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ABSTRACT

We say that a class of finite structures for a finite first-order signature is

r-compressible for an unbounded function r : N → N+ if each structure G

in the class has a first-order description of size at most O(r(|G|)). We show

that the class of finite simple groups is log-compressible, and the class of all

finite groups is log3-compressible. As a corollary we obtain that the class

of all finite transitive permutation groups is log3-compressible. The results

rely on the classification of finite simple groups, the bi-interpretability of

the twisted Ree groups with finite difference fields, the existence of profi-

nite presentations with few relators for finite groups, and group cohomo-

logy. We also indicate why the results are close to optimal.

1. Introduction

Let L be first-order logic in a signature consisting of finitely many relation

symbols, function symbols, and constants. We say that a sentence ϕ in L

describes G if G is the unique model of ϕ up to isomorphism. We study the
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compressibility of finite L-structuresG up to isomorphism via such descriptions.

Our main results are about compressibility of finite groups.

Note that every finite L-structure G can be described by some sentence ϕ:

for each element of G we introduce an existentially quantified variable; we say

that these are all the elements of G, and that they satisfy the atomic formulas

valid for the corresponding elements of G. However, this sentence is at least as

long as the size of the domain of G. We may think of a description of G which

is much shorter than |G| as a compression of G up to isomorphism.

Unless stated otherwise, descriptions of structures will be in first-order logic.

For an infinite class of L-structures, we are interested in giving descriptions that

are asymptotically short relative to the size of the described structure. This is

embodied in the following definition. Usually the function r grows slowly.

Definition 1.1: Let r : N → N
+ be an unbounded function. We say that an

infinite class C of finite L-structures is r-compressible if for each structure G

in C, there is a sentence ϕ in L such that |ϕ| = O(r(|G|)) and ϕ describes G.

Sometimes we also want to give a short description of a structure in C, toget-
her with a tuple of elements. We say that the class C is strongly r-compressible

if for each structure G in C, each k and each g ∈ Gk, there is a formula

ϕ(y1, . . . , yk) in L such that |ϕ| = O(r(|G|)) and ϕ describes (G, g) (where

the O constant can depend on k).

In this paper, for notational convenience we will use the definition

logm = min{r : 2r ≥ m}.
The following is our first main result.

Theorem 1.2: The class of finite simple groups is log-compressible.

Finite groups can be described up to isomorphism via presentations. There

is a large amount of literature on finding very short presentations for “most”

finite groups G; see e.g. [1, 7, 4]. Using composition series, these presentations

can be converted into first-order descriptions of G that are at most O(log2 |G|)
longer, as we will see in Proposition 5.5.

The small Ree groups 2G2(q) are finite simple groups that arise as subgroups

of the automorphism group G2(q) of the octonion algebra over the q-element

field Fq, where q has the form 32k+1 [12, Section 4.5]. They form a notorious

case where short presentations are not known to exist. Nonetheless, we are able
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to find short first-order descriptions by using the bi-interpretability with the

difference field (Fq, σ), where σ is the 3k+1-th power of the Frobenius automor-

phism. This was proved by Ryten [11, Prop. 5.4.6(iii)]. It then suffices to give

a short description of the difference field, which is not hard to obtain.

Let logk denote the function g(n) = (log(n))k. Our second main result is the

following:

Theorem 1.3: The class of finite groups is strongly log3-compressible.

We describe a general finite group G by choosing a composition series

1 = G0 � G1 � · · · � Gr = G, where r ≤ log |G|. We use Theorem 1.2 to

describe the factors Hi = Gi+1/Gi of the series, which are simple by definition.

We then use the method of straight line programs due to [2], and some group

extension theory, to obtain short formulas describing Gi+1 for each i < r as an

extension of Gi by Hi.

The proof of Theorem 1.3 assuming Theorem 1.2 is analogous to the proof of

similar results for presentations, such as Babai et al. [1, Section 8] and Mann

[10, Thm. 2]. However, in our case the deduction is different because we have to

describe the extension of Gi by Hi in first-order logic rather than presentations.

This is where we use the existence of profinite presentations with few relators

for finite groups, and group cohomology (Section 6).

Recall that a permutation group is a group G together with an action of G

on a set X given by a homomorphism of G into the symmetric group of X . If

the action is transitive, then it is equivalent to the action of G on H\G by right

translation, where H is the stabilizer in G of a point x ∈ X . Thus, describing

the action of G on X amounts to describing G together with a distinguished

subgroup H of G. Since our methods yield short descriptions of this kind, we

obtain:

Corollary 1.4: The class of finite transitive permutation groups is log3-

compressible.

By counting the number of non-isomorphic groups of a certain size, in Re-

mark 7.2 we will also provide lower bounds on the length of a description, which

show the near-optimality of the two main results. In particular, from the point

of view of the length of first-order descriptions, simple groups are indeed sim-

pler than general finite groups. The lower bounds apply to descriptions in any
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formal language, such as second-order logic. Thus, for describing finite groups,

first-order logic is already optimal.

As usual in the theory of Kolmogorov complexity, we gauge how short a des-

cription of an object is by comparing it to the size of the object itself, considered

as its own trivial description. Given a group of size m, each element can be

encoded by logm bits. The size of the table for the operation (a, b) �→ ab−1 is

therefore m2 logm. This table can be seen as a trivial description. Since our

bounds on the lengths of short descriptions are powers of logm, up to a linear

constant it does not matter whether we take m or m2 logm as the length of the

trivial description.

A Σr-sentence of L is a sentence that is in prenex normal form, starts with

an existential quantifier, and has r − 1 quantifier alternations. We say that C
is g-compressible using Σr-sentences if ϕ in Definition 1.1 can be chosen in Σr

form. We will provide variants of the results above where the sentences are Σr

for a certain r. The describing sentences will be of length O(log4 |G|).
Usually we view a formula ϕ of L as a string over the infinite alphabet consis-

ting of: a finite list of logical symbols, an infinite list of variables, and the finitely

many symbols of L. Sometimes we want the alphabet to be finite, which we

can achieve by indexing the variables with numbers written in decimal (such as

x901). This increases the length of a formula by a logarithmic factor (assuming

that ϕ always introduces new variables with the least index that is available,

so that xi occurs in ϕ only when i < |ϕ|). We then encode the resulting string

by a binary string, which we call the binary code for ϕ. Its length is called the

binary length of ϕ, which is O(|ϕ| log |ϕ|).
Our results are particular to the case of groups. For instance, in the case

of all undirected graphs, not much compression is possible using any formal

language: the length of the “brute force” descriptions given above, involving

the open diagram, is close to optimal. To see this, note that there are 2(
n
2)

undirected graphs on n vertices. The isomorphism class of each such graph has

at most n! elements. Hence the number of non-isomorphic undirected graphs

with n vertices is at least 2(
n
2)/n! = 1

nΠ
n−1
i=1 2

i/i, which for large n exceeds
1
n2

n2/6. For each k there are at most 2k sentences ϕ with a binary code of

length less than k. So for each large enough n there is an undirected graph

G with n vertices such that n2 − 6 logn = O(|ϕ| log |ϕ|) for any description ϕ
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of G. (See [5, Cor. 2.12] for a recent proof that the lower bound 2(
n
2)/n! is

asymptotically equal to the number of nonisomorphic graphs on n vertices.)

2. Short first-order formulas related to generation

This section provides short formulas related to generation in monoids and

groups. They will be used later on to obtain descriptions of finite groups.

Some of the results are joint work with Yuki Maehara, a former project student

of Nies.

Firstly, we consider exponentiation in monoids.

Lemma 2.1: For each positive integer n, there is an existential formula θn(g, x)

in the first-order language of monoids L(e, ◦), of length O(log n), such that for

each monoid M , M |= θn(g, x) if and only if xn = g.

Proof. We use a standard method from the theory of algorithms known as

exponentiation via repeated squaring. Let k = logn. Let α1 · · ·αk be the

binary expansion of n. Let θn(g, x) be the formula

(∗) ∃y1 · · · ∃yk[y1 = x ∧ yk = g ∧
∧

1≤i<k
yi+1 = yi ◦ yi ◦ xαi+1 ],

where xαi is x if αi = 1, and xαi is e if αi = 0. Clearly θn has length O(log n).

