in t. (ii) 8x�D(x) = cD(x).
(i). Suppose t0 � t. As above let s be least such that D

s

�
t

is stable. Let s0

be least such that D
s

0 �
t

0 is stable. Then s0 � s, so a wish as in the definition
of �D(x, t) above is also in GD[s0]. Hence �D(x, t0) � �D(x, t).
(ii). Given x, to show that �D(x) � cD(x) pick t0 such that ;0 �

x+1 is stable
at t0. Let s 2 N

D

and s > t0. At stage s we put a wish hx,↵iu into G
D

where ↵ = ecDs(x, s). This wish is not removed later, so �D(x) � ↵.
For �D(x) cD(x), note that for each s 2 N

D

we have ecDs(x, s) �
�Ds(x, s) by the removal of a wish in 3(a) of the construction when the
reason the wish was there disappears. 3

Claim 3. The given computable enumeration of ;0 obeys �D.
First we show by induction on stages s that N

e

holds in total at most 3�e

at the end of stage s, namely,

3�e �
X

x

max{↵ : N
e

holds a wish hx,↵iu} (11)

Note that once N
e

(v) is activated and holds some wishes, it will not hold
any further wishes later, unless it is cancelled by a change of ;0 �

v

(in which
case the wishes it holds are removed).

We may assume that N
e

(v) is activated at (3.) of stage s. Wishes held at
stage s by some N

i

(w) where i < e will not be taken over by N
e

(v) because
w < v. Now consider wishes held by a N

i

(w) where i > e. By inductive
hypothesis the total of such wishes is at most

P
i>e

3�i = 3�e/2 at the
beginning of stage s. The activation of N

e

(v) adds at most another 3�e/2
to the sum in (11).

To show �Dh;0
s

i < 1, note that any contribution to this quantity due to
n entering ;0 at stage s is because a wish hn, �iu is eventually held by some
N

e

(v). The total is at most
P

e

3�e. ⇤
The study of non-monotonic cost function is left to the future. For in-

stance, we conjecture that there are cost functions c,d with the limit con-
dition such that for any �0

2 sets A,B,

30 ANDRÉ NIES

A |= c and B |= d) A,B form a minimal pair.

It is not hard to build cost functions c,d such that only computable sets
obey both of them. This provides some evidence for the conjecture.

References

[1] L. Bienvenu, A. Day, N. Greenberg, A. Kučera, J. Miller, A. Nies, and D. Turetsky.
Computing K-trivial sets by incomplete random sets. Bull. Symb. Logic, 20:80–90,
2014.

[2] L. Bienvenu, R. Downey, N. Greenberg, W. Merkle, and A. Nies. Kolmogorov com-
plexity and Solovay functions. Submitted, 2014.

[3] L. Bienvenu, N. Greenberg, A. Kučera, A. Nies, and D. Turetsky. Coherent random-
ness tests and computing the K-trivial sets. Submitted, 2013.

[4] C. Calude and A. Grozea. The Kraft-Chaitin theorem revisited. J. Univ. Comp. Sc.,
2:306–310, 1996.

[5] A. R. Day and J. S. Miller. Density, forcing and the covering problem. Submitted,
http://arxiv.org/abs/1304.2789, 2013.

[6] D. Diamondstone, N. Greenberg, and D. Turetsky. Inherent enumerability of strong
jump-traceability. Submitted, http://arxiv.org/abs/1110.1435, 2012.

[7] R. Downey and D. Hirschfeldt. Algorithmic randomness and complexity. Springer-
Verlag, Berlin, 2010. 855 pages.

[8] R. Downey, D. Hirschfeldt, A. Nies, and F. Stephan. Trivial reals. In Proceedings of
the 7th and 8th Asian Logic Conferences, pages 103–131, Singapore, 2003. Singapore
University Press.

[9] S. Figueira, A. Nies, and F. Stephan. Lowness properties and approximations of the
jump. Ann. Pure Appl. Logic, 152:51–66, 2008.

[10] N. Greenberg, D. Hirschfeldt, and A. Nies. Characterizing the strongly jump-traceable
sets via randomness. Adv. Math., 231(3-4):2252–2293, 2012.

[11] N. Greenberg and A. Nies. Benign cost functions and lowness properties. J. Symbolic
Logic, 76:289–312, 2011.

[12] N. Greenberg and D. Turetsky. Strong jump-traceability and Demuth randomnesss.
Proc. Lond. Math. Soc., 108:738–779, 2014.

[13] D. Hirschfeldt, A. Nies, and F. Stephan. Using random sets as oracles. J. Lond. Math.
Soc. (2), 75(3):610–622, 2007.

[14] B. Kjos-Hanssen, W. Merkle, and F. Stephan. Kolmogorov complexity and the Re-
cursion Theorem. In STACS 2006, volume 3884 of Lecture Notes in Comput. Sci.,
pages 149–161. Springer, Berlin, 2006.

[15] A. Kučera. An alternative, priority-free, solution to Post’s problem. In Mathematical
foundations of computer science, 1986 (Bratislava, 1986), volume 233 of Lecture Notes
in Comput. Sci., pages 493–500. Springer, Berlin, 1986.

[16] A. Kučera and T. Slaman. Low upper bounds of ideals. J. Symbolic Logic, 74:517–534,
2009.

[17] A. Kučera and S. Terwijn. Lowness for the class of random sets. J. Symbolic Logic,
64:1396–1402, 1999.

[18] A. Kučera and A. Nies. Demuth randomness and computational complexity. Ann.
Pure Appl. Logic, 162:504–513, 2011.

[19] A. Melnikov and A. Nies. K-triviality in computable metric spaces. Proc. Amer.
Math. Soc., 141(8):2885–2899, 2013.

[20] A. Nies. Reals which compute little. In Logic Colloquium ’02, Lecture Notes in Logic,
pages 260–274. Springer–Verlag, 2002.

[21] A. Nies. Lowness properties and randomness. Adv. in Math., 197:274–305, 2005.
[22] A. Nies. Computability and randomness, volume 51 of Oxford Logic Guides. Oxford

University Press, Oxford, 2009.
[23] A. Nies. Interactions of computability and randomness. In Proceedings of the Inter-

national Congress of Mathematicians, pages 30–57. World Scientific, 2010.
[24] R. I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical

Logic, Omega Series. Springer–Verlag, Heidelberg, 1987.

http://arxiv.org/abs/1304.2789
http://arxiv.org/abs/1110.1435

CALCULUS OF COST FUNCTIONS 31

[25] R. Solovay. Handwritten manuscript related to Chaitin’s work. IBM Thomas J. Wat-
son Research Center, Yorktown Heights, NY, 215 pages, 1975.

	1. Introduction
	1.1. Background on cost functions
	1.2. Overview of our results

	2. Basics
	2.1. Some easy facts on cost functions
	2.2. The limit condition and the existence theorem
	2.3. The cost function for K-triviality
	2.4. Basic properties of the class of sets obeying a cost function

	3. Look-ahead arguments
	3.1. Downward closure under ibT
	3.2. Conjunction of cost functions
	3.3. Implication between cost functions

	4. Additive cost functions
	4.1. K-triviality and the cost function c"426830A "526930B
	4.2. Solovay reducibility
	4.3. The strength of an additive cost function

	5. Randomness, lowness, and K-triviality
	5.1. A cost function implying strong jump traceability
	5.2. Strongly jump traceable sets and d.n.c. functions
	5.3. A proper implication between cost functions

	6. A cost function-related basis theorem for 01 classes
	7. A dual cost function construction
	7.1. Preliminaries on cost functionals
	7.2. The dual existence theorem

	References

