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Abstract

We use Demuth randomness to study strong lowness properties of com-
putably enumerable sets, and sometimes of ∆0

2 sets.
(1) A set A ⊆ N is called a base for Demuth randomness if some set Y

Turing above A is Demuth random relative to A. We show that there is an
incomputable, computably enumerable base for Demuth randomness, and
that each base for Demuth randomness is strongly jump-traceable.

(2) We obtain new proofs that each computably enumerable set below
all superlow (superhigh) Martin-Löf random sets is strongly jump traceable,
using Demuth tests.

(3) The sets Turing below each ω2-computably approximable Martin-Löf
random set form a proper subclass of the bases for Demuth randomness, and
hence of the strongly jump traceable sets.

(4) The c.e. sets Turing below each ω2-computably approximable Martin-
Löf random set satisfy a new, very strong combinatorial lowness property
called ω-traceability.
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1. Introduction

1.1. Background

The interaction of computability-theoretic and random-theoretic notions
it in the focus of current research. We consider a simple setting which
epitomizes this interaction: a computably enumerable set A ⊆ N that is
Turing below random sets Y ⊆ N.

Given a random set Y , it will be difficult to build a computably enu-
merable (c.e.) set below it that is incomputable. Our intuition is that
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randomness and computable enumerability are incompatible, even opposite
properties. There is mathematical evidence for this. For instance, recall
that a set Y ⊆ N is called weakly 2-random if Y is in no null Π0

2 class. Such
a set forms a minimal pair with the halting problem (see [19, Thm. 5.3.16]),
and hence cannot have a c.e. incomputable set below.

If we merely require Martin-Löf randomness of Y , then an incomputable,
c.e. set A below Y exists in interesting cases. Recall that a Martin-Löf test
is an effective sequence (Gm)m∈N of c.e. open classes in Cantor space 2ω

such that λGm ≤ 2−m for each m. A set Y passes this test if Y 6∈ Gm for
some m. Otherwise one says that Y fails the test. Y is Martin-Löf random
(ML-random) if Y passes each ML-test. In the definition of passing a test,
equivalently, one could require that Y 6∈ Gm for almost all m.

Chaitin’s Ω is a ML-random real that is Turing equivalent to the halting
problem. So all c.e. sets are Turing below Ω. On the other hand, we wouldn’t
expect a “general” ML-random set Y to be above the halting problem. In
this case, our intuition formulated above is still partially correct: there may
exist an incomputable c.e. set A below Y , but such sets A are very restricted.
Recall that a set is ∆0

2 iff it is Turing below the halting problem ∅′. The
following is a classic result.

Theorem 1.1 (Kučera [14]). Suppose Y is a Martin-Löf random ∆0
2 set.

Then some computably enumerable, but incomputable set A is Turing be-
low Y .

The next result says that such a set A is restricted. This was shown by
Hirschfeldt et al. in [13]. The K-trivial sets, introduced in [1], are at the
same time far from random, and close to computable [18]. For instance,
a K-trivial set A is superlow: its jump A′ is truth-table below the halting
problem.

Theorem 1.2 ([13]). Let Y be a Martin-Löf random set that is not Turing
above the halting problem. Suppose a computably enumerable set A is Turing
below Y . Then A is K-trivial.

A lowness property is a property saying a set is close to being computable
in a specific sense. Computability theory, which is to a large extent about
the complexity of sets, has a vital interest in understanding lowness proper-
ties. Before the intrusion of random-theoretic methods about a decade ago,
superlowness was the strongest known lowness property such that an incom-
putable c.e. example exists. Through articles such as [6] and [18], it is now
known that the class of K-trivial c.e. sets is much smaller than the superlow
c.e. sets. This class is interesting degree-theoretically. For instance, it is
closed downward under Turing reducibility ≤T , and closed under effective
join ⊕. Thus it induces an ideal in the c.e. Turing degrees. This ideal has
a Σ0

3 index set, which is the minimal descriptional index set complexity of a
proper class of c.e. Turing degrees.
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1.2. Strengthening Kučera’s result

Kučera’s Theorem 1.1 is our starting point for studying lowness proper-
ties of a c.e. set A. To obtain lowness properties stronger than K-triviality,
we strengthen the condition related to Kučera’s result that A ≤T Y for
some Turing incomplete random set Y . There are two approaches, which
are interrelated as we will see later.

(a) Replace the single oracle set Y by a null class C ⊆ 2ω containing
some Martin-Löf random set Y not Turing above ∅′, and require that
A ≤T Z for each ML-random set Z ∈ C. Intuitively speaking, the
larger C is, the closer to being computable must a c.e. set be that is
Turing below all ML-random members of C.

(b) Stay with a single oracle set Y , but require that it satisfy a randomness
property stronger than Martin-Löf-randomness. Intuitively speaking,
the more random Y is, the closer to being computable must a c.e. set
be that is Turing below Y .

Both approaches lead to similar results, which are related to a combinatorial
lowness property called strong jump traceability.

An order function is a nondecreasing unbounded computable function
h : N → N. We say that a set A is jump traceable with bound h if there
is a uniformly c.e. sequence of sets (Tx)x∈N (called a c.e. trace) such that
#Tx ≤ h(x) and JA(x) ∈ Tx for almost all x such that JA(x) is defined. We
say that A is strongly jump traceable (s.j.t.) [8] if A is jump traceable with
bound h for each order function h.

The class of c.e., strongly jump traceable sets is denoted by SJTc.e.. This
class forms a proper subclass of the c.e. K-trivial sets by Cholak, Downey,
and Greenberg [2]. It is closed downward under ≤T , and closed under ⊕ [2].
Downey and Greenberg [5] showed that in fact each strongly jump traceable
set, c.e. or not, is K-trivial.

A taxonomy of lowness properties has been introduced in [20, Section 6]
and [11]. Strong jump traceability is an instance of the “weak-as-an-oracle”
paradigm. Approach (a) above leads to sets A that are low because they
are below many oracles. A third paradigm, inertness, says that the set has
a computable approximation with a finite total of changes as measured in
terms of a class of cost functions. Several results show the equivalence of
lowness properties obtained through different paradigms.

1.3. Approach (a), and diamond classes

We say that that a ∆0
2 set Y is ω-computably approximable (ω-c.a.) if

Y has a computable approximation with a computable bound g(n) on the
number of times Y (n) changes. These sets are also called ω-r.e., or ω-c.e.,
in the literature. It is easy to obtain a ML-random ω-c.a. set. Exam-
ples are Chaitin’s number Ω, or a superlow ML-random set constructed via
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the (super)low basis theorem. Thus, the following theorem of Greenberg,
Hirschfeldt and Nies says that a c.e. set A is strongly jump traceable iff
it is Turing below many ML-random oracles. This gives an example of an
equivalence of the first, and the second lowness paradigm.

Theorem 1.3 ([12] and [11] together). Let A be c.e. Then

A is s.j.t. ⇔ A is Turing below each ω-c.a. ML-random set.

The implication “⇒” is due to Greenberg and Nies [12]; the harder
converse implication to Greenberg, Hirschfeldt and Nies [11]. In fact, [11]
shows the stronger result that any set A (c.e. or not) Turing below each
superlow ML-random set is strongly jump traceable.

We say that a set Y is superhigh if ∅′′ ≤tt Y
′; this property is, in a sense,

dual to superlowness. The following result of [11] is related to Theorem 1.3.

Theorem 1.4. Let A be c.e. Then

A is s.j.t ⇔ A is Turing below each superhigh ML-random set.

In each case, the implications from left to right follow a common scheme,
relying on the fact that a strongly jump traceable, c.e. set A obeys all so-
called benign cost functions (see [12], or [19, Section 5.3]). However, the
converse implications, while both following a general framework inspired
by the golden run method, are rather ad hoc; it is unclear which property
of the given class C is needed to make them work. Their proofs are also
rather technical, in particular the one for superhighness. One aim of this
paper is to give uniform and simpler proofs for these implications. We do
this by showing that Approach (a) above can in a sense be subsumed under
Approach (b). We will elaborate on this in Subsection 1.5. Note that this
method only works for c.e. sets A (see Remark 4.6 for more on this).

The following notation is useful. For a class C ⊆ 2ω, let C3 denote the
collection of c.e. sets that are computable from all Martin-Löf random sets
in C. This “infimum” operator was implicitly introduced in unpublished
work of Hirschfeldt and Miller. Each class of the form C3 induces an ideal
in the c.e. Turing degrees. Hirschfeldt and Miller showed that C3 contains
a simple set for each null Σ0

3 class C (see [19, 5.3.15]). Since {Y } is a Π0
2,

and hence a Σ0
3 class for each ∆0

2 set Y , this strengthens Kučera’s result.
We can now summarize the above results of [12, 11] by the equations

SJTc.e. = (ω-c.a.)3 = (superlow)3 = (superhigh)3.
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1.4. Approach (b), and bases for randomness notions

In Approach (b) we consider a c.e. set A that is Turing below a set Y
satisfying a randomness notion stronger than ML-randomness. Weak 2-
randomness doesn’t work, because it makes A computable, as observed
above. Instead, we will employ various variants of Demuth randomness,
a notion between 2-randomness and Martin-Löf randomness that is still
compatible with being Turing below ∅′ (but no longer with being above ∅′).
This notion was introduced and studied in the 1980s by Demuth [3, 4] in
connection with differentiability of certain effective functions defined on the
unit interval. It remained obscure for a long time, but now begins to stand
out for its rich interaction with the computational complexity aspect of sets.

Demuth tests are more general than ML-tests in that one can change for
a computably bounded number of times the m-th component (a c.e. open
class in Cantor space 2ω of measure at most 2−m). Let Sm be the final
version of the m-th component. Passing a Demuth test means to be out
of almost all Sm. See [19, Section 3.6] for more background on Demuth
randomness.

Greenberg [10] built a ∆0
2 Martin-Löf random set Y such that every c.e.

set computable from Y is strongly jump traceable. Subsequently, Kučera
and Nies [15] showed that any Demuth random ∆0

2 set Y fulfills this purpose.

Theorem 1.5 ([15]). Let Y be Demuth random. Let A be a c.e. set such
that A ≤T Y . Then A is strongly jump traceable.

Let C be a randomness notion. The part of this paper related to Ap-
proach (b) relies on the following concept. We say that a set A ⊆ N is a base
for C if A ≤T Y for some set Y ∈ CA. That is, A can be computed from a
set Y that is also random relative to A in the sense of C. Intuitively, such
a set should be close to computable, because the class of oracles computing
it is large. Mathematical evidence for the correctness of this intuition is
given for instance in [13], where it is shown that the bases for Martin-Löf
randomness coincide with the K-trivial sets. Theorem 1.2 above is actually
a Corollary to this result, because it is not hard to show that if A is c.e. and
A ≤T Y for some ML-random set Y that is Turing incomplete, then Y is
already ML-random relative to A. See [19, Cor. 5.1.23] for more detail.

The stronger a randomness notion is, the smaller becomes the class of
bases for that notion. Let us reconsider weak 2-randomness, a notion some-
what stronger than Martin-Löf randomness where the tests are simply Π0

2

null classes. If A is a base for weak 2-randomness then A is computable. To
see this, note that for each Turing functional Φ, the class of oracles Y such
that Φ(Y ) = A is a Π0

2(A) class. If A is incomputable then this class is null,
so Y is not weakly 2-random relative to A.

Unlike the case of weak 2-randomness, the bases for Demuth randomness
form an interesting proper subclass of the bases for ML-randomness. In
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Section 3 we will prove that there is a promptly simple (hence incomputable
c.e.) base for Demuth randomness. Thereafter, we show in Theorem 3.2
that each base for Demuth randomness is strongly jump traceable. The
containment is proper: new work of Greenberg and Turetsky shows that
some strongly jump traceable c.e. set is not a base for Demuth randomness

Our proof that every base for Demuth randomness is s.j.t. is related to
the proof of Theorem 1.5 due to [15], but does not need the assumption that
the set is computably enumerable. From the proof of our result we obtain
an alternative proof of the result in [15].

We say that A is low for a randomness notion C if C = CA. It is easy to see
that each set A that is low for ML-randomness is a base for ML-randomness,
the reason being that A ≤T Y for some ML-random set A. The situation for
Demuth randomness is quite different: Downey and Ng [7] showed that every
set that is low for Demuth randomness must be of hyperimmune-free Turing
degree. Given that the s.j.t. sets are ∆0

2, this means that a set that is low
for Demuth randomness cannot be a base for Demuth randomness, unless
it is computable. Recent work of Bienvenu, Downey, Greenberg, Nies and
Turetsky shows that continuum many sets are low for Demuth randomness.

We remark that the concept of a base has also been studied for notions
weaker than Martin-Löf randomness. In [9] it is proved that the bases for
Schnorr randomness coincide with the Turing incomplete sets. Bases for
computable randomness have not been characterized so far. However, in
[13] it is shown that this class includes every ∆0

2 set that is not diagonally
noncomputable, but excludes each set of PA-degree.

1.5. Using Approach (b) to prove the inclusion of diamond classes in SJTc.e.

For each order function h and each Turing functional Φ, we build a
Demuth test such that any c.e. set computed via Φ by an oracle passing
this test is jump traceable for bound h. This technical result is a spin-off of
the proof of Theorem 3.2 that each base for Demuth randomness is strongly
jump traceable.

There is no universal Demuth test, so a class C not containing a Demuth
random set can still for each single test have a member that passes this
test. A class of this type will be called Demuth test-compatible. If A is
in C3 for such a class, then it is strongly jump traceable. Our uniform
method for showing that a diamond class is contained in SJTc.e. proceeds by
showing that the class C in question is Demuth test-compatible; this suffices
by the technical result mentioned above. In Section 4 we carry this out for
superlowness and superhighness. The proofs use some elements of the proofs
in [11]. However, we get away without the infinitely many levels that are
due to the golden-run type control mechanisms there.
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1.6. Sets below all ω2-c.a. ML-random sets

Let us recall our basic setting, a c.e. set A Turing below random sets Y .
In the last two sections we follow the two approaches outlined above in
order to study an extreme lowness property of a set A: being below all
ω2-c.a. ML-random sets.

A set Y is called ω2-c.a. if there is a computable approximation (Ys)s∈N
such that at each change Ys(n) 6= Ys−1(n), we can count down along the
canonical computable well-order of type ω2 defined on pairs of natural num-
bers. We will show that a Demuth random set can be ω2-c.a.

The ω2-c.a. sets form a Σ0
3 class containing the ω-c.a. sets. Thus, the

class (ω2-c.a.)3 contains a promptly simple set and is contained in SJTc.e. =
(ω-c.a.)3.

Let MLR denote the class of ML-random sets. For a class C ⊆ 2ω let

C2 = {A : ∀Y ∈ C ∩MLR[A ≤T Y ]},

i.e., we drop the restriction that A be computably enumerable. In Subsec-
tion 5.3 we show that the class (ω2-c.a.)2 is a proper subclass of the bases
for Demuth randomness. The main work is to build an ω2-c.a. set that is
Demuth random in each K-trivial set.

For later use we provide the following fact due to [13].

Proposition 1.6. Each set in A ∈ (ω-c.a.)2 is a base for ML-randomness,
and hence K-trivial.

In fact, A is s.j.t., as already observed at the end of Subsection 1.3.

Proof. It suffices to note that A ≤T Ω0,Ω1, where Ω0 (Ω1) is the sequence
of bits of Ω in the even (odd) positions. Now Ω1 is ML-random in Ω0, and
hence in A.

In the final Section 6 we consider a possible analog of the equations
SJTc.e. = (ω-c.a.)3 = (superlow)3 discussed above in the setting of ω2-
approximations. We introduce a stronger form of traceability: in a trace
(Tx)x∈N, we can at any stage adjust downwards the bound on the number
of elements that are allowed to go in after that stage.

We say that Y is ω2-low if Y ′ is ω2-c.a. We show that for each set A
in (ω2-c.a.)3, and in fact in the class (ω2-low)3, we can trace JA by such
traces, whenever the bound has an “inverse ω-c.a. approximation”. To do
so, we introduce a more general type of Demuth-tests, where (once again)
the number of version changes is merely limited by counting down along a
well order of type ω2. We show that the class of ω2-low sets is compatible
with such tests.

The results can be generalized to the setting of ωn-approximations.
In [16] we plan to carry out these extensions, along with a possible co-
incidence of (ωn-c.a.)3 and the class of c.e. sets that are traceable in an
appropriate strong sense.
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2. Preliminaries

We follow the notation in [19]. In particular, for a set V ⊆ 2<ω, we let

[V ]≺ = {Z ∈ 2ω : ∃σ ∈ V [σ ≺ Z]}.