One verifies by induction on k that the formulas are correct.

We give a sample application of Lemma 2.1 which will also be useful below.

By the remark after Proposition 4.3 below, the upper bound on the length of

the descriptions is close to optimal.

Proposition 2.2: The class of cyclic groups G of prime power order is log-

compressible via sentences in the language of monoids that are in Σ3 form.

Proof. Suppose that n = |G| = pk where p is prime. A group H is isomorphic

to G if and only if there is an element h such that hp
k

= 1, hp
k−1 �= 1, and h

generates H . By Lemma 2.1, the first two conditions can be expressed by

formulas of length O(log n) with h as a free variable, the first existential, the

second universal. For the third condition, we need a modification of Lemma 2.1,

namely a formula χn such that for each monoid M , M |= χn(g, x) if and only

if xr = g for some r such that 0 ≤ r < 2k, where k = logn (recall that by

our definition of log, the number 2k is the least power of two which is not less
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than n). We define χn(g, x) by

∃y0 · · · ∃yk[y0 = 1 ∧ yk = g ∧
∧

0≤i<k
(yi+1 = yi ◦ yi ◦ x ∨ yi+1 = yi ◦ yi)].

It is now clear that the condition that h generates the group can be expressed

by a formula of length O(log n) which is in Π2 form.

For elements x1, . . . , xn in a group G we let 〈x1, . . . , xn〉 denote the subgroup
of G generated by these elements. The pigeon hole principle easily implies the

following:

Lemma 2.3: Given a generating set S of a finite group G, every element of G

can be written as a product of elements of S of length at most |G|.
We define a crucial collection of formulas αk(g;x1, . . . , xk) in the first-order

language of monoids so that αk(g;h1, . . . , hk) expresses that g is in 〈h1, . . . , hk〉.
These formulas depend only on k and the size of the group G.

Lemma 2.4: For each pair of positive integers k, v, there exists a first-order

formula αk(g;x1, . . . , xk) in the language of monoids of length O(k+log v) such

that for each group G of size at most v, G |= αk(g;x1, . . . , xk) if and only if

g ∈ 〈x1, . . . , xk〉.
Proof. We use a technique that originated in computational complexity to show

that the set of true quantified boolean formulas is PSPACE-complete. For i ∈ N

we inductively define formulas δi(g;x1, . . . , xk). Let

δ0(g;x1, . . . , xk) ≡
∨

1≤j≤k
[g = xj ∨ g = 1].

For i > 0 let

δi(g;x1, . . . , xk) ≡ ∃ui∃vi[g = uivi ∧
∀wi[(wi = ui ∨ wi = vi) → δi−1(wi;x1, . . . , xk)]].

Note that δi has length O(k + i), and G |= δi(g;x1, . . . , xk) if and only if g can

be written as a product, of length at most 2i, of xr ’s.

Now let αk(g;x1, . . . , xk) ≡ δp(g;x1, . . . , xk) where p = log v. Then 2p ≥ v

by our definition of log, so αk is a formula as required by Lemma 2.3.

Remark 2.5: We note that we can optimize the formulas in Lemmas 2.1

and 2.4 so that the length bounds apply to the binary length. For instance,
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in Lemma 2.4 we can “reuse” the quantified variables u, v, w at each level i, so

that αk becomes a formula over an alphabet of size k +O(1).

3. Straight line programs and generation

In this section we recall the Reachability Lemma from Babai and Szemerédi [2,

Theorem 3.1], and the notion of a pre-processing set introduced in Babai et

al. [1, Lemma 8.2] following their proof sketch. Let G be a finite group, S ⊆ G

and g ∈ G. A straight line program (SLP) L over S is a sequence of group

elements such that each element of L is either in S, an inverse of an earlier

element or a product of two earlier elements. We say that an SLP L computes

g from S if L is an SLP over S containing g.

The reduced length of L is the number of elements in L outside S. For a

set A ⊆ G we say that a straight line program L over S computes A if every

element of A occurs in L. Let cost(A | S) be the shortest reduced length of a

straight line program computing A from S.

For a subset S of a finite group G, Babai and Szemerédi [2] construct a set of

generators A for 〈S〉 with |A| ≤ log |〈S〉| such that every element of 〈S〉 = 〈A〉
has length at most 2 log |G| as a word over A (cf. Lemma 2.3). Such pre-

processing sets will reduce the length of the formulas in Section 7. We include

the construction for convenience, and in order to adjust it for future reference

to an increasing sequence of subsets of G.

Lemma 3.1 ([2, 1]): Let G be a finite group. Suppose T1 ⊂ · · · ⊂ Tk ⊆ G is an

ascending sequence of subsets and Gi = 〈Ti〉, i = 1, . . . , k.

There is an ascending sequence of pre-processing sets Ai for Gi,

i = 1, . . . , k, with |Ai| ≤ log |Gi|, 〈Ai〉 = 〈Ti〉, cost(Ai | Ti) < (log |Gi|)2, and
cost(g | Ai) < 2 log |Gi| for every g ∈ Gi.

Proof. We first consider the case k = 1, i.e., a single set S = T1 ⊆ G. Let s be

minimal with 2s ≥ |〈S〉| so that s = log |〈S〉| according to our definition of log.

For i ≤ s, we inductively define an increasing sequence of subsets K(i) ⊆ 〈S〉
of size 2i, elements zi ∈ K(i) and an increasing sequence of SLPs Li computing

z1, . . . , zi from S. The set {z1, . . . , zs} will serve as our pre-processing set for

〈S〉.
To begin with, let K(0) = {1}, z0 = 1,L0 = ∅. Suppose K(i) and Li have

been defined with the required properties. If K(i)−1K(i) �= 〈S〉, there are
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v ∈ K(i)−1K(i) and x ∈ S such that zi+1 := vx �∈ K(i)−1K(i). Let K(i + 1)

be the set of products Πl≤i+1z
αl

l where αl ∈ {0, 1}. By the choice of zi+1 we

have |K(i+ 1)| = 2|K(i)| = 2i+1.

One can write zi+1 = v−1
0 v1x with v0, v1 ∈ K(i), and v0 �= v1, so that we

can also assume that not both v0 and v1 have length i. Since Li computes

z1, . . . , zi, an SLP computes v0 and v1 which extends Li by at most 2i − 3

elements (corresponding to the initial segments of the vr of length > 1). To

obtain Li+1, we append v−1
0 , v−1

0 v1 and finally zi+1 = v−1
0 v1x to Li. In total

we have appended at most 2i elements to Li. Clearly this process ends after

s steps, when K(s)−1K(s) = 〈S〉. Then A = {z1, . . . , zs} is a generating set

for 〈S〉, and Ls is an SLP computing A from S of reduced length at most

2
∑s
i=1(i − 1) ≤ s2. Since K(s)−1K(s) = 〈S〉, we see that any g ∈ 〈S〉 can

be computed from A = {z1, . . . , zs} by an SLP of reduced length at most

2s− 1 < 2 log |G|. Thus, A is the required pre-processing set.

Now suppose we have S = T1 ⊂ T2 and A = A1 as above computed by

Ls1 = Ls from T1 so that K(s1)
−1K(s1) = 〈T1〉. We continue the construction

using elements x ∈ T2 for s2 − s1 steps extending A1 to a set A2 and Ls1 = Ls
to an SLP Ls2 . Inductively we find the required Ai, i ≤ k.

Corollary 3.2: Any finite group G has a generating set A of size at most

log |G| such that any element of G has length at most 2|A| over A.
We call a generating set with the latter property swift. Swift generating sets

will be used below to give short descriptions for finite groups.

For reference we also note that the first part of the proof of Lemma 3.1 shows

the following:

Corollary 3.3 (Reachability Lemma [2]): Let r = log |G|. For each set S ⊆ G

and any g ∈ 〈S〉, there is a straight line program L of reduced length at most

(r + 1)2 that computes g from S.

Proof. We build the sequences z1, . . . , zi, K(0), . . . ,K(i) and L0, . . . ,Li as in

the proof of Lemma 3.1 until g ∈ K(s)−1K(s). This yields an SLP computing

g from S of reduced length at most (r + 1)2.

We say that an L-formula ϕ(x) in variables x, possibly with parameters in

a group G, defines an ordered tuple A (of the same length as x) in G if A is

the unique tuple in G such that ϕ(A) holds in G (here the elements of A are
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substituted for the variables of ϕ). We can define swift generating sets for a

normal series of a group G by a formula in O(log2 |G|).
Lemma 3.4: Let G be a finite group with a normal series

1�G0 �G1 � · · ·�Gr = G

and an ascending sequence of generating sets

T0 ⊂ T1 ⊂ · · · ⊂ Tr = T

with 〈Ti〉 = Gi, |Ti| ≤ log |Gi|, 0 ≤ i ≤ r.

There is a formula ψ using parameters from the set T with |ψ| = O(log2 |G|)
defining a sequence A1 ⊆ · · · ⊆ Ar = A ⊆ G of pre-processing sets for Gi over

Ti, i ≤ r.

Proof. Note first that r ≤ log |G|. Let A1 ⊆ · · · ⊆ Ar = A ⊆ G be pre-

processing sets computed by SLP’s L1 ≺ · · · ≺ Lr = L from T1 ⊂ · · · ⊂ Tr =

T according to Lemma 3.1. Recall that the reduced length of Li is at most

log2 |〈Ti〉|.
The formula ψ in free variables corresponding to the elements of T and A

expresses that A is a pre-processing set for G over T . We first build a formula ψ0

in the same free variables. We start with a prenex of existential quantifiers that

refers to the sequence of elements of the SLP L that are not in A. The formula ψ0

expresses each member of the sequence as the product of two previous elements,

or inverse of a previous element, according to L. Then ψ0 has length O(log
2 |G|).

To build ψ, we use the formulas α|Ti|(y, Ti) and α|Ai|(y,Ai) from Lemma 2.4,

of length O(log |Gi|), to also express that 〈Ai〉 = 〈Ti〉, i ≤ r. Then ψ has length

O(log2 |G|).
The formulas αk in Lemma 2.4 have about 2 log v quantifier alternations for

k > 0, and use negation. Via the argument in Lemma 3.1, we can obtain

existential formulas without negation symbols that are somewhat longer.

Lemma 3.5: For each pair of positive integers k, v, there exists an existential

negation-free first-order formula β(g;x1, . . . , xk) of length O(k log v + log2 v)

such that for each group G of size at most v,

G |= β(g;x1, . . . , xk) if and only if g ∈ 〈x1, . . . , xk〉.
We note that in applications we will have k ≤ log v so that the length is

O(log2 v).
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Proof. The formula describes the generation of a SLP computing g from

x1, . . . , xk according to the proof of Lemma 3.1, for a single set S. The ex-

istentially quantified variables z1, . . . , zs, where s = log v, correspond to the

pre-processing set A, while zs+1 equals g. The rest of the formula expresses

that each zt+1 for t < s has the form v−1
0 v1x for v0, v1 ∈ K(t) and a genera-

tor x, and that g = v−1
0 v1 for v0, v1 ∈ K(s). In detail, let

β(g;x1, . . . ,xk) ≡
∃z1, . . . , zs+1∃y0, . . . , ys[g = zs+1 ∧ ys = 1 ∧ (

∧
0≤i<s

∨
1≤r≤k

yi = xr)∧
∧

0≤t≤s
∃p0, . . . , pt∃q0, . . . , qt[p0 = q0 = 1 ∧ zt+1 = p−1

t qtyt ∧
∧

0≤j<t
[(pj+1 = pjzj ∨ pj+1 = pj) ∧ (qj+1 = qjzj ∨ qj+1 = qj)]]].

Clearly β has length O(k log v + log2 v).

4. Describing finite fields and finite difference fields

Recall that a finite field F has size q = pn where p is a prime called the characte-

ristic of F. For each such q there is a unique field Fq of size q. Let Frobp denote

the Frobenius automorphism x → xp of Fq. The group of automorphisms of

Fq is cyclic of order n with Frobp as a generator. In particular, (Frobp)
n is the

identity on Fq.

A difference field (F, σ) is a field F together with a distinguished automor-

phism σ. Examples are the field of complex numbers with complex conjugation

and finite fields of characteristic p with a fixed power of the Frobenius automor-

phism. We show that finite fields and finite difference fields are log-compressible

in the language of rings L(+,×, 0, 1), extended by a unary function symbol σ in

the second case. Besides providing another example for our main Definition 1.1,

this will be used in one case of the proof of our first main result, Theorem 1.2.

Proposition 4.1: (i) For any finite field Fq, there is a Σ3-sentence ϕq of

length O(log q) in L(+,×, 0, 1) describing Fq.

(ii) For any finite difference field (Fq, σ) there is a Σ3-sentence ψq,σ of length

O(log q) in L(+,×, 0, 1, σ) describing 〈Fq, σ〉.
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(iii) For any finite field Fq, and any c ∈ Fq, there is a Σ3-formula ϕc(x) of

length O(log q) in L(+,×, 0, 1) describing the structure 〈Fq, c〉.
Proof. (i) The sentence ϕq says that the structure is a field of characteristic p

such that for all elements x we have xp
n

= x and there is some x with xp
n−1 �= x.

By Lemma 2.1 one can ensure that |ϕq| = O(log q) and the sentence ϕq is Σ3.

(ii) Since any automorphism of Fq is of the form (Frobp)
k for some k ≤ n, we

can use Lemma 2.1 again to find a sentence of length O(log q) expressing that

σ(x) = xp
k

for each x.

(iii) By (i) it suffices to give a formula that determines c within Fq up to an

automorphism of the field. Let q = pn as above. Since Fq is a Galois extension

of Fp of degree n, any c ∈ Fq is determined within Fq up to an automorphism

of the field by being a zero of its minimal polynomial over Fp. This polynomial

has degree at most n. So we can apply Lemma 2.1 repeatedly to express that c

is a zero of the polynomial by a formula of length O(n · log p) = O(log q).

Corollary 4.2: The class of finite fields is strongly log-compressible (as defi-

ned after Definition 1.1) via Σ3-sentences in L(+,×, 0, 1).
Proof. By Proposition 4.1(iii), a generator b of the multiplicative group of Fq

can be determined within Fq up to automorphism by a Σ3-formula ϕq(x) of

length O(log q). In order to determine a finite tuple of field elements up to

automorphism, it thus suffices to pin down the corresponding tuple of exponents

of b. Since these exponents are bounded by q − 1, via Lemma 2.1 this can be

done with a formula of length O(log q).

The following shows that the upper bound of O(log q) on the length of a

sentence describing Fq is close to optimal for infinitely many q.

Proposition 4.3: There is a constant k > 0 such that for infinitely many

primes q, for any description ϕ for Fq, we have

log(q) ≤ k|ϕ| log |ϕ|.
Proof. Let C(n) denote the Kolmogorov complexity of the binary expansion of

a natural number n. A sentence ϕ describing Fq also yields a description of

the number q. Therefore C(q) ≤ k′|ϕ| log |ϕ| for some k′, where the corrective

factors are needed because the string ϕ over an infinite alphabet has to be
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encoded by a binary string in order to serve as a description in the sense of

Kolmogorov complexity.

Infinitely many n ∈ N are random numbers, in that C(n) =+ log2 n (the

superscript + means that the inequality holds up to a constant). Now let

q = pn, the n-th prime number, so that C(q) =+ C(n) =+ log2 n. By the prime

number theorem pn/ ln(pn) ≤ 2n for large n, so that log(q/ ln q) ≤+ log2 n.

Note that
√
q ≤ q/ ln q for q ≥ 3 so that log q − 1 ≤ log(q/ ln q). Choosing

k ≥ k′ appropriately and putting the inequalities together, we obtain log q ≤
k|ϕ| log |ϕ| as required.

A similar argument shows that Proposition 2.2, for descriptions of cyclic

groups of prime order, is close to optimal.

5. Describing finite simple groups

The main result of this section is the following.

Theorem 1.2: The class of finite simple groups is log-compressible.

We do not know whether the class of finite simple groups is strongly log-

compressible (cf. Lemma 5.2, but see also Propositions 5.8). For the proof

of Theorem 1.2, recall that any finite simple group belongs to one of the follo-

wing classes:

(1) the finite cyclic groups Cp, p a prime;

(2) the alternating groups An, n ≥ 5;

(3) the finite simple groups Ln(Fq) of fixed Lie type L and Lie rank n,

possibly twisted, over a finite field Fq;

(4) the 26 sporadic simple groups.

See e.g. [12], Section 1.2.

5.1. Short first-order descriptions via short presentations. Clearly

for the proof of Theorem 1.2 we may disregard the finite set of sporadic sim-

ple groups. For most of the other classes we will use that there exist short

presentations. Recall that a finite presentation of a group G is given by a nor-

mal subgroup N of a free group F (x1, . . . , xk) such that G = F (x1, . . . , xk)/N ,

and N is generated as a normal subgroup by relators r1, . . . , rm. One writes

G = 〈x1, . . . , xk | r1, . . . , rm〉.
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Definition 5.1: We define the length of a presentation

G = 〈x1, . . . , xk | r1, . . . , rm〉
to be k+

∑
j |rj |, where |rj | denotes the length of the relator rj expressed as a

word in the generators xi and their inverses.

Lemma 5.2: Suppose that a finite simple group G has a presentation

〈x1, . . . , xk | r1, . . . , rm〉 of length 
. Let gi be the image of xi in G, i = 1, . . . , k.

(i) There is a sentence ψ of length O(log |G| + 
) describing the structure

〈G, g〉.
(ii) There is a Σ3-sentence ψ of length O(log2 |G|+ 
) describing the struc-

ture 〈G, g〉, provided that k ≤ log |G|.
Proof. (i) Let ψ be

x1 �= 1 ∧
∧

1≤i≤m
ri = 1 ∧ ∀y αk(y;x1, . . . , xk),

where αk is the formula from Lemma 2.4 of length O(k+log |G|) expressing that
y is generated from the xi within G. Replacing the x1, . . . , xk by new constant

symbols, the models of the sentence thus obtained are the nontrivial quotients

of G. Since G is simple, this sentence describes 〈G, g〉.
(ii) is similar, using the formula βk from Lemma 3.5 instead of αk.

For most classes of finite simple groups, Guralnick et al. [7] obtained a pre-

sentation for each member G that is very short compared to |G|.
Theorem 5.3 ([7, Thm. A]): There is a constant C0 such that any nonabelian

finite simple group, with the possible exception of the Ree groups of type 2G2,

has a presentation with at most C0 generators and relations and length at most

C0(logn+ log q), where n denotes the Lie rank of the group and q the order of

the corresponding field.

Note that, following Tits, they considered the alternating groups An as groups

of Lie rank n− 1 over the “field” F1 with one element. For more detail see their

remark before [7, Thm. A].

Proposition 5.4: (i) The class of finite simple groups, excluding the Ree

groups of type 2G2, is log-compressible.

(ii) The same class is log2-compressible using Σ3-sentences.
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Proof. For cyclic simple groups, this follows from Proposition 2.2. Now con-

sider a finite simple group G = Ln(Fq), that is, G is of Lie rank n with cor-

responding field Fq. Suppose G is not a Ree group of type 2G2. We have

logn+log q ≤ log |G|: This is clear for the alternating groups An because q = 1

and |An| = n!/2. Otherwise, the calculations of sizes of finite simple groups in

e.g. http://en.wikipedia.org/wiki/List_of_finite_simple_groups (Au-

gust 2014) or Wilson [12] show that |G| is at least qn.
Now by the foregoing theorem, together with Lemma 5.2 (i) replacing the con-

stants by variables xi, we obtain a formula ψ(x1, . . . , xC0) of length O(log |G|).
Then the sentence ϕ ≡ ∃x1 · · · ∃xC0 ψ is as required for (i). For (ii) we use

Lemma 5.2 (ii) instead.

We also note the following:

Proposition 5.5: For any function f : N → N, the class of finite groups G

with a presentation of total length f(|G|) is strongly (f + log2)-compressible.

Proof. Suppose G has a presentation G = 〈x1, . . . , xk | r1, . . . , rm〉 of length

f(|G|). Fix a composition series

1�G1 � · · ·�Gr = G

and an ascending sequence of swift generating sets (see Corollary 3.2)

A0 ⊂ A1 ⊂ · · · ⊂ Ar = A

with 〈Ai〉 = Gi, |Ai| ≤ log |Gi|, 0 ≤ i ≤ r. Note that r ≤ log |G|.
We start with a prenex of existential quantifiers referring to the elements of A

and then express that for each i the subgroup generated by Ai is a proper normal

subgroup of the subgroup generated by Ai+1, using the αk from Lemma 2.4 for

k = |Ai|. This takes length O(log2 |G|).
We next express the x1, . . . , xk as words over the preprocessing set A. This

takes a length of 2|A| · k. We note that the formula
∧

1≤i≤m
ri = 1 ∧ ∀y αk(y;x1, . . . , xk),

holds in a group (H,h) if and only if (H,h) is a quotient of (G, g) where h, g

are the images of x in H and G, respectively. Since a composition series of a

proper quotient of G is shorter than r, we see that the conjunction of these

three formulas describes (G, g) with a length of O((f + log2)|G|). For strong

http://en.wikipedia.org/wiki/List_of_finite_simple_groups
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compressibility, note that any tuple of elements from G can be written as a

word of length 2|A| over A.

It was shown in [1] that any finite group G without a composition factor of

type 2G2 has a presentation of length O(log3 |G|). Hence we obtain:

Corollary 5.6: The class of finite solvable groups, and more generally of

groups without a composition factor of type 2G2, is strongly log3-compressible.

While this also follows from our main result Theorem 1.3 proved below, it

is interesting to note that this restricted form can be obtained already at this

stage.

Remark 5.7: Using the argument of Proposition 5.5, one can see that if a class

of finite groups is f -compressible for some function f : N → N, then this class

is strongly (f +log2)-compressible. However, we do not know whether the class

of finite simple groups is strongly log-compressible.

5.2. Short first-order descriptions via interpretations. It remains to

treat the class of Ree groups of type 2G2. While the Chevalley groups of type

G2 exist over any field F as the automorphism group of the octonion algebra

over F, the (twisted) groups 2G2 exist only over fields of characteristic 3 which

have an automorphism σ with square the Frobenius automorphism. For a finite

field Fq, this happens if and only if q = 32k+1. The untwisted group can be

presented as a matrix group over such a field. The twisted group can be seen

as the group of fixed points under a certain automorphism of G2 arising from

the symmetry in the corresponding Dynkin diagram, which induces σ on the

entries of the matrix (see e.g. [6, Section 13.4]).

Strong r-compressibility was introduced after Definition 1.1.

Proposition 5.8: The class of Ree groups of type 2G2 is strongly

log-compressible via Σd-sentences for some constant d.

No short presentations are known for these Ree groups. Instead, we use

first-order interpretations between groups and finite difference fields in order to

derive the proposition from Lemma 4.1.

Suppose that L,K are languages in finite signatures. Interpretations via first-

order formulas of L-structures inK-structures are formally defined, for instance,

in [8, Section 5.3]. Informally, an L-structureG is interpretable in aK-structure
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F if the elements of G can be represented by tuples in a definable k-ary relation

D on F , in such a way that equality of G becomes an F -definable equivalence

relation ≈ on D, and the other atomic relations on F are also definable.

A simple example is the field of fractions of a given intergral domain, which

can be interpreted in the domain. For an example more relevant to this paper,

fix n ≥ 1. For any field F, the linear group SLn(F) can be interpreted in F. A

matrix B is represented by a tuple of length k = n2, D is given by the first-order

condition that det(B) = 1, and ≈ is equality of tuples. The group operation

of SLn(F) is then given by matrix multiplication, and can be expressed in a

first-order way using the field operations.

We think of the interpretation of F in G as a decoding function Δ. It decodes

F from G using first-order formulas, so that F = Δ(G) is an L-structure.

Definition 5.9: Suppose that L,K are languages in a finite signature, and that

classes C ⊆M(L),D ⊆ M(K) are given. We say that a function Δ as above is

a uniform interpretation of C in D if for each G ∈ C, there is F ∈ D such

that G = Δ(F ).

Note that if Δ is a uniform interpretation of C in D, then there is some k ∈ N,

namely the arity of the relation D, such that for G = Δ(F ) we have |G| ≤ |F |k.
For example, the class of special linear groups SL2(F) over finite fields F is

uniformly interpretable in the class of finite fields via the decoding function Δ

given by the formulas above.

Suppose K ′ is the signature K extended by a finite number of constant sym-

bols. Let D′ be the class of K ′-structures, i.e. K-structures giving values to

these constant symbols. We say that a function Δ based on first-order formulas

in K ′ is a uniform interpretation of C in D with parameters if Δ is a uniform

interpretation of C in D′.
We will apply the following proposition to the class C of finite Ree groups

of type 2G2(q), and the class D of finite difference fields for which these Ree

groups exist.

Proposition 5.10: Suppose that L,K are languages in a finite signature, and

that classes C ⊆M(L),D ⊆M(K) are given. Suppose furthermore that

(1) there is a uniform interpretation Δ without parameters of C in D,

(2) there is a uniform interpretation Γ with parameters of D in C, and
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(3) there is an L-formula η involving parameters such that for each G ∈ C
there is a list of parameters p in G so that η defines an isomorphism between

G and Δ(Γ(G, p)). The following hold.

(i) If D is log-compressible, then so is C.
(ii) If D is strongly log-compressible, then so is C.

Proof. Let G ∈ C, so that G = Δ(F ) for some F ∈ D. Let ϕ be a sentence of

length O(log |F |) describing F . The sentence ψ expresses the following about

an L-structure H :

there are parameters q in H such that Γ(H, q) |= ϕ and

η describes an isomorphism H ∼= Δ(Γ(H, q)).

We claim that ψ describes G. To see this, note that certainly G |= ψ via p.

If G̃ is an L-structure satisfying ψ via a list of parameters q, then Γ(G̃, q) |= ϕ

implies that Γ(G̃, q) ∼= F , so that G̃ ∼= Δ(F ) ∼= G.

To see that |ψ| = O(log(|G|)), recall that the uniform interpretations are

by definition based on fixed sets of formulas. Therefore |ψ| = O(|ϕ|). Since

log |G| = O(log |F |) by the remark after Definition 5.9, we have |ψ| = O(log |G|).
This shows (i).

To prove (ii) suppose that G ∈ C, G = Δ(F ) as above. Suppose g is a tuple in

G; for notational simplicity assume its length is 1. Then g is given by a k-tuple

u in F for fixed k; we denote this by (G, g) = Δ(F, u). This tuple in turn is

given by a k · l-tuple w in G when an appropriate list q of parameters is fixed;

we write (F, u) = Γ(G, q, w).

Now by hypothesis on D there is a formula θ(x1, . . . , xk) of length O(log(|F |)
describing (F, u). Obtain a formula χ(y) by adding to the expression for ψ

above the condition on y that there is a k · l tuple w of elements of H such that

Γ(G, q, w) satisfies θ, and Δ(Γ(G, q, w)) = (H, y). Then |χ| = O(log |G|) and χ
describes (G, g).

Note that if ϕ is a Σk sentence, then ψ is a Σk+c sentence for a constant c

depending only on the interpretations and the formula η. Thus, if D is log-

compressible using Σk sentences, then C is log-compressible using Σk+c senten-

ces.

The previous proposition allows us to deal with the class of Ree groups of

type 2G2 using a result of Ryten. Note that the class of difference fields
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(F32k+1 ,Frobk+1
3 ), k ∈ N, is denoted C(1,2,3) there. The following is a special

case of the more general result of Ryten.

Theorem 5.11 (by [11], Prop. 5.4.6(iii)): Let C be the class of finite groups
2G2(q), q = 32k+1, and let D be the class of finite difference fields

(F32k+1 ,Frobk+1
3 ). The hypotheses of Proposition 5.10 can be satisfied via uni-

form interpretations Δ,Γ and a formula η in the language of groups.

The details of the proof are contained in Ch. 5 of [11]. Since they require

quite a bit of background on simple groups of Lie type, we merely indicate how

to obtain the required formulas. The group 2G2(F) has Lie rank 1, and hence

behaves similarly to the group SL2(F), which also has Lie rank 1. The formulas

required for Proposition 5.10 are essentially the same in both cases. Since most

readers will be more familiar with SL2(F), we use this group rather than 2G2(F)

to make the required subgroups more explicit.

The uniform interpretation Δ of C in D is essentially the same as in the case

of the interpretation of SL2(F) in F described above using the fact that G2(F)

— and hence its subgroup 2G2(F) — has a linear representation as a group

of matrices. The groups G2(F) are uniformly definable in F (as matrix groups

which preserve the octonian algebra on F). The subgroups 2G2(F) of G2(F)

are then uniformly defined in the language of difference fields by expressing

that its elements induce linear transformations (of the affine group G2(F)) that

commute with the field automorphism σ.

The uniform interpretation with parameters Γ of D in C can be given roughly

as follows: for the group 2G2(F), the torus T and the root subgroups U+, U−
of 2G2(F) are uniformly definable subgroups (in the language of groups) using

parameters from the group.

In the case of the group SL2(F), the torus is (conjugate to) the group T of

diagonal matrices in SL2(F) which can be defined uniformly as the centralizer

of a nontrivial element h in T . (The same holds for the group 2G2(F).)

The root group U+ of SL2(F) can be described as the upper triangular ma-

trices with 1’s on the diagonal, similarly U− are the strict lower triangular

matrices. The groups U+, U− are isomorphic to the additive group of the field

F (this is easy to see in the case of SL2(F)). The torus T acts by conjugation

on U+, U− as multiplication by the squares in F. As the characteristic of F is 3,

any element of F is the difference of two squares. Thus the groups U+, U− can

be defined uniformly by picking a nontrivial element u in U+, U−, respectively
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and considering the orbit {uh : h ∈ T } of u under the conjugation by elements

from T . Writing the group operation on U+, U− additively, the set of differences

{uh − uh
′
: h, h′ ∈ T } is uniformly definable and defines the root groups. This

also shows that from U+�T we definably obtain the field F. Again, for 2G2(F)

this is essentially the same.

It remains to find a formula describing the isomorphism η : H ∼= Δ(Γ(H, q))

for a group H ∈ C and an appropriate list of parameters including the ones

given above. For this we need the fact that by the Bruhat decomposition (see

[6], Ch. 8, in particular 8.2.2) we have 2G2 = BNB = B ∪BsB, where in this

case B = U+T , N is the normalizer of T and s is (the lift of) an involution

generating the Weyl group N/T of 2G2. Thus any element of 2G2 (or in fact of

any group of Lie type of Lie rank 1) can be written uniquely either as a product

of the form u1h or of the form u1hsu2 where u1, u2 ∈ U+, h ∈ T and s is a fixed

generator of the Weyl group of 2G2, i.e. s /∈ T normalizes T and s2 ∈ T . This

yields the required isomorphism η.

Proof of Proposition 5.8. By Theorem 5.11 the class C of Ree groups of type
2G2 is uniformly parameter interpretable in the class D of finite difference fields

(F32k+1 ,Frobk+1
3 ). By Corollary 4.2, the class D is strongly log-compressible

using Σ3 sentences. By Proposition 5.10 (and the remark after its proof), this

implies that the class C is strongly log-compressible via Σd sentences for some

constant d. (We estimate that d ≤ 10.)

Remark 5.12: In fact, Ryten proves that for fixed Lie type L and rank n, the

class of finite simple groups Ln is uniformly parameter bi-interpretable with

the corresponding class of finite fields or difference fields. This means that in

addition to the properties given in Proposition 5.10 there is a formula δ in the

first-order language for K that defines for each F ∈ D an isomorphism between

F and Γ(Δ(F ), p). Via Proposition 5.10 this yields a proof that each class

of finite simple groups is log-compressible. However, since there are infinitely

many such classes, further effort would be needed in order to show that there

is a single O-constant which works for all classes. We have circumvented the

problem by using the results of Guralnick et al. [7].

Remark 5.13: By Remark 2.5 and the proofs above, each finite simple group

G actually has a description of binary length O(log(|G|)).
Based on the methods above we can somewhat strengthen Theorem 1.2.
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Proposition 5.14: The class of characteristically simple finite groups G is

log-compressible.

Proof. Any nontrivial characteristically simple finite group G is isomorphic to a

direct power Sk, k ≥ 1, where S is a simple group (see e.g. Wilson [12, Lemma

2.8]). Firstly we consider the case that S is abelian, and so cyclic of order p.

The sentence describing G expresses that there are x1, . . . , xk of order p such

that x1, . . . , xk generate the group (using the formulas αk for v = |G| from
Lemma 2.4); we can say within length O(log |G|) that the xr commute pairwise

by expressing with two disjunctions of length O(k) that

∀z1 ∈ {x1, . . . , xk}∀z2 ∈ {x1, . . . , xk} [z1, z2] = 1.

Now suppose that S is nonabelian. It is well-known that S can be generated

by just two elements g, h. In the following let r range over 1, . . . , k. The

sentence ϕ describing G starts with a block of existentially quantified variables

x1, . . . , xk and y1, . . . , yk; we think of xr, yr as the generating set g, h in the

r-th copy of S. Firstly, we require, using the α2k for the size |G|, that the

set {x1, . . . , xk, y1, . . . , yk} generates the group H under consideration, that

[xr , yr] �= 1 for each r, and that

∀z ∈ {x1, . . . , xk}∃≤1 w ∈ {y1, . . . , yk} [z, w] �= 1.

This ensures that the subgroup Ur generated by xr, yr is normal in the group

H ; hence so is its centraliser C(xr, yr).

Secondly, let ϕS be a description of S with |ϕS | = O(log |S|) according to

Theorem 1.2. We require that the center of Ur is trivial (this is possible using

the formula α2 for size |G|), and that H/C(z, w) |= ϕS for each z ∈ {x1, . . . , xk}
and w ∈ {y1, . . . , yk} such that [z, w] �= 1. This can be done within the required

length bound since C(z, w) is defined by a formula of fixed length. Since H |= ϕ

implies Ur ∼= H/C(Ur) for each r, the sentence describes G.

6. Background on group extensions

In this section we provide the tools needed for obtaining short first-order des-

criptions of general finite groups in Section 7. To obtain such descriptions, we

will use a composition series of the group in question. Besides describing the

simple quotients, we will also need to describe the extension of a group N by

a group H . Such an extension can be understood via the second cohomology
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groups of certain associated modules. Here we give a more elementary account

of the relevant part of the theory of group extensions, an account which we can

translate into a first-order description of the extension. We consider a group

extension E containing N as a normal subgroup such that E/N ∼= H . (While all

of this is in principle well-known, we include it to keep the paper self-contained

in this regard.)

In contrast to the presentations of Section 5, we will use profinite presentati-

ons for the group H because in this setting it is known that a small number of

relators suffices. So we consider a presentation

H ∼= F/R,

where F = F̂ (s1, . . . , sk) is the profinite completion of the free group of rank k

on generators s1, . . . , sk and R is the closed normal subgroup of F topologically

generated (as a normal subgroup) by r1, . . . , rm. For details see e.g. Lubotzky

and Segal [9, p. 47].

We will show that any group extension E of N by H is determined by the

action of F on N , and an F -homomorphism from R into N . Such a homo-

morphism is determined by the generators of R as a normal subgroup, i.e., the

relators for the profinite presentation, which is why we want the presentation

to have as few relators as possible.

Let E be an extension of N by H = 〈s1, . . . , sk〉. Let s′1, . . . , s
′
k ∈ E be lifts

of s1, . . . , sk ∈ H , i.e. πH(s′i) = si, i = 1, . . . , k. Then the s′i, i = 1, . . . , k, act

on N by conjugation and hence any word w(s) = w(s1, . . . , sk) in the profinite

free group F with generators s1, . . . , sk acts on N (as an automorphism of N)

via the natural action of w(s′1, . . . , s
′
k) ∈ E. By density this extends to a unique

continuous action of all of F on N . Hence any group extension E of N by a

k-generated group H = 〈s1, . . . , sk〉 determines an action of F = F̂ (s1, . . . , sk)

on N , where the si are now seen as generators of F , rather than as elements of

H . In order to describe E we will have to express this action of F on N .

Define

ϕE : R −→ N by w(s1, . . . , sk) �→ w(s′1, . . . , s
′
k)

and extend the definition to the unique continuous function defined on all of

R. Then ϕE ∈ HomF (R,N). The next lemma states that the group E is

determined — up to an isomorphism over N — by the action of F on N and

the homomorphism ϕE .
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Lemma 6.1: Using the previous notation, suppose that E1, E2 are groups with

a common normal subgroup N and let sji ∈ Ej , j = 1, 2, i = 1, . . . , k be lifts of

s1, . . . , sk, respectively, such that (Ej/N, sj) ∼= (H, s), j = 1, 2.

Suppose that the induced F -actions agree, i.e. for all a ∈ N we have

(∗) as
1
i = as

2
i , i = 1, . . . , k.

Then E1 and E2 are isomorphic over N via an isomorphism taking s1i to s2i ,

i = 1, . . . , k, if and only if ϕE1 = ϕE2 .

Proof. First suppose that ϕE1 = ϕE2 . Define for a ∈ N

f : E1 −→ E2, aw(s1) �→ aw(s2).

Note that

aw(s1) = a′w′(s1) ⇔ w(s1)(w′(s1))−1 ∈ N ⇔ w(s)(w′(s))−1 ∈ R.

Since ϕE1 = ϕE2 , we see that indeed f is well-defined. Exchanging the roles of

E1 and E2 shows that f is injective.

Note that f is a homomorphism because the F -actions on N agree: let

a0, a1 ∈ N , and let w0, w1 be group words in variables s = s1, . . . , sk. Then

f(a0w0(s
1)a1w1(s

1)) = f(a0a
w−1

0 (s1)
1 w0(s

1)w1(s
1))

= a0a
w−1

0 (s2)
1 w0(s

2)w1(s
2) by (∗)

= a0w0(s
2)a1w1(s

2)

= f(a0w0(s
1))f(a1w1(s

1)).

Since Ej is generated by N and sj , j = 1, 2, this now implies that f is

surjective and hence an isomorphism fixing N pointwise.

For the converse implication, suppose that g : E1 −→ E2 is an isomorphism

fixing N pointwise and taking s1i to s2i , i = 1, . . . , k,. For any word w with

w(s) ∈ R we have

g(w(s1)) = w(s1) = ϕE1(w(s)).

Also

g(w(s1)) = w(s2) = ϕE2(w(s)),

proving the lemma.
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A close inspection of the proof of Lemma 6.1 yields the following variant,

which will be used in Section 7 for the first-order description of group extensions.

Lemma 6.2: Suppose that in the situation of Lemma 6.1 every element of H

has length at most m with respect to s. Then E1 and E2 are isomorphic over

N provided that ϕ3m
E1 = ϕ3m

E2 , where ϕ3m
Ej , j = 1, 2, denotes the restriction of

ϕEj to the elements of R of word length at most 3m over s.

Proof. Define f : E1 −→ E2 by

aw(s1) �→ aw(s2),

where a ∈ N and w ∈ F (s) is a group word such that |w| ≤ m. By assumption,

f is defined on all of E1. We verify as in the proof of Lemma 6.1 that f is

well-defined and injective, noting that only words of length ≤ 2m are relevant

now.

To check that f is a homomorphism, let a0, a1 ∈ N , and let w0, w1 be group

words in variables s1, . . . , sk of length at most m. By assumption there are

a ∈ N and a word w2 of length at most m such that

w0(s
1)w1(s

1) = aw2(s
1).

Since ϕ3m
E1 = ϕ3m

E2 we have

w0(s
2)w1(s

2) = aw2(s
2).

Hence as in the proof of Lemma 6.1 we have

f(a0w0(s
1)a1w1(s

1)) = f(a0a
w−1

0 (s1)
1 w0(s

1)w1(s
1))

= f(a0a
w−1

0 (s1)
1 aw2(s

1))

= a0a
w−1

0 (s2)
1 aw2(s

2) by (∗)
= a0w0(s

2)a1w1(s
2)

= f(a0w0(s
1))f(a1w1(s

1)).

Since Ej , j = 1, 2, is generated by N and sj , this now implies that f is surjective

and hence an isomorphism fixing N pointwise.

Recall that a group action is called regular if it is transitive and point stabi-

lizers are trivial.
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Lemma 6.3: Let Z = Z(N). The group HomF (R,Z) acts regularly on the set

X = {ϕE : E is extension of N by H with prescribed F -action on N}
via ϕψE(w(s)) = ϕE(w(s))ψ(w(s)) for ψ ∈ HomF (R,Z) and ϕE ∈ X

Proof. To see that the action is transitive, just notice that for extensions E1, E2

of N by H with the given F -action on N , and lifts sji , j = 1, 2, i = 1, . . . , k as

before we have for all n ∈ N

nϕE1(w(s)) = nw(s1) = nw(s) = nw(s2) = nϕE2(w(s))

and hence ϕE1(w(s))(ϕE2(w(s)))
−1 ∈ Z. By continuity, ϕE1 and ϕE2 differ by

an element in HomF (R,Z).

Let ψ ∈ HomF (R,Z). To see that ϕψE = ϕE1 for some extension E1 with

prescribed F -action on N , define E1 by choosing a transversal T for F/R so

that any element w(s) ∈ F can be written uniquely as

w(s) = v(s)r(s)

where v(s) ∈ T, r(s) ∈ R.

Let s0i , i = 1, . . . , k be the lifts of si to E. We now define an extension E1

with lifts s1i , i = 1, . . . , k, by letting the elements of E1 be

nw(s1) = nv(s0)ϕE(r(s))ψ(r(s))

with the induced multiplication. Then E1 is an extension with prescribed

F = F̂ (s) action and ϕE1 = ϕψE .

The rank of an abelian group A, denoted rkA, is the minimal size of a set

of generators, or, in other words, the least k such that there is an onto map

Z
k → A. Clearly B ≤ A implies rkB ≤ rkA. Letting λn denote the number of

prime factors of n with multiplicity, we have rkA ≤ λ|A| ≤ log |A|.
Remark 6.4: Lemma 6.3 implies that the number of extensions of N by H is

at most |Z|r, where Z = Z(N) and r is the minimum number of generators of R

as a closed normal subgroup of F . The rank of HomF (R,Z) is at most r · λ|Z|
since each ϕ ∈ HomF (R,Z) is determined by its values on the r generators of

R.

Corollary 6.5: If Z(N) = 1, then an extension E of N by H is determined

up to isomorphism over N by the F -action on N .
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Lemma 6.2 states that the restriction ϕ3m
E of ϕE to words of length at most

3m is sufficient for describing an extension E. To give a short description of ϕ3m
E ,

we rely heavily on the following lemma originally suggested by Alex Lubotzky.

Lemma 6.6: Let A be a finite abelian group, X a set and let V ≤ AX be a

subgroup of rank d. There exists a set Y ⊆ X of size at most d · λ(|A|) such

that for all g ∈ V , g � Y = 0 implies g = 0.

Proof. Decompose A into its p-primary components A =
⊕

pAp. Since the

number of different primes dividing the order of A is at most λ(|A|), the lemma

follows from applying Lemma 6.7 below to each of the Ap separately.

Lemma 6.7: Let A be a finite abelian p-group, X a set and let V ≤ AX be a

subgroup of rank d. There exists a set Y ⊆ X of size at most d such that for

all g ∈ V , g � Y = 0 implies g = 0.

Proof. Since A is a direct product of k cyclic p-groups for some k, we may

consider V ≤ AX ≤ (Ckq )
X ∼= (Cq)

k|X| where q is the exponent of A. Then,

replacing each element x of X by k new elements 〈x, 1〉, . . . , 〈x, k〉, we may

assume A = Cq and V ≤ CX
′

q where X ′ = X × {1, . . . , k}. Once we have

found a subset Y ′ of X ′ of size at most d with the required property, we obtain

Y ⊆ X, |Y | ≤ d, by replacing each element 〈y, i〉 ∈ Y ′ by y. If g ∈ V and

g(y) = 0 then g(〈y, i〉) = 0 for each i when g is viewed as a function on X ′ with
values in Cq.

Without loss of generality we may thus assume that A = Cq. For x ∈ X let

gx : V → A denote the coordinate function mapping p ∈ V to p(x). There is

nothing to show if d = 0, so suppose d > 0.

Let x1 ∈ X, v1 ∈ V such that gx1(v1) has maximal order. Then gx1(V ) ≤
Zgx1(v1). We claim that V decomposes as V = Zv1 ⊕ ker(gx1). First note that

clearly Zv1 ∩ ker(gx1) = 0. Next, given arbitrary w ∈ V , choose r ∈ Z so that

gx1(w) = r · gx1(v). Then gx1(w − r · v) = 0, so that w ∈ Zv1 + ker(gx1).

Clearly rk ker(gx1) ≤ d − 1 and we may consider ker(gx1) as a subgroup

of AX\{x1}. Inductively we find x2, . . . , xd ∈ X \ {x1} with corresponding

elements v2, . . . , vd such that V =
⊕

i≤d Zvi and
⋂
i≤d ker(gxi) = 0. Hence

Y = {x1, . . . , xd} is as required.

Remark 6.8: The bound given in Lemma 6.6 is optimal. For suppose A is a

product of n cyclic groups of different prime orders p1, . . . , pn with generators
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g1, . . . , gn. Let X = {x1, . . . , xn}, and let f(xi) = gi. For each i, 〈f〉 contains
an element that only differs from 0 at the i-th component.

We summarize and assemble all the pieces of this section in the following

proposition, which we will use in the next section to describe arbitrary finite

groups.

Proposition 6.9: Suppose H = F/R where F = F̂ (s1, . . . , sk) and R is gene-

rated as a closed normal subgroup of F by r elements. Let s ⊂ H be the image

of (s1, . . . , sk), so 〈s〉 = H , and suppose that any element of H has length at

most m over s. Let N be a finite group, and let Z = Z(N).

There are words

w1, . . . , wd ∈ R of length at most 3m, where d = r · λ|Z|,
such that group extensions Ej , j = 1, 2, of N by H are isomorphic over N

under an isomorphism taking a lift s1 ∈ E1 of s to a lift s2 ∈ E2, provided the

following conditions hold:

(a) as
1
i = as

2
i , i = 1, . . . , k for all a ∈ N ;

(b) (E1/N, s1) ∼= (E2/N, s2);

(c) wi(s
1) = wi(s

2) ∈ N for i = 1, . . . , d.

Proof. By Lemmas 6.2 and 6.3, the abelian group HomF (R,Z) can be seen as

a subgroup of ZX where X is the set of group words in s1, . . . , sk of length

≤ 3m. Note that we have HomF (R,Z) =
⊕

p HomF (R,Zp) where Zp are the

p-primary components of Z. Now for each prime p, the group HomF (R,Zp) can

be seen as a subgroup of ZXp and, by Remark 6.4, rkHomF (R,Zp) ≤ r · λ|Zp|.
Since

∑
p r · λ|Zp| = r · λ|Z| = d, we can use Lemma 6.6 to find the required

w1, . . . , wd ∈ X .

We will apply the previous proposition in the situation where H is a finite

simple group, {s1, . . . , sk} ⊆ H is a swift generating set of H of size at most

log |H | and H has a profinite presentation H ∼= F/R, where R is generated as

a closed normal subgroup of F by O(log |H |) elements. The existence of such a

profinite presentation is guaranteed by results in [9] and [7]:

Theorem 6.10 ([9]): There is a constant C such that any finite simple group

generated by d elements has a profinite presentation with d generators and C+d

relations.
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Proof. This follows from Theorem B of [7] and the proof of Theorem 2.3.3 of [9]

in the case of simple groups. For the latter, we refer to the proof that Conjecture

B implies Conjecture A in [9]. This proof also works for profinite presentations

as verified by the authors after Thm. 3.3.

7. Describing general finite groups

We are now in a position to give short descriptions of arbitrary finite groups.

Theorem 1.3: The class of finite groups is strongly log3-compressible.

Proof. Let G be a finite group. We fix a subnormal series

1 = G0 �G1 � · · ·�Gr = G

with simple factors Hi := Gi/Gi−1, i = 1, . . . , r.

Note that the length r is bounded by log |G|.
Choose an ascending sequence of sets

∅ = T0 ⊂ T1 ⊂ · · · ⊂ Tr = T

with 〈Ti〉 = Gi, 0 ≤ i ≤ r ≤ log |G|, as follows.
(1) If Hi is a finite simple group not of type 2G2, we let

Ti = Ti−1 ∪ {s1, . . . , sC} for any elements s1, . . . , sC ∈ Gi such that

s1Gi−1, . . . , sCGi−1 are generators for Gi/Gi−1 = Hi according to Theorem 5.3.

Then (Hi, s1Gi−1, . . . , sCGi−1) can be described by a sentence ϕi of length

O(log |Hi|) by Proposition 5.4(i) and its proof.

(2) If Hi is a group of type 2G2, we let C = 2 and Ti = Ti−1∪{s1, sC} for any

elements s1, s2 ∈ Gi such that s1Gi−1, s2Gi−1 generate Gi/Gi−1
∼= Hi. Then

(Hi, s1Gi−1, s2Gi−1) can be described by a sentence ϕi of length O(log |Hi|) by
Proposition 5.8.

Note that for each i = 1, . . . , r we have |Ti \ Ti−1| ≤ C0 for the constant C0

given in Theorem 5.3. The sentence ϕ describing G needs to express conditions

(a), (b) and (c) of Proposition 6.9 for each group Gi with normal subgroup

Gi−1.

We start with a prenex of existential quantifiers referring to the elements of

T .

1. Obtain a pre-processing set A for G over T :
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To give short descriptions for the conditions of Proposition 6.9, at each step

i = 1, . . . , r we first obtain pre-processing sets from T using formula ψ from

Lemma 3.4 where we replace the parameters from T by the corresponding va-

riables. The formula ψ has length O(log2 |G|).
Since the pre-processing set A will be used in each part of the sentence ϕ,

the scope of the existential quantifiers referring to A extends over all of ϕ.

2. Express (Gi/Gi−1, Ti \ Ti−1) ∼= (Hi, s1Gi−1, . . . , sCGi−1):

We let the formula χi, i = 1, . . . , r, express that

(Gi/Gi−1, Ti \ Ti−1) |= ϕi.

We can use the α|Ti| to express that Gi−1 is a normal subgroup of Gi using

a length of O(log |Gi|). We now restrict the quantifiers in ϕi to Gi using α|Ti|
and replace each occurrence of “u = v” in ϕi by

“uv−1 ∈ Gi−1”.

Since we replace the equality symbols in ϕi by strings of length O(log |Gi−1|),
the resulting formula χi has length O(log |Hi| log |Gi−1|). Then the conjunction

χ of the formulas χi has length O(log
2 |G|).

3. Conjugation action of Gi on Gi−1:

For each i = 2, . . . , r, let κi describe the action of g ∈ Ti \ Ti−1 on Gi−1

by conjugation. Since Ti−1 generates Gi−1, it suffices to determine g−1wg for

each w ∈ Ti−1 and g ∈ Ti \ Ti−1 as an element hw,g ∈ Gi−1. Since hw,g has

length at most 2 log |Gi−1| over Ai−1 and there are at most C0 · log |Gi−1| such
pairs, κi has length in O(log2 |Gi−1|). The conjunction κ of the κi has length

O(log3 |G|).
4. Describing the extension of Gi−1 by Hi:

We use Theorem 6.10 to obtain a profinite presentation for Hi with a swift

generating set (Corollary 3.2) of size k ≤ log |Hi| corresponding to the elements

of Ai \Ai−1 and with r ≤ C + log |Hi| relations.
By Proposition 6.9 there is d ≤ log |Z(Gi−1)|(C + log |Hi|), and there are

words w1, . . . , wd in ai = Ai \ Ai−1 of length at most 3 log |Hi| such that

wj(ai) = hj ∈ Gi−1, j = 1, . . . , d, determine Gi. Since any element of Gi−1

has length at most 2 log |Gi−1| over Ai−1, we obtain a formula ρi of length

O(log |Z(Gi−1)| log |Hi| log |G|). Since
∑

i log |Hi| ≤ log |G|, the conjunction ρ

of the ρi yields a formula of length O(log |G| log2 |G|).
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We now let ϕ be the sentence consisting of the prenex of existential quanti-

fiers referring to T followed by the conjunction of ψ, κ, χ, and ρ. By repeated

application of Proposition 6.9 one verifies that ϕ describes G. The strong log3-

compressibility of the class of finite groups follows since any element of G has

length at most 2 log |G| over the pre-processing set A.

The strong log3-compressibility of the class of finite groups allows us to also

describe finite transitive permutation groups (as explained in the introduction),

and finite groups with a distinguished automorphism.

Corollary 7.1: (i) The class of finite groups with a distinguished sub-

group is log3-compressible in the language of groups with an additional

unary predicate.

(ii) The class of finite groups with a distinguished automorphism is log3-

compressible in the language of groups with an additional unary function.

Proof. (i) Given a finite group G and a subgroup U ≤ G, choose a string g

of generators for U of length k ≤ log |G|. Let ϕ be the description of (G, g)

obtained above. Then |ϕ| = O(log3 |G|). Use the formula αk from Lemma 2.4

of length O(log |G|) to express that U = 〈g〉 in G. (ii) is similar.

Remark 7.2: The exponent 3 in Theorem 1.3 is optimal even for p-groups of

nilpotency class 2 by a result of Higman, which states that there are at least

p
2
27n

2(n−6) non-isomorphic such groups of order pn (see e.g. [3, Thm. 4.5]). This

result is applied in a way similar to the proof of [1, Prop. 8.6].

We provide an upper bound on the length of descriptions when only a bounded

number of quantifier alternations is allowed.

Theorem 7.3: For some m, the class of finite groups G is log4-compressible

via Σm sentences.

Proof. We only note the necessary modifications to the previous arguments.

Throughout, instead of the αk we use the existential generation formulas βk

from Lemma 3.5, which have length O(log2 |G|) because k ≤ log |G| throughout.
The new version of ψ in Lemma 3.4 now has length O(log3 |G|). For some

small d we can choose Σd-descriptions ϕi of Hi of length O(log
2 |Hi|) via Propo-

sitions 5.4 and 5.8. Since we now replace the equality symbols in ϕi by strings

of length O(log2 |Gi−1|), the resulting new version of the formula χi has length
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O(log |Hi| log2 |Gi−1|), and their conjunction has length O(log3 |G|). No gene-

ration formulas are used elsewhere in the proof of Theorem 1.3, so we conclude

the argument as before. It is clear that the number of quantifer alternations is

now bounded.

Remark 7.4: 1. We don’t know whether the exponent can be improved

to 3 in Theorem 7.3.

2. Reviewing the proof of Theorem 1.3, it would be interesting to show a

stronger compressibility result for the class of finite groups without a

nontrivial abelian normal subgroup. In this case, we have Z(Gi) = 1

for each i, so that Step 4 is not needed.

Remark 7.5: Theorem 1.2 leaves open some questions. It would be interesting

to show log-compressibility for classes of finite groups G that are in some sense

close to simple, similar to Proposition 5.14. These include the central extensions

of simple groups, and the almost simple groups (that is, S ≤ G ≤ Aut(S) for

some simple group S). Also, it would be desirable to show the strong log-

compressibility for the class of finite simple groups.
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