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a b s t r a c t

Demuth tests generalize Martin-Löf tests (Gm)m∈N in that one can exchange the m-th
component a computably bounded number of times. A set Z ⊆ N fails a Demuth test if
Z is in infinitely many final versions of the Gm. If we only allow Demuth tests such that
Gm ⊇ Gm+1 for eachm, we have weak Demuth randomness.

We show that a weakly Demuth random set can be high and ∆0
2, yet not superhigh.

Next, any c.e. set Turing below a Demuth random set is strongly jump-traceable.
We also prove a basis theorem for non-empty Π0

1 classes P . It extends the
Jockusch–Soare basis theorem that some member of P is computably dominated. We use
the result to show that some weakly 2-random set does not compute a 2-fixed point free
function.

© 2011 Published by Elsevier B.V.

1. Introduction

The notion of Demuth randomness is stronger thanMartin-Löf-randomness yet compatible with being∆0
2. Demuth tests

generalize Martin-Löf tests (Gm)m∈N in that one can exchange the m-th component (aΣ0
1 set in Cantor space of measure at

most 2−m) a computably bounded number of times. A set Z ⊆ N fails a Demuth test if Z is in infinitely many final versions of
theGm. If we only allowDemuth tests such thatGm ⊇ Gm+1 for eachm, we haveweak Demuth randomness. The implications
are

Demuth random → weakly Demuth random → ML-random.
These randomness notions, introduced and studied by Demuth [3,4], remained obscure for a long time, but now begin to

stand out for their rich interaction with the computational complexity aspect of sets. We consider two examples of such an
interaction.

(a) A highness property of a set determines a sense in which the set is close to being Turing complete. We study to what
extent highness depends on the degree of randomness of a set. Using this we show that the implications above are strict.

(b) A lowness property of a set specifies a sense in which the set is close to being computable. We show that each c.e. set
Turing below aDemuth random set satisfies an extreme lowness property: it is strongly jump-traceable. There ismultiple
evidence [10] that the strongly jump-traceable c.e. sets, introduced in [7], form a very small subclass of the c.e. K -trivials.

1.1. The results in more detail

(a) Recall that a set Y is called high if ∅′′
≤T Y ′, and Y is superhigh if even ∅

′′
≤tt Y ′. We show that a weakly Demuth random

∆0
2 set can be high. In contrast, every Demuth random is generalized low1, so every Demuth random∆0

2 set is known to be
low. Next, an ML-random such asΩ is Turing complete. We show that no weakly Demuth random set is Turing complete.
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In fact, such a set is not even superhigh. The intuition is that the more random Y , the further it must be from computing ∅
′.

(b) The first author proved in [17] that every ∆0
2 ML-random set Y Turing bounds some noncomputable c.e. set A. In [12]

it is shown that if Y is also Turing incomplete, then A must be a base for randomness, and hence K -trivial. In early 2009,
Greenberg [9] proved that there is a ∆0

2 Martin-Löf-random set Y such that every c.e. set computable from Y is strongly
jump-traceable. (For the definition, recall that a c.e. trace for a partial functionψ is a uniformly c.e. sequence (Tx)x∈N of finite
sets such that for all x ∈ dom(ψ)we haveψ(x) ∈ Tx; that an order function is a computable, nondecreasing, and unbounded
function h:N → N \ {0}; that a c.e. trace (Tx)x∈N is bounded by an order function h if for all x, |Tx| ≤ h(x); and finally, that a
set A is strongly jump-traceable if for every order function h, every partial function ψ:N → N that is partial computable in
A has a c.e. trace that is bounded by h.) We prove here that any Demuth random∆0

2 set Y serves this purpose. The intuition
is that the more random Y , the closer to being computable must be a c.e. set Turing below Y .

In a final section we prove a basis theorem for non-empty Π0
1 classes P . It extends the Jockusch–Soare basis theorem

[13] that some member of P is computably dominated. The extension is that, if B >T ∅
′ is Σ0

2 , then there is a computably
dominated set Y ∈ P such that Y ′

≤T B.
In applications, one takes P to be a class of ML-random sets. Note that each computably dominated ML-random set is

alreadyweakly 2-random. Recall that a function g is 2-fixed point free ifWg(x) ≠
∗ Wx for each x.Weuse the result to show that

some weakly 2-random set does not compute a 2-fixed point free function. This contrasts with the case of 2-randomness.
Further, in [2], our basis theorem was used to show that some weakly 2-random Y is K -trivial relative to ∅

′. It suffices to
take B K -trivial relative to ∅

′ but not∆0
2, and let Y ≤T B be ML-random and computably dominated.