If W is a measurable class in Cantor space 2ω, then λW denotes its (product)
measure. #X denotes the cardinality of a set X.

In this section we provide some definitions and simple facts that will be
needed later. They are mainly about Demuth tests and superlowness.

2.1. Measure

The following is due to [11].

Lemma 2.1 (Cut-off). Suppose we are given an effectively open class W =
[W ]≺ for some c.e. set W and a positive rational number ε. Then we can,
uniformly in ε and a c.e. index for W , obtain a c.e. index for an effectively
open class, which we denote by W(≤ε), such that

W(≤ε) ⊆W; λW(≤ε) ≤ ε; and if λW ≤ ε, then W(≤ε) = W.

This is because we can stop the enumeration of clopen sets [σ] into W

when its measure attempts to exceed ε.

2.2. Demuth randomness

We begin with the formal definition of Demuth randomness.

Definition 2.2. A Demuth test is a sequence of c.e. open sets (Sm)m∈N such
that ∀mλSm ≤ 2−m, and there is a function f such that Sm is the Σ0

1 class
[Wf(m)]

≺; furthermore, f(m) = lims g(m, s) for a computable function g
such that the size of the set {s : g(m, s) 6= g(m, s − 1)} is bounded by a
computable function.

When the approximating function g is understood from the context, we
write Sm[t] for [Wg(m,t)]

≺ and say that this is the version of Sm at stage t.
After adjusting g, we may assume that Sm[t] ≤ 2−m for each t. We often
define a Demuth test by specifying the versions.

A set Z passes the test if Z 6∈ Sm for almost every m. We say that Z is
Demuth random if Z passes each Demuth test.

To illustrate this tests concept, we sketch a result of Demuth (see [19,
Thm. 3.6.26] for more detail).
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Theorem 2.3. Each Demuth random set Z is generalized low1, namely,
Z ′ ≤T Z ⊕ ∅′.

Proof. We introduce a function g ≤wtt ∅′ and a Demuth test (Sm)m∈N such
that g(m) ≥ JZ(m) whenever JZ(m) is defined, for any set Z that passes
(Sm)m∈N. This easily implies that Z is generalized low1.

For each m, let Lm be the open class {Z : JZ(m) ↓}, and let Lm,s be
the clopen class {Z : JZs (m) ↓}. We define an auxiliary clopen class Cm.
At stage s we define approximations gs(m) to g(m) and Cm,s to Cm, in
such a way that the clopen set Cm,s contains the oracles Z such that gs(m)
dominates JZ(m). Whenever at a stage s the measure of the clopen set
Lm,s − Cm,s−1 exceeds 2−m, we put this set into Cm,s and increase g(m) to
the stage number, so that it also dominates the values JZ(m) for these newly
added oracles Z. These changes to the current approximation of Cm, and
hence of g(m), can take place at most 2m times. Thus g is ω-c.a. and Cm
stabilizes, whence Sm = Lm − Cm determines a Demuth test as desired.
Note that the version of the m-th component changes at most 2m times.

A Demuth test (Sm)m∈N is called monotonic if Sm ⊇ Sm+1 for each m.
A set that passes all monotonic Demuth tests is called weakly Demuth ran-
dom. For instance, if V is an ω-c.a. set, then the Demuth test given by
Sm = [V �m] is monotonic. Thus, a weakly Demuth random cannot be ω-
c.a. Note that the test constructed above cannot be monotonic, because
there is a high ∆0

2 weakly Demuth random set by [15, Thm. 3.1].
Two given Demuth tests can be “covered” by a single one. In our appli-

cations, the second given Demuth test will usually be a universal ML-test.

Fact 2.4. For each pair of Demuth tests (Sm)m∈N and (Tm)m∈N, there is a
Demuth test (Uk)k∈N such that any set passing (Uk)k∈N passes both (Sm)m∈N
and (Tm)m∈N.

Proof. Simply let Uk[s] = Sk+1[s] ∪ Tk+1[s].

The proof of the following simple lemma uses a trade-off for Demuth
tests between the measure of the components, and the number of times
their versions change.

Lemma 2.5. Let (Sk)k∈N be a Demuth test. Then there is a Demuth test
(Gm)m∈N such that λGm ≤ 4−m, and every set that passes (Gm)m∈N also
passes (Sk)k∈N.

Proof. We define the Demuth test (Gm)m∈N through the versions of its com-
ponents at stages t:

Gm[t] = S2m+1[t] ∪ S2m+2[t].
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Since λSr[t] ≤ 2−r for each r, t, we have λGm[t] ≤ 4−m for each m, t. If h
is an order function such that Sm[r] changes at most h(r) times, then Gm[t]
changes at most h(2m + 2)2 times. Clearly (Gm)m∈N is a Demuth test as
required.

The following will be used in the proof of Lemma 3.3.

Lemma 2.6. Given a Demuth test (Sm)m∈N, there is a Demuth test (Hm)m∈N
such that, if a set Y passes (Hm)m∈N, then 0e1Y passes (Sm)m∈N for each e.

Proof. Firstly, by Lemma 2.5 let (Gm)m∈N be a Demuth test such that
λGm ≤ 4−m for each m, and every set that passes (Gm)m∈N also passes
(Sm)m∈N. Next, let H0 = H1 = ∅ and for m ≥ 2,

Hm =
⋃
e≤m−2{Y : 0e1Y ∈ Gm}.

Then λHm ≤ 4−m
∑m−2

e=0 2e+1 ≤ 2−m. Clearly (Hm)m∈N is a Demuth test
as required.

2.3. Superlowness

If (As)s∈N is a computable enumeration for a c.e. set A, and (Γs)s∈N is
an effective enumeration of (the graph of) a Turing functional, then we let
ΓA[s] = ΓAss . The following result [15, Lemma 4.1] is a special case of [11,
Theorem 3.5]. We include its proof for the sake of completeness.

Lemma 2.7. Suppose the c.e. set A is superlow. Then for each Turing
functional Γ there is a computable enumeration (As)s∈N of A and a com-
putable function g such that g(x) bounds the number of stages s such that
ΓA(x)[s− 1] is defined with use u and As �u 6= As−1 �u.

In the situation of the lemma, we say the computation ΓA(x)[s − 1] is
destroyed at stage s.

Proof. Let (Ãs)s∈N be some computable enumeration of A. There is a Turing

functional ∆ such that for each x and each stage s such that ΓÃ(x)[s] ↓, the

output of ∆Ã(x)[s] is the stage t ≤ s when this computation became defined.

Clearly the defined distinct values ∆Ã(x)[s] are increasing in s.
By [17] A is jump-traceable. Thus, there is a c.e. trace (Tx)x∈N with

computable bound g for ∆A. Define a computable sequence of stages as
follows. Let s0 = 0. For i ≥ 0, let

si+1 = µs > si.∀x < si [ΓÃ(x)[s] ↓−→ ∆Ã(x)[s] ∈ Tx,s].

Define a computable enumeration (As)s∈N of A by As(x) = Ãsi(x) for si ≤
s < si+1. For each s such that ΓA(x)[s] is newly defined, a further element
must enter Tx. Thus (As)s∈N is a as required.
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3. Bases for Demuth randomness

The following fact will be strengthened in Theorem 5.5, where we show
that the class of bases for Demuth randomness contains C3 for the Σ0

3 null
class C of ω2-c.a. sets.

Proposition 3.1. There is a promptly simple base for Demuth randomness.

Proof. A result of Demuth (see [19, Section 3.6]) states that there is a De-
muth random low set Y . Applying the same result relative to Y , we obtain a
set V that is Demuth random and low relative to Y . Thus V is low. Now by
a Theorem of Kučera (see [19, Thm. 4.2.1 and Ex. 4.2.7]) there is a promptly
simple set A ≤T Y, V . Then V is Demuth random relative to A.

Theorem 3.2. Each base for Demuth randomness is strongly jump trace-
able.

Proof. The proof is a simpler variant of the proof of Theorem 1.5 due to [15].
Suppose that A = ΦY for a Turing functional Φ and a set Y that is Demuth
random relative to A. To show that A is strongly jump traceable, for each
order function h, we will build a uniformly c.e. sequence of sets (Tx)x∈N,
#Tx ≤ h(x), such that JA(x) ∈ Tx for almost all x such that JA(x) is
defined.

For m ∈ N let

Im = {x : 2m ≤ h(x) < 2m+1}.

Construction. To help with the definition of the c.e. trace, we build an
oracle Demuth test (GAm)m∈N. At stage t, let u be the maximum use of the
computations JA(x) for x ∈ Im that exist. We enumerate into the current
version GAm[t] all oracles Z such that ΦZ

t � A�u, as long as the measure stays
below 2−m. Whenever a new computation JA(x) for x ∈ Im converges, we
start a new version of GAm. Clearly, there will be at most #Im versions.

More formally, let Ue = [We]
≺ be the c.e. open set given by We. There

is a Turing functional Γ such that for each string α of length t,

UΓα(m,t) = {Z : ∀x ∈ Im [Jαt (x) ↓ with useu ⇒ α�u� ΦZ
t ]}.

Let GAm[t] = U
(≤2−m)

ΓA(m,t)
. By the uniformity of the Cut-off Lemma 2.1, from

m, t with the help of oracle A we can compute an index for this effectively
open class. Thus, the versions GAm[t] define a Demuth test (GAm)m∈N relative
to A.

The c.e. trace (Tx)x∈N is defined as follows. At stage t, for each string α
of length t such that y = Jαt (x) is defined and the measure of the current
approximation to the c.e. open set UΓα(m,t) exceeds 2−m, put y into Tx. The

11



idea is that, if y = JA(x), then this must happen for some α ≺ A, otherwise
the given Demuth random set Y can be put into GAm because there is no
cut-off.

Claim 1. (Tx)x∈N is a c.e. trace such that for each x we have #Tx ≤ h(x).
Clearly the sequence is uniformly computably enumerable. Suppose now
that distinct numbers yi, 0 ≤ i < N , enter Tx at stages ti. Then yi = Jαiti (x)
for a string αi. For 0 ≤ i < k < N , the open sets UΓαi (m,ti) and UΓαk (m,tk)

are disjoint because they consist of oracles computing incompatible initial
segments of strings αi and αk. Since the measure of each such open set
exceeds 2−m at stage ti, this shows that N ≤ 2m ≤ h(x) as required.

Claim 2. For almost every x, if y = JA(x) is defined, then y ∈ Tx.
Since Y is Demuth random in A, there is m0 such that Y 6∈ GAm for each m ≥
m0. Given such an m, let t∗ be a stage by which all JA(z) for z ∈ Im that
are defined converge and, furthermore, A �u� ΦY

t∗ where u is the maximum
use of these computations. Then the final version of UΓA(m,t), and hence of

GAm, has been reached at stage t∗.
We claim that from some t ≥ t∗ on, the measure of the approximation to

UΓA(m,t) = UΓA(m,t∗) exceeds 2−m, whence at some stage we put y = JA(x)
into Tx. Assume otherwise, that is, λUΓA(m,t∗) ≤ 2−m. Then by stage t∗

the set Y has entered UΓA(m,t∗) = GAm, contradiction. This completes the
verification of Claim 2 and the proof.

Note that the Demuth test (GAm)m∈N is not necessarily monotonic. Even
if we modify the definition of the c.e. open classes UΓA(m,t) by replacing
“x ∈ Im” with “x ≤ max Im”, we cannot achieve monotonicity, because
we cut off the enumeration of the UΓA(m,t) when their measure attempts
to exceed 2−m. This cut-off might remove oracles Z that are needed for
UΓA(m+1,t). Thus, the proof of Theorem 3.2 cannot be extended to show
that each c.e. base for weak Demuth randomness is strongly jump traceable.
This is currently an open question.

We discuss a spin-off of the proof of Theorem 3.2 above, which will yield
simpler proofs of Theorem 1.5 and also [10, Thm. 1.2].

Lemma 3.3. For a given order function h and a superlow c.e. set A, we
can build a Demuth test (Hm)m∈N such that, if A ≤T Y for some Y passing
this test, then A is jump traceable with bound h.

Proof. Let Φ be the “universal” Turing functional given by Φ(0e1Y ) =
Φe(Y ) for each e, Y . We actually will use the method in the proof of Theo-
rem 3.2, with this Turing functional Φ, to show the following.

Claim 3.4. We can build a Demuth test (Sm)m∈N such that, if A = ΦY for
some Y passing this test, then A is jump traceable with bound h.
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This claim suffices to obtain Lemma 3.3: let (Hm)m∈N be the Demuth
test obtained via Lemma 2.6 applied to the test (Sm)m∈N. Thus, if a set Y
passes (Hm)m∈N, then 0e1Y passes (Sm)m∈N for each e. By hypothesis of
the lemma, A ≤T Y for some Y passing (Hm)m∈N, so we have A = ΦY

e

for some e, and hence A = Φ(0e1Y ). Since 0e1Y passes (Sm)m∈N, we can
conclude from the claim that A is jump traceable with bound h.

It remains to prove Claim 3.4. Based on the Turing functional Φ intro-
duced above, we define the Turing functional Γ, the Demuth test relative
to A (GAm)m∈N, and the c.e. trace (Tx)x∈N with bound h as in the proof of
Theorem 3.2.

The idea is that (GAm)m∈N makes very limited use of the oracle A: each
version GAm[t] of the m-th component is a c.e. open class, i.e. a Σ0

1 class (while
in full generality it could be Σ0

1(A) class). The oracle A is only needed
to compute its index. Furthermore, the number of changes of versions is
computably bounded. Since A is a superlow c.e. set, this allows us to cover
(GAm)m∈N by a plain Demuth test (Sm)m∈N.

Let Θ be a Turing functional such that ΘX(m, i) is an index of the c.e.
open set which is the i-th version of GXm. The maximum value of i such that
ΘX(m, i) is defined is bounded by #Im.

Since A is superlow, by Lemma 2.7 there is a computable enumeration
(As)s∈N of A and a computable function f such that for at most f(m, i)
times a computation ΘAs(m, i) is destroyed. At stage t, let

Sm[t] = UΘAt (m,i)

where i is maximal such that the expression on the right is defined. Clearly
the number of times a version Sm[t] changes is bounded by

∑#Im
i=0 f(m, i).

Thus, (Sm)m∈N is a Demuth test. If an oracle Z is in GAm then Z is in the
final version Sm[t].

By our hypothesis in Claim 3.4, A = ΦY for some Y passing (Sm)m∈N.
Thus Y is out of almost all GAm. As before, this shows that (Tx)x∈N is a trace
for JA with bound h.

We next obtain the promised alternative proof of Theorem 1.5 above
which is due to Kučera and Nies [15].

Corollary 3.5 ([15]). Suppose the c.e. set A is Turing below a Demuth
random set Y . Then A is strongly jump traceable.

Proof. Every Demuth random set is generalized low1. Hence by Theorem 1.2
A is K-trivial and therefore superlow. Now Lemma 3.3 shows that for each
order function h, the set A is jump-traceable with bound h.
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4. Demuth test–compatible classes and strong jump traceability

The following concept forms part of a uniform method for showing that
diamond classes are contained in the class SJTc.e. of c.e., strongly jump
traceable sets.

Definition 4.1. A class C ⊆ 2ω is called Demuth test–compatible if each
Demuth test is passed by a member of C.

Fact 4.2. If C is Demuth test compatible, then so is C ∩MLR.

Proof. Apply Fact 2.4 to a given Demuth test together with a universal
ML-test.

The core of the uniform method is the following lemma. Its proof is a
“local” version of the proof of Cor. 3.5. That is, we argue in terms of single
Demuth tests and correspondingly, single trace bounds. Think of C as a
class that does not admit a Demuth random, such as the class of superlow
sets.

Lemma 4.3. Suppose the class C is Demuth test–compatible. Then, for
each order function h, there is a ML-random set Y in C such that every c.e.
set A ≤T Y is jump-traceable for bound h.

Proof. By Theorem 2.3 and Fact 2.4, there is a single Demuth test such
that any set passing the test is ML-random and generalized low1, and hence
Turing incomplete. Thus, by Theorem 1.2, the c.e. set A is K-trivial, and
hence superlow.

Given an order function h, let (Hm)m∈N be the Demuth test from Lem-
ma 3.3. By Fact 4.2, the class C ∩MLR is Demuth test compatible as well.
Thus, some ML-random set Y in C passes the test. Then Y is the required
set.

The following enables us to apply the core lemma to interesting classes.
Note that a (weakly) Demuth randomn is not ω-c.a., and hence not superlow,
as mentioned in Subsection 2.2. It is also not superhigh by [15, Cor. 3.6].
Nonetheless, these classes are Demuth test compatible.

Theorem 4.4. Superlowness and superhighness are Demuth test–compatible.
In other words, each Demuth test is passed by a superlow, and by a super-
high set.

Before proving the theorem, we discuss two corollaries. We re-obtain
the implications from right to left in Theorems 1.3 and 1.4: these results,
obtained first in [11] by different means, are now immediate from Lemma 4.3,
by the definitions of C3 and strong jump traceability.
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Corollary 4.5 ([11]). The diamond classes of superlowness and superhigh-
ness are both contained in the strongly jump traceable sets.

Remark 4.6. The inclusions of Corollary 4.5 were proved in [11] not just
for c.e. sets, but in more generality for sets that are both superlow and jump
traceable. Thus, as observed in the introduction, each set in (superlow)2 is
K-trivial, hence superlow and jump traceable, hence strongly jump trace-
able. (In contrast, it is currently unknown whether (superhigh)2 is contained
in the strongly jump traceables.)

On the other hand, the proofs of the results for c.e. sets given here are
considerably simpler than the ones in [11].

As a further corollary we strengthen a result of Greenberg [10, Thm.
1.2]. Note that in [10] the set Y was merely ω-c.a.

Corollary 4.7. For each order function h, there is a superlow ML-random
set Y such that every c.e. set A ≤T Y is jump-traceable for bound h.

To see this, it suffices apply to Lemma 3.3 when the class C is superlow-
ness.

Proof of Theorem 4.4. By Lemma 2.5, it suffices to find a superlow [super-
high] set Z that passes (Gm)m∈N, where (Gm)m∈N is a Demuth test such that
λGm ≤ 4−m for each m. Let h be an order function such that the version
Gm[s] changes at most h(m) times.

By [19, p. 55], from an index P for a Π0
1 class in 2ω we can obtain a

computable sequence (Ps)s∈N of clopen classes such that Ps ⊇ Ps+1 and
P =

⋂
s Ps.

Superlowness. We define a computable double sequence of (indices for) Π0
1

classes (Psm), m ≤ s, at stages s, where Psm ⊇ Psm+1. By convention, if these
Π0

1 classes are not explicitly changed at a stage s > 0, they retain their
values at the previous stage. The number of stages s at which the index Psm
changes will be computably bounded in m. The desired set Z will be in the
intersection of the final versions lims P

s
m.

To define the double sequence (Psm), m ≤ s, we extend the usual proof
of the (super)low basis theorem. As in that proof, we meet conditions to
determine the jump JZ(m) at arguments m. But now we interleave these
conditions with conditions to avoid the open classes Gm. In order to do this,
we must have enough measure left at each step: we ensure that

λ(Psm)s ≥ 4−m

for each m, s. (Note that (Psm)s denotes the clopen class approximating Psm
at stage s.)

Suppose at a stage s, for an m < s the class Psm has been defined. To
define the next class Psm+1, firstly, we remove the current version Gm+1[s].
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This leaves a measure of at least 3 · 4−m−1. Initially the guess was that
JZ(m) ↑. We change this guess to JZ(m) ↓ if at this stage the measure of
the class of oracles Y such that JY (m) ↓ exceeds 2 ·4−m−1. Once a measure
of 4−m−1 has left this current Π0

1 class Psm+1, we revert the guess back to
JY (m) ↑. This will ensure that that there is always enough measure left in
Psm+1.

We now give the formal details. Each stage s > 0 of the construction
has substages m for m < s.

Module m.

(a) Let P̃sm = Psm \ (Gm+1[s]). (Note that λ(P̃sm)s ≥ 3 · 4−m−1.) Whenever
Gm+1[s] has a new value, the module returns to (a) (this overrides any
instructions given in (b), (c) below).

(b) Let D be the clopen set {X : JXs (m) ↓}.

If λ(P̃sm)s ∩D ≤ 2 · 4−m−1 let Psm+1 = P̃sm −D, and goto (b). (The
current guess is that JZ(m) ↑.)

Else let Psm+1 = P̃sm ∩D and goto (c). (The guess is now JZ(m) ↓.)

(c) If λ(Psm+1)s ≥ 4−m−1 stay at (c). Else goto (b) and continue there
at this same substage m. (D will be updated now.)

Construction. We say that a class Psm (m < s) is redefined at stage s if the
value of its index is different from the value at stage s− 1.
Stage s > 0.
Substage 0: let Ps0 = 2ω.
Substage m, s > m > 0: If s = 1, or Psm was redefined at s, go to the
beginning of Module m. Otherwise continue where Module m was left at
stage s− 1. This (re)defines Psm+1.

Verification.

Claim 4.8. At each stage s, for each m ≤ s we have λ(Psm)s ≥ 4−m.

This is true for m = 0 because (Ps0)s = 2ω. Suppose it holds for

m < s. Since λGm+1[s] ≤ 4−m−1 we have λ(P̃sm)s ≥ 3 · 4−m−1 in (a).
Now λ(Psm+1)s ≥ 4−m−1 follows from the inductive hypothesis and the case
hypotheses in (b) and (c).

Claim 4.9. There is a computable function r such that for each m

r(m) ≥ #{s > 0: Psm is redefined at stage s}.

Let r(0) = 0. Now suppose inductively r(m) has been defined correctly.

Then r(m) + h(m) bounds the number of stages s at which P̃sm is rede-

fined. As long as this class is not redefined, with stable value P̃, whenever
Module m goes from (b) to (c) and, later on, back to (b), then λ(P̃ ∩ D)
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has dropped by at least 4−m−1. Since D is fixed while the module is at
(c), this means that λP̃ has dropped by at least 4−m−1. The number
of times this can happen is therefore bounded by 4m+1. Thus, if we let
r(m+ 1) = r(m) + 2 · 4m+1(r(m) + h(m)), then r(m+ 1) is a correct bound
for the number of times Psm+1 is redefined. This proves the claim.

Now let Pm = lims P
s
m. By the compactness of Cantor space there is a

set Z ∈
⋂
m Pm. Then Z is superlow because

JZ(m) ↓ ↔ eventually Module m is at (c),

and the number of times the module goes from (c) to (b) is computably
bounded as this means to redefine Psm. Clearly Z passes the given Demuth
test. This shows that superlowness is Demuth test–compatible.

Superhighness. Similar to [11], we actually show that for an arbitrary set
R ⊆ N, the class {Z : R ≤tt Z

′} is Demuth test–compatible. Then, for the
case of superhighness, we let R = ∅′′.

We now work with a full binary tree of Π0
1 classes. We define a com-

putable double sequence of indices for Π0
1 classes (Psα), α ∈ 2<ω, |α| ≤ s,

at stages s. We ensure that Psα0 ∩ Psα1 = ∅, and β ≺ α implies Psβ ⊇ Psα.
As before, if we don’t explicitly change the indices, they retain their values
from the previous stage. The number of stages s at which the index Psα
changes will be computably bounded in |α|.

Let Pα denote the final version lims P
s
α. In the end we let Z ∈

⋂
{Pα : α ≺

R}, and show that R ≤tt Z
′ as required. For this, it is sufficient to define a

Z-computable approximation f(x, s) to R(x) such that the number of stages
s > 0 with f(x, s) 6= f(x, s−1) is computably bounded in x (see [19, 1.4.4]).
We will let f(x, s) be the bit R(x) assessed with the relevant information
available at stage s, namely, with the classes Psβ for |β| ≤ s.

We ensure that

λ(Psα)s ≥ 4−|α|

for each α, s such that |α| ≤ s.

Module α. Let m = |α|.

(a) Let P̃sα = Psα \ (Gm+1[s]). (Note that λ(P̃sα)s ≥ 3 · 4−m−1. ) Whenever
Gm+1[s] has a new value, the module returns to (a).

(b) Let σ be the leftmost string of length s such that, where

D = {Z : Z ≤L σ},

we have λ((P̃sα)s ∩D) ≥ 3
84−m. Let

Psα0 = P̃sα ∩D, and Psα1 = P̃sα \D.

17



Goto (c).

(c) If λ(Psα0)s ≥ 4−m−1 and λ(Psα1)s ≥ 4−m−1 stay at (c). Else goto
(b) and continue there at the same substage m.

Construction. Stage s > 0.
Substage 0: let Ps∅ = 2ω.
Substage m, s > m > 0: For each α of length m do the following. If s = 1, or
Psα was redefined at s, go to the beginning of Module α. Otherwise continue
where Module α was left at stage s− 1. This (re)defines Psαi for i ∈ {0, 1}.

Verification. By an argument similar to Claim 4.8 above, one checks that
indeed λ(Psα)s ≥ 4−|α| for each α, s such that |α| ≤ s.

Claim 4.10. There is a computable function r such that for m = |α|,

r(m) ≥ #{s > 0: Psα is redefined at stage s}.

Let r(0) = 0. Now suppose inductively that r(m) has been defined correctly.

Then r(m) + h(m) bounds the number of stages s at which P̃sα can change.

As long as this class is unchanged, with value P̃, each time Module α goes
from (c) to (b), at least one of the classes P̃∩D, P̃ \D has lost a measure of

4−m/8. Since D is fixed while the module is at (c), this means that λP̃ has
dropped by at least 4−m/8. The number of times this can happen is therefore
bounded by 8 · 4m. Thus, if we let r(m+ 1) = r(m) + 2 · 8 · 4m(r(m) +h(m))
then r(m + 1) is a correct bound for the number of times Psαi can change
(i ∈ {0, 1}). This proves the claim.

Let Pα = lims P
s
α. By the compactness of Cantor space there is a set

Z ∈
⋂
{Pα : α ≺ R}.

Claim 4.11. R ≤tt Z
′.

To define a function f ≤T Z such that R(x) = lims f(x, s), given x, s, search
for a string α of length x+ 1 and a t ≥ s such that

∀β∀i ∈ {0, 1} [β î � α→ Z 6∈ (Ptβ (̂1−i))t].

Let fs(x) be the last bit of α.
Note that α, t exist by the hypothesis on Z. If f(x, s) 6= f(x, s − 1)

then some Psβ has been redefined for |β| ≤ x+ 1. Thus the number of such
stages s is computably bounded in x. If s is large enough such that Psβ has
stabilized for all β such that |β| ≤ x+ 1, then fs(x) = R(x).
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5. Stronger variants of Demuth randomness

Recall that for a class C ⊆ 2ω, we let

C2 = {A : ∀Y ∈ C ∩MLR[A ≤T Y ]}.

In Section 3 we proved that all bases for Demuth randomness are strongly
jump traceable. In this section we show that the class (ω2-c.a.)2 is properly
contained in the bases for Demuth randomness. The proof is via sets passing
a stronger variant of Demuth-tests: the number of version changes is merely
limited by counting down along the canonical well-order of type ω2.

5.1. ω2-approximations

In the following we write N when we mean the natural numbers as a set,
and ω when we mean their order type. We let R = (N, <R) be the canonical
computable well-order of type ω2. Thus, 〈x, y〉 <R 〈z, w〉 if x < y, or x = y
and z < w. Recall that a computable approximation of a function f : N→ N
is a computable function g0 : N × N → N such that lims g0(x, s) = f(x).
The following is a special case of a definition in [11], related to the Ershov
hierarchy. To such a g0 we adjoin a computable function g1 with values in
N which produces a descending sequence in the well-order R to count the
number of times g0(x, s) changes.

Definition 5.1. An ω2-approximation is a computable function

g = 〈g0, g1〉 : N× N→ N× N

such that for each x and each s > 0,

g(x, s) 6= g(x, s− 1)→ g1(x, s) <R g1(x, s− 1). (1)

In this case, g0 is a computable approximation of a total ∆0
2 function f . We

say that g is an ω2-approximation of f .

The following intuitive approach to ω2-approximations is useful. Let g =
〈g0, g1〉 be an ω2-approximation. Since we use the lexicographical ordering
on N×N, we may view g1 itself as a pair of computable functions 〈g10, g11〉
where g1i : N× N→ N for i = 0, 1. Suppose g0(x, s) 6= g0(x, s− 1).

If g10(x, s) < g10(x, s − 1) we say there is a top level change at s. By
assigning the value g10(x, 0), we state in advance how many such changes
there will be.

If g10(x, s) = g10(x, s − 1) and hence g11(x, s) < g11(x, s − 1) we say
this is a bottom level change. Whenever there has been a top level change
at stage s, the new value g11(x, s) will bound the number of bottom level
changes till the next top level change.

We show a robustness property of functions with an ω2-approximation:
it makes no difference whether given x, we count the changes at x, or at all
the numbers less than x.
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Fix some effective encoding of N<ω by natural numbers. For a function
f : N→ N, let f̂ be the function λx.f �x mapping x to the tuple of the first x
values of f , encoded by a natural number.

Lemma 5.2. Let f : N→ N. Then

f has an ω2-approximation ⇔ f̂ has an ω2-approximation.

Proof. ⇐: Let 〈h0, h1〉 be an ω2-approximation of f̂ . Let g0(x, s) be the
last entry of h0(x, s) if h0(x, s) encodes a tuple of length x+ 1; otherwise let
g0(x, s) = 0. Let g1(x, s) = h1(x+1, s). Then 〈g0, g1〉 is an ω2-approximation
of f .
⇒: Let 〈g0, g1〉 be an ω2-approximation of f . As before, we view g1 as a
pair of computable functions 〈g10, g11〉 where g1i : ω × ω → ω. Now let for
i = 0, 1

h1i(x, s) =
∑

y<x g1i(y, s).

Clearly 〈h0, 〈h10, h11〉〉 is an ω2-approximation, because h10(x, s) is nonin-
creasing in s, and h11(x, s) > h11(x, s − 1) is only possible if h10(x, s) <
h10(x, s− 1).

If fs �x 6= fs−1 �x then g1(y, s) <R g1(y, s − 1) for some y < x, whence
h1(x, s) <R h1(x, s− 1).

5.2. ω2-Demuth randomness

Definition 5.3. An ω2-Demuth test is a sequence of c.e. open classes (Sm)m∈N
such that ∀mλSm ≤ 2−m, and there is a function f with an ω2-approximation
such that ∀m Sm = [Wf(m)]

≺. A set Z passes the test if Z 6∈ Sm for almost
every m. We say that Z is ω2–Demuth random if Z passes each ω2–Demuth
test.

Since every Demuth test is an ω2-Demuth test, every ω2-Demuth random
set is Demuth random.

We say that a set Y is called ω2-low if Y ′ is ω2-c.a. In this case, Y is
clearly ω2-c.a. itself. Adapting the proof of the first part of Theorem 4.4
yields the fact that the class of ω2-low sets is ω2-Demuth test-compatible:

Proposition 5.4. Every ω2-Demuth test is passed by an ω2-low set Y .

Proof. If (Sk)k∈N is an ω2-Demuth test, then the test (Gm)m∈N such that
λGm ≤ 4−m obtained in the proof of Lemma 2.5 is an ω2-Demuth test
because of Lemma 5.2. Thus, it suffices to find an ω2-low set Z that passes
(Gm)m∈N, where (Gm)m∈N is an ω2-Demuth test such that λGm ≤ 4−m for
each m. We have versions Gm[s] at stage s, such that (Gm[s])m,s∈N can be
extended to an ω2-approximation of (Gm)m∈N.
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The Modules m and the construction are as before. In the verification
we now show a variant of Claim 4.9, that (Psm)m,s∈N can be extended to an
ω2-approximation in the sense of Definition 5.1. As one would expect, the
counting is a bit different now. By Lemma 5.2, the sequence of tuples of
versions (Gi[s])i≤m+1 can be extended to an ω2-approximation. As long as
such a tuple is stable, each time a Module r goes from (b) to (c) and then

back to (b), where r ≤ m is least, the relevant class P̃ in that module has
lost a measure of 4−r−1; so there are at most Πm

r=04r+1 such transitions.
This yields an ω2-approximation extending (Psm)m,s∈N, as required. Hence
the set Z ∈

⋂
m Pm is ω2-low by the same argument as before.

It is not hard to build an ω2-Demuth test that covers all Demuth tests.
Thus, there is an ω2-low Demuth random set. We will strengthen this shortly
in Lemma 5.6.

5.3. A class properly contained in the bases for Demuth randomness

Theorem 5.5. The class (ω2-c.a.)2 is a proper subclass of the bases for
Demuth randomness.

Proof. The main, technical part of the proof is the following:

Lemma 5.6. There is an ω2-Demuth test (Sm)m∈N such that every set Z
passing this test is Demuth random in every K-trivial set A.

Given the lemma, we obtain the theorem as follows. By Proposition 5.4,
let Y be an ω2-c.a. set Y passing the test (Sm)m∈N from the lemma.

For the inclusion, suppose A ∈ (ω2-c.a.)2. Then A ∈ (ω-c.a.)2, so A is
K-trivial as observed in Proposition 1.6. Note that Y is Demuth random
in A by the lemma, and A ≤T Y by the definition of the class (ω2-c.a.)2.
Hence A is a base for Demuth randomness.

For the properness, we apply a result of Nies [21]. First we give some
background. For cost functions, see [19, Section 5.3]. For the definition an
ω2-benign cost functions, see the last section of [11]. For any ∆0

2 set Y one
can define a cost function cY such that any c.e. set A obeying cY is Turing
below Y ; see [19, Fact 5.3.13]. If Y is ω2-c.a. then cY is ω2-benign.

In [16] it is shown that for each ω2-benign cost function c, there is a
c.e. set A obeying c and an ω2-c.a. ML-random set Z such that A 6≤T Z.
We apply this to the ω2-benign cost function cY , where Y is the ω2-c.a. set
obtained above. This yields a c.e. set A ≤T Y and an ω2-c.a. ML-random
set Z such that A 6≤T Z. Hence A 6∈ (ω2-c.a.)2.

The proof of Lemma 5.6 is in three steps. In Step 1 we use a golden run
technique in the style of Nies [18] to cover a Σ0

1(A) class U for K-trivial A
by a plain Σ0

1 class V with only a slight excess in measure. While we can’t
obtain V effectively, the number of attempts at building V is computably
bounded in an index for U.
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In Step 2, we apply this covering procedure to all the components of a
Demuth test (Gm)m∈N relative to a K-trivial oracle A, thereby obtaining
an ω2-Demuth test (Rm)m∈N. Kučera proved that there is a single ω-c.a.
function h that dominates any function computed by a K-trivial set A. The
function we apply this to is the A-computable bound on the number of
version changes in (Gm)m∈N. Using this we can argue that each of these
ω2-Demuth tests (Rm)m∈N has p(m) top level version changes for a fixed
computable function p, which bounds the number of times an approximation
hs(m) to h(m) increases.

In Step 3, we use this fact to engineer a single ω2-Demuth test (Sm)m∈N
that covers all the ω2-Demuth test (Rm)m∈N obtained in the second step.

Step 1. Let (WX
e )e∈N be an effective listing of sets that are c.e. in an

oracle X. We view these sets as subsets of 2<ω. For each index e and oracle
X, let UXe = [WX

e ]≺.

Claim 5.7. Let A be K-trivial. Then there is an effective double sequence
(Vte) (e, t ∈ N) of indices for Σ0

1 classes in 2ω with the following properties:

(i) #{r > 0: Vre 6= Vr−1
e } = O(4e).

(ii) UAe ⊆ Ve and λVe ≤ λUAe + 2−e, where Ve = limr V
r
e.

To prove the claim, let M be a prefix-free oracle machine such that
[{τ : MA(0e1τ) ↓}]≺ = UAe . The Main Lemma [19, 5.5.1], which embodies
the essence of the golden run method of Nies [18], states that given such a
machine M , there is a computable sequence of stages 0 = q(0) < q(1) < . . .
such that

Ŝ =
∑
r

ĉM,A(x, r) [[x is least s.t.Aq(r+1)(x) 6= Aq(r+2)(x)]] <∞, (2)

where

ĉM,A(x, r) =
∑
σ

2−|σ|
[[
MA(σ)[q(r + 1)] ↓ &
x < use MA(σ)[q(r + 1)] ≤ q(r)

]]
.

We write MA(σ) ↓↓ [r] if MA(σ)[q(r + 1)] ↓ & use MA(σ)[q(r + 1)] ≤
q(r). Let

Ue,r = {τ : MA(0e1τ) ↓↓ [r]}.

Construction of the double sequence (Vre)r,e∈N. Fix e. At the end of each
stage r we update a parameter r∗ ≤ r. Initially let r∗ = 0. Whenever we
see at stage r that our current attempt to cover UAe by a Σ0

1 class [W ]≺ is
in danger because [W ]≺ contains too much not in [Ue,r]

≺, we start a new
attempt to cover UAe by setting r∗ = r. More formally:

Stage r. At the beginning of the stage let W =
⋃
{Ue,t : r∗ ≤ t ≤ r}. If

λ([W ]≺ − [Ue,r]
≺) > 2−e let r∗ = r. In any case, define
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Vre = [
⋃
{Ue,t : r∗ ≤ t}]≺.

Verification. An e-active stage is a stage at which we redefine r∗. Clearly
[C]≺−[D]≺ ⊆ [(C−D)]≺ for any sets C,D ⊆ 2<ω. Thus, at an e-active stage
r we have

∑
τ 2−|τ |[[τ ∈ V − Ue,r]] > 2−e. Any string τ ∈ V −Ue,r contributes

2−|τ |−e−1 to the sum Ŝ in (2), because for some t, r∗ ≤ t < r, we had
MA(0e1τ) ↓↓ [t], and then A changed below the use of this computation. In
total, this makes a contribution of O(4−e) to the sum (2) restricted strings σ
with prefix 0e1. Thus, since Ŝ < ∞, there are only O(4e) many e-active
stages.

Let k be the last e-active stage. For r ≥ k let W r =
⋃
k≤t≤r Ue,t. Then

Ve = limr V
r
e =

⋃
k≤r[W

r]≺.

It remains to show that λ(Ve − UAe ) ≤ 2−e. By the definition of k we
have λ([W r]≺ − [Ue,r]

≺) ≤ 2−e for each e and each r ≥ k. Let ε > 0 be
arbitrary. Pick t ≥ k so large such that λ(Ve− [W t]≺) ≤ ε, and the tail sum
in (2) for Ŝ at t is at most 2−e−1ε. Then

λ(Ve − UAe ) ≤ λ(Ve − [W t]≺) + λ([W t]≺ − [Ue,t]
≺) + λ([Ue,t]

≺ − UAe )

≤ ε+ 2−e + ε.

This concludes the proof of Claim 5.7.

Step 2. Since every K-trivial set is Turing below a c.e. K-trivial [18],
for Lemma 5.6 it suffices to consider K-trivial sets A that are computably
enumerable. Fix such an A.

Claim 5.8. There is a computable enumeration (As)s∈N of A as follows:
for every Turing functional Γ, for almost every x, the number of s such that
ΓAs−1(x) ↓ but ΓAs(x) ↑ is bounded by x2.

Since A is K-trivial, it is jump traceable with trace bound x log3 x + 1
by [19, Exercise 8.4.8]. In fact, in that exercise we can trace instead of the
jump any Turing functional Γ; so there is a c.e. trace (Tx)x∈N such that
#Tx ≤ x log3 x + 1 and ΓA(x) ∈ Tx for all x such that ΓA(x) ↓. There is
a universal trace (Ux)x∈N, namely Ux =

⋃
i≤log x T

i
x, where (T ix)i,x∈N is an

effective listing of all the c.e. traces for the bound x log3 x.
Note that #Ux ≤ x2, and ΓA(x) ∈ Ux for almost all x such that ΓA(x) ↓.

We now argue as in the proof of Lemma 2.7 (which is [15, Lemma 4.1]) to
establish the claim.

We now discuss how build an ω2-Demuth test with a fixed bound on the
number of top level changes that covers a given Demuth test relative to A.
By a result of Kučera (see [19, Exercise 5.1.6]), let h be an increasing ω-c.a.
function that dominates every function computable from some K-trivial set
(for almost every input). Since h is ω-c.a., after increasing h if necessary,
we may assume that there is a computable approximation (hs(x))x,s∈N and
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a computable function p such that h(x) = lims hs(x), hs−1(x) ≤ hs(x) for
each x, s, and for at most p(x) many s is the inequality proper.

Suppose we are given a Demuth test (Gm)m∈N relative to A. Leaving out
the first component we may assume that λGm ≤ 2−m−1 for each m. We have
Gm[t] = UAg(m,t) for some g ≤T A such that g(m, t) > m for each m. We may

also assume that g(m, t) 6= g(m, t− 1) for at most h(m) many t, because h
dominates the A-computable bound on the number of such changes.

Claim 5.9. There is an ω2-Demuth test (Rm) such that the version of the
m-th component has at most p(m) top level changes, and Gm ⊆ Rm for
all m.

To prove this, we cover Gm, a component of a Demuth test relative to A,
by the m-th component of the ω2-Demuth test (Rm)m∈N that doesn’t rely
on the oracle A. Recall the computable enumeration (As)s∈N of A from the
Claim 5.7. The top level changes of (Rm)m∈N will be due to the changes of
ht(m); the bottom level changes are due to the changes of (As)s∈N.

Let Γ be a Turing functional such that ΓA(〈m, i〉) is the i-th value of
the form g(m, t). We may assume that λ[UΓX(〈m,i〉)]

≺ ≤ 2−m−1 for each
oracle X.

Let d(m, i, k) be a computable function, nondecreasing in i, k, as follows:
e = d(m, i, k) is an index greater than m such that We = ∅ until (if ever)
there is a k-th value of the form v = ΓAs(m, i); once the value is there we
let We copy Wv.

Now at stage t, givenm, let i ≤ ht(m) be maximal such that ΓAt(〈m, i〉) ↓.
Let this be the k-th value of this form. Let e = d(m, i, k). Let

Rm[t] = Vte,

where Vte is defined in Claim 5.7.

Clearly λRm[t] ≤ 2−m because of our assumption on Γ and because e >
m. Next we we show that the construction provides an ω2-approximation
where version m has at most p(m) top level changes (recall that p(m) bounds
the number of times hs(m) changes).

Each change of ht(m) corresponds to a top level change; their number
is bounded by p(m). For the bottom level changes, suppose [s0, s1] is a
maximal interval such that ht(m) = r is stable for s0 ≤ t ≤ s1. Then in
the definition of Rm[t] we have i ≤ r, and hence k ≤ 〈m, r〉2 by Claim 5.8.
Thus e ≤ q := d(m, r, 〈m, r〉2). By Claim 5.7 the number of changes of
versions Rm[t] for s0 ≤ t ≤ s1, i.e. of bottom level changes, is bounded by
〈m, r〉2q4q for almost all m. This quantity has been computed from m and
r, as required for an ω2-approximation.

Clearly Gm ⊆ Rm. This establishes the claim.

Step 3. No matter which K-trivial c.e. set A and Demuth test (Gm)m∈N
relative to A is given, the ω2-Demuth test (Rm)m∈N obtained in Claim 5.9
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has p(m) top level changes for a fixed computable function p. This enables
us to define a single ω2-Demuth test (Sm)m∈N that is stronger than all these
ω2-Demuth tests, which will conclude the proof of Lemma 5.6.

The construction of (Sm)m∈N is a refinement of the construction of a
so-called special test in [11, Lemma 7.8] which is stronger than all Demuth
tests. There, it was sufficient to build a test where the versions change
finitely often. Here, we need an ω2-approximation for the versions.

Let us say that a function g : N → N is (ω · p)-c.a. if it has an ω2-
approximation with p(m) top level changes for each m. We first need to
show that a single (ω · p)-c.a. function exists that can simulate all others.
This is like [11, Lemma 7.4].

Claim 5.10. There is an (ω · p)-c.a. function f as follows: for each (ω · p)-
c.a. function g, there is e such that g(m) = f(〈e,m〉) for each m.

To show this, recall that R is the computable well order which is induced
on N by ω2 with the lexicographical ordering via the canonical pairing func-
tion 〈 , 〉. Define a partial (ω · p)-approximation to be a partial computable
function ψ = 〈ψ0, ψ1〉 : N2 → N2 such that dom(ψ) is closed downward in
both variables, and such that for all n and s > 0, if (n, s) ∈ dom(ψ) and
ψ(n, s) 6= ψ(n, s − 1) then ψ1(n, s) <R ψ1(n, s − 1); furthermore, the first
component of ψ1(n, 0) viewed as a pair is p(n) (i.e., we allow at most p(n)
top level changes of ψ0(n, s)). There is an effective listing (ψe)e∈N of all
partial (ω · p)-approximations.

Write ψe(n, t) ↓ [s] to denote that 〈n, t〉 ∈ dom(ψe) and that this fact
is discovered after s steps of computation of a fixed universal machine (so
t ≤ s). We may assume that each dom(ψe) [s] is closed downward in both
variables n, t. Given e, n and s, let t ≤ s be greatest such that ψe(n, t) ↓ [s],
and let ge(n, s) = ψe0(n, t). If there is no such t, then let ge(n, s) = 0.

Now (ge)e∈N is a uniformly computable sequence of functions, and the
function f defined by letting f(〈e, n〉) = lims g

e(n, s) is total for all e. Clearly
f is (ω · p)-c.a. If ψe is total then f(〈e, n〉) = lims ψ

e
0(n, s) for all n. This

proves Claim 5.10.
Recall the notation W(≤ε) introduced in the Cut-off Lemma 2.1, where

W is a c.e. open class and ε > 0 a rational. Also recall that Ue = [We]
≺.

Now let q be an (ω · p)-c.a. function such that

Uq(〈e,n〉) = U
(≤2−n)
f(〈e,n〉)

(where f is the function from Claim 5.10). Let

Sm =
⋃
e<mUq(e,e+m+1),

then λSm ≤
∑

e<m 2−(e+m+1) ≤ 2−m. Furthermore, (Sm)m∈N is an ω2-
Demuth test because q is an ω2-c.a. function and by Lemma 5.2. If Z passes
this test, then Z passes every test (Rm)m∈N obtained in Claim 5.9, and
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hence Z is Demuth random in every K-trivial set. This completes the proof
of Lemma 5.6 and of Theorem 5.5.

6. Towards a traceability characterization of (ω2-c.a.)3

In the following, the binary function p will always be a computable ap-
proximation from above to an unbounded nondecreasing function p. Thus
p(x, s) ≥ p(x, s+ 1) for each x, s, and p(x) = lims p(x, s) for each x. We say
that p is an inverse ω-c.a. approximation if for the function

rs(n) = max{x : p(x, s) ≤ n},

the number of stages s such that rs(n) 6= rs−1(n) is computably bounded
in n.

Example 6.1. Consider p(x, s) = min{Cs(y) : y ≥ x}, where Cs(y) is the
usual plain Kolmogorov complexity of y at stage s. Then p(x) = lims p(x, s)
is dominated by each order function (see [19, 2.1.22]). The approximation
rs(n) increases at most 2n+1 times. Thus, p is inverse ω-c.a.

A p-trace is a computable double sequence (Tx,s)x,s∈N of strong indices
for finite sets such that Tx,s ⊆ Tx,s+1 for each x, s, and where Tx =

⋃
s Tx,s,

#(Tx \ Tx,s) ≤ p(x, s)

for each x, s. The idea is that at any stage s we can adjust downwards
the bound on the number of elements that are allowed to go into Tx after
stage s.

By Example 6.1, the following notion implies strong jump traceability.

Definition 6.2. We say that A is ω-jump traceable if JA has a p trace for
each inverse ω-c.a. computable approximation p such that p is unbounded.

Theorem 6.3. Every set A in (ω2-low)3 is ω-jump traceable. That is, if
a c.e. set A is Turing below each ω2-low ML-random set, then it is ω-jump
traceable.

Proof. We adapt our argument leading to the first statement of Corol-
lary 4.5, that the diamond class of superlowness is contained in the strongly
jump traceable sets. First we adapt Theorem 3.2 and its proof in order to
show that each base for ω2-Demuth randomness is ω-jump traceable. For
m, s ∈ N, we let

Im,s = {x : 2m ≤ p(x, s) < 2m+1}.
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To define the Turing functional ΓX(m, t), we use the interval Im,t: for each
string α of length t,

UΓα(m,t) = {Z : ∀x ∈ Im,t [Jαt (x) ↓ with useu ⇒ α�u� ΦZ
t ]}.

Now define versions GAm[t] as before. They determine an ω2-Demuth test
relative to A by the hypothesis that p is inverse ω-c.a.

The computable double sequence of finite sets (Tx,s)x,s∈N is defined as
expected. At stage t, for each string α of length t such that y = Jαt (x) is
defined and the measure of the current approximation to the c.e. open set
UΓα(m,t) exceeds 2−m, put y into Tx,s. It is not hard to verify that (Tx,s)x,s∈N
is a p trace for JA.

Claim 3.4 is adapted as follows: given p as above, a Turing functional Φ
and a superlow c.e. set A, there is an ω2–Demuth test (Sm)m∈N such that,
if A = ΦY for some Y passing this test, then JA has a p-trace.

An analog of Lemma 4.3 now shows that, if a class C is ω2-Demuth
test–compatible, then each set A ∈ C3 is ω-jump traceable. It remains to
adapt the first statement of Theorem 4.4, which now says that ω2-lowness is
ω2-Demuth test–compatible. This was already done in Proposition 5.4.
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