2. The randomness notions

Wewill formulate tests via sequences of open classes in Cantor space. However, via the binary representation, co-infinite
sets can be identified with the reals in [0, 1). In fact, Demuth tests were introduced originally for real numbers. In [3] only
arithmetical real numbers were considered. Later on [4], tests were generalized to all real numbers. Sets which fail some
test of this type were called Aα numbers in [3], or WAP-sets, where WAP stands for weakly approximable in measure.

Demuth was primarily interested in various kinds of effective null classes because of their role in constructive
mathematical analysis. For instance, he studied differentiability of constructive (in the Russian sense, mapping computable
reals to computable reals) functions f defined on the unit interval. He proved that for each Demuth random real x ∈ [0, 1)
the ‘‘Denjoy alternative’’ holds: either f ′(x) is defined, or+∞ = lim suph→0[f (x+h)− f (x)]/h and−∞ = lim infh→0[f (x+

h)− f (x)]/h.
He also showed that mere Martin-Löf-randomness of x does not imply the Denjoy alternative for every constructive f .

For more background on Demuth randomness see Section 3.6 of [23].

2.1. Formal definition and basics on Demuth randomness

For a setW ⊆ 2<ω , we let
[W ]

≺
= {Z ∈ 2ω: ∃n Z �n∈ W },

the corresponding open class in Cantor space.
Definition 2.1. A Demuth test is a sequence of c.e. open sets (Sm)m∈N such that ∀m λSm ≤ 2−m, and there is a function
f ≤wtt ∅

′ such that Sm = [Wf (m)]
≺.

A set Z passes the test if Z ∉ Sm for almost everym. We say that Z is Demuth random if Z passes each Demuth test.
Recall that f ≤wtt ∅

′ if and only if f is ω-c.e., namely, f (x) = limt g(x, t) for some computable function g such that the
number of changes g(x, t) ≠ g(x, t − 1) is computably bounded in x. Hence, as already mentioned, the intuition is that
we can change the m-component Sm a computably bounded number of times. We will denote by Sm[t] the version of the
component Sm that we have at stage t . Thus Sm[t] = [Wg(m,t)]

≺ where g is understood to be a computable approximation
of f as above.

We cannot allow the members of an arbitrary effective null sequence (αm)m∈N as upper bounds in the definition of De-
muth tests: at least we need that

∑
m αm < ∞. For instance, consider the example of αm = 1/m. Let (ki)i∈N be an increasing

computable sequence such that k0 = 1,
∑ki+1−1

m=ki
αm ≥ 1. Then it is easy to find strings σj such that

ki+1−1
m=ki

[σm] = 2ω and
such that λ[σm] ≤ αm. This yields a modified test in an obvious sense. No set Z passes this test since Z belongs to infinitely
many [σm].

In the definition of Demuth tests, we could replace the condition ∀m λSm ≤ 2−m by themore general condition that there
is a computable function α: N → Q+

0 such that
∑

m α(m) < ∞, the sequence of tail sums converges to 0 effectively, and
∀m λSm ≤ α(m). This would not change the randomness notion: given a test in thismore general sense, define a computable
sequence by

k−1 = 0 and ki+1 = µk > ki.
∞−
j=k

α(j) ≤ 2−i.

LetSi =
ki+1−1

m=ki
Sm. Then (Si)i∈N is a Demuth test. Further, if Z ∈ Sm for infinitely manym, then Z fails this Demuth test.
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Demuth proved several interesting results concerning Turing and truth-table degrees of sets at various levels of
randomness. We mention a few that are relevant for the rest of the paper.

Proposition 2.2.

(i) Each Demuth random set A is GL1, i.e., A′
≡T A ⊕ ∅

′.
(ii) If A is a set such that ∅′

≤T A, then there is a Demuth random set B such that B′
≡T A.

Proof. The first part is stated in [4, Remark 10, part 3b] with a sketch of a proof. A full proof can be found in [23, Theorem
3.6.26]. The second part is in [4, Theorem 12]. �

By (ii) of the foregoing theorem, a Demuth random set can be low. A proof of this special case is also given in [23, Theorem
3.6.25].

2.2. Definition of weak Demuth randomness

Definition 2.3. In the context of Definition 2.1, if we also have Sm ⊇ Sm+1 for each m, we say that (Sm)m∈N is a monotonic
Demuth test. In this case the passing condition is equivalent to Z ∉


m Sm. If Z passes all monotonic Demuth tests we say

that Z is weakly Demuth random.

This type of tests was introduced by Demuth [3], in a slightly different, but equivalent, form. (He called sets that fail some
test of this type A∗

α numbers.) Note that we would define the same randomness notion if we retained the test concept of
Definition 2.1 and only changed the passing condition to Z ∉


m Sm. For, in that case, an equivalent monotonic Demuth test

(Si)i∈N is given bySi =


m≤i Sm.

2.3. Some facts on Demuth and weak Demuth randomness

Downward closure under ≤T . Usually, randomness notions stronger than ML-randomness are closed downwards under
Turing reducibility within the ML-random sets. The notions we study here are no exception.

Proposition 2.4. BothDemuth randomness andweakDemuth randomness are closed downward under Turing reducibilitywithin
the ML-random sets.

Proof. The case for Demuth randomness is stated as Theorem 11 in [4], and is an immediate corollary of Theorem 18 in [5].
The case of weak Demuth randomness can be derived from that theorem in a similar way. For the convenience of the reader
we give proofs in a more standard terminology. These appeared first in the solution to Exercise 5.1.16 of [23].

Given a set A, and a Turing functionalΦ , for n > 0 let

SAΦ,n = [{σ : A �n≼ Φσ
}]

≺.

By a result of Miller and Yu (see [23, 5.1.14]), if A is ML-random, then there is a constant c such that ∀n λSAΦ,n ≤ 2−n+c . (This
result plays a similar role here as Theorem 18 of [5].) Given a c.e. open set R, wewill effectively obtain a c.e. open setR, where
λR ≤ 2cλR, with the following property. Suppose A = Φ(Y ). If A fails a Demuth test (Gm)m∈N, then Y fails the Demuth test
(Gm+c)m∈N.

To buildR, for x ∈ 2<ω , let Sx be the effectively given c.e. set which follows the canonical computable enumeration
of {σ : x ≼ Φσ

} as long as the measure of the open set generated does not exceed 2−|x|+c . From a c.e. open set R we can
effectively obtain a (finite or infinite) c.e. antichain {x0, x1, . . .} such that R =


i[xi]. LetR =


i

[Sxi ]
≺.

Since [Sxi ]
≺

∩ [Sxj ]
≺

= ∅ for i ≠ j, we have λR =
∑

i λSxi ≤ 2cλR. Moreover, A ∈ R implies xi ≺ A for some i and hence
Y ∈R by the hypothesis on c. Clearly (Gm+c)m∈N is a Demuth test which Y fails.

For the case of weak Demuth randomness, suppose (Gm)m∈N is a monotonic Demuth test such that A ∈


m Gm. Then
Y ∈


m
Gm+c . As remarked after Definition 2.3, this implies that Y is not weakly Demuth random. �

Turing completeness and the number of version changes. Recall that a set Z is ω-c.e. if and only if Z ≤wtt ∅
′. No ω-c.e. set Z

is weakly Demuth random: if Z(x) = lims Zs(x) where the number of changes to this computable approximation of Z is
computably bounded, then letting Gm[t] = [Zt �m] defines a monotonic Demuth test (Gm)m∈N such that Z ∈ Gm for eachm.

Chaitin’s halting probability Ω , viewed as a set, is ML-random. Since Ω is left-c.e., it is ω-c.e. and hence not weakly
Demuth random. In fact, for Z = Ω , the monotonic test (Gm)m∈N built above has at most 2m changes to the m-th version
[Ωt �m].

SinceΩ is Turing complete, we have an immediate corollary to 2.4.

Corollary 2.5. If Y is Turing complete then Y is not weakly Demuth random.
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In fact, since Ω fails the monotonic Demuth test (Gm)m∈N above, the construction in the proof of Proposition 2.4 yields a
monotonic Demuth test (Gm+c)m∈N failed by Y such that them-th version changes at most O(2m) times. Thus, Y is not even
balanced random as defined at the end of the next subsection.

Suppose (Sm)m∈N is a Demuth test and h is a function such that h(m) bounds the number of times a version of Sm changes.
If

∑
m h(m)2−m < ∞ then we can take the effective sequence of all versions and obtain a Solovay test failed by any set that

fails the Demuth test (Sm)m∈N. Thus, if some ML-random set fails the Demuth test (Sm)m∈N then
∑

m h(m)2−m
= ∞. For

instance, this means that h(m) ≥ 2m/2 for infinitely manym.

Arithmetical complexity of the randomness notions. It is not hard to see that the Demuth random sets and the weakly Demuth
random sets formΠ0

4 classes. For instance, in the case of Demuth randomness, observe that the sets which pass a particular
Demuth test (Sm)m∈N form aΣ0

3 class, namely,
{Z: ∃m0∀m ≥ m0∀n ∃s ≥ n [Z �n] ⊈ Sm,s[s]}.

A Demuth test (Sm)m∈N is given by a pair of computable functions g, h, where g(m, s) is the index for theΣ0
1 class which

is the version of Sm at stage s, and h(m) bounds the number of changes to them-th version. As totality of partial computable
functions is aΠ0

2 property of indices, we can universally quantify over all Demuth tests and obtain aΠ0
4 expression for the

class of Demuth random sets.

2.4. Overview of notions between 2-randomness and 1-randomness

To obtain limit randomness, we modify the definition of Demuth randomness in 2.1: in the test definition we merely
require that f ≤T ∅

′. Thus, by the Limit Lemma, the current version of a test component can change any (finite) number of
times. Such tests will be called limit tests. As before, the passing condition is to be out of almost all test components.

Recall that aΠ0
2 class has the form


k Gk where the Gk are c.e. open classes in Cantor space, Gk ⊇ Gk+1 for each k. Such a

class is null if and only if limk λGk = 0. A set Z is weakly 2-random [19] if it is not a member of anyΠ0
2 null class. Note that

the weakly 2-random sets also form aΠ0
4 class.

The following diagram summarizes implications of randomness notions.
weak 2-random

((RRRRRRRRRRRRR

limit random

66mmmmmmmmmmmmm

((QQQQQQQQQQQQQ weak Demuth // ML-random

Demuth

66lllllllllllll

There are no further implications in the diagram because weak 2-randomness is incompatible with Demuth randomness
(see [23, Section 3.6]), and by Corollary 2.5.

To obtain the nontrivial implications in the diagram, we note that the relevant test notions can be obtained by further
restricting the concept of a limit test. Demuth randomness is obtained from limit randomness by requiring a computably
bounded number of changes for the test components. Weak 2-randomness is obtained from limit randomness by asking
that the tests be monotonic (see the proposition below). Weak Demuth randomness is obtained bymaking both restrictions
to the test concept at the same time.

Let us say a monotonic limit test is a sequence of c.e. open sets (Sm)m∈N such that λSm ≤ 2−m and Sm ⊇ Sm+1 for each m,
and there is a function f ≤T ∅

′ such that Sm = [Wf (m)]
≺.

Proposition 2.6. Let C ⊆ 2ω . Then C is aΠ0
2 null class ⇔ C =


m Sm for a monotonic limit test (Sm)m∈N.

Proof. ⇐: Suppose that (Sm)m∈N is a monotonic limit test. Then C =


m Sm is a Π0
2 class because Z ∈ C ↔ ∀m∀s ∃t ≥

s Z ∈ Sm,t [t].

⇒: Suppose that C =


k Gk where (Gk)k∈N is as above. Let f (m) be the least k such that λGk ≤ 2−m. Since λGk is a left-c.e.
real uniformly in k, we have f ≤T ∅

′. Let Sm = Gf (m). Then (Sm)m∈N is a monotonic limit test as required. �

Balanced randomness, introduced in [6], interpolates between weak Demuth and ML-randomness. The current version
of them-th component of a monotonic test can change at most O(2m) times. As noted above, balanced randomness implies
being Turing incomplete. The authors in [6] show, for instance, that each superlow ML-random set is balanced random.

In [10, Section 7] notions are studied that interpolate between limit randomness and Demuth randomness. The idea is to
restrict the number of changes of the m-th component by counting down along a computable well-order such as ω2. These
notions are still compatible with being∆0

2. The authors obtain a stronger version of our Theorem 4.2 formulated in terms of
cost functions.

Stronger notions than limit randomness have also been studied:
2-random → Schnorr random relative to ∅

′
→ limit random.

See [2] for more on Schnorr randomness relative to ∅
′.
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3. Complexity of weakly Demuth random sets

In this section we construct a weakly Demuth random high ∆0
2 set. Since each Demuth random set is generalized low,

this shows that some weakly Demuth random ∆0
2 set is not Demuth random. We will also show that no weakly Demuth

random set is superhigh. In particular, it cannot be LR-complete.
Note that eachΠ0

1 class of positivemeasure contains a tail of everyMartin-Löf-random set ([16], or see Proposition 3.2.24
in [23]). Thus, the existence of a weakly Demuth randomhigh∆0

2 set implies that eachΠ0
1 class of positivemeasure contains

such a set. However, it makes no difference to state the theorem in a seemingly more general way.

Theorem 3.1. EachΠ0
1 class P of positive measure contains a weakly Demuth random set B which is∆0

2 and high.

Proof. We combine two strategies. The first strategy is used to construct a weakly Demuth random ∆0
2 set. The second

strategy is used for jump inversion.
The first strategy is a straightforward modification of the proof of [23, Theorem 3.6.25]. In the following let

He = [We]
≺.

Recall that a limit test is a sequence of c.e. open sets (Vm)m∈N such that ∀m λVm ≤ 2−m, and there is a function g ≤T ∅
′ such

that Vm = Hg(m). A set Z passes this test if Z /∈ Vm for almost every m. (Limit tests are more general than Demuth tests in
that the function g is merely∆0

2, not ω-c.e.)
By Fact 1.4.9 from [23] there is a binary functiong ≤T ∅

′ that emulates all unary ω-c.e. functions f in the sense that
there is i such that f (n) = g(i, n) for each n. We can stop the enumeration of Hg(e,m) whenever it attempts to exceed the
measure 2−m . Hence there is a function g ≤T ∅

′ such that for all e,m, ∀m λHg(e,m) ≤ 2−m and Hg(e,m) = Hg(e,m) if already
λHg(e,m) ≤ 2−m.

Now let Vm =


e≤m Hg(e,e+m+1). Then λVm ≤
∑

e≤m 2−(e+m+1)
= 2−m

·
∑

e≤m 2−(e+1)
≤ 2−m.

Clearly, (Vm)m∈N is a limit test. Observe also that if (Sm)m∈N is a Demuth test then Sm ⊆ Vm for almost everym. Thus, each
set passing this test is Demuth random.

We will use an additional property of this test. Suppose we merely have Z /∈ Vm for infinitely many m. Then Z /∈


m Sm
for each monotonic Demuth test (Sm)m∈N. Thus we have proved:
Claim. There is a limit test (Vm)m∈N such that any set Z for which ∃

∞mZ /∈ Vm is weakly Demuth random.
This property can be used to construct various weakly Demuth random sets (such as∆0

2 sets), similar to Theorem 3.6.25
in [23]. Here we will combine it with a further method.
The second strategy. The method of jump inversion is based on coding a set into members ofΠ0

1 classes of positive measure.
This technique was first used for the so called Kučera/Gács theorem [16,8] (see Theorem 3.3.2 in [23]). It can be combined
with a cone avoidance technique for members ofΠ0

1 classes and with an injury technique in a construction relative to ∅
′ to

construct a high, but incomplete ML-random∆0
2 set [18].

We use a standard computable enumeration of allΠ0
1 classes. Let Qe be theΠ0

1 class with index e (see [23, Section 1.8]).
A Π0

1 class P is called rich if λP > 0 and there exists a computable function h such that for all e, if ∅ ≠ Qe ⊆ P then
λQe > 2−h(e). EachΠ0

1 class P of positive measure contains a richΠ0
1 class. (To prove this one can use the original method

of [16], or a more direct way described in the proof [25, Theorem 5.1].) Thus we may assume that the given Π0
1 class P is

rich, with computable function h as above.
Since P is rich, given a string σ and aΠ0

1 class Q ⊆ P we can compute k such that if Q ∩ [σ ] ≠ ∅ then λ(Q ∩ [σ ]) > 2−k.
So, there are at least two distinct strings ρ extending σ of length k such that if Q ∩ [σ ] ≠ ∅, then also Q ∩ [ρ] ≠ ∅. Thus, it
is easy to construct a computable function g such that

• g(0, e) = 0 for all e
• g(−, e) is increasing for all e
• for each k, e, σ with |σ | = g(k, e), ifQe ⊆ P , then there are at least two distinct strings ρ extending σ of length g(k+1, e)

such that Qe ∩ [σ ] ≠ ∅ implies Qe ∩ [ρ] ≠ ∅.

To build a weakly Demuth random∆0
2 set B in P which is high, we first describe two strategies in isolation.

Isolated strategy of jump inversion. We will code one bit ∅
′′(m) into required set B in a way which B′ can decode. Letm and a

Π0
1 class Q = Qe such that ∅ ≠ Q ⊆ P be given. We first define a nonemptyΠ0

1 class (Q )0, by X ∈ (Q )0 ↔ X ∈ Q ∧

∀k∃τ(X �g(k,e)≺ τ <L X �g(k+1,e) ∧ |τ | = g(k + 1, e) ∧ Q ∩ [τ ] ≠ ∅).

The idea is that (Q )0 consists of those X ’s from Q for which for all k, X �g(k+1,e) is not the beginning of the leftmost member
of Q extending X �g(k,e).

Secondly, we define a nonemptyΠ0
1 class (Q )1,s, as follows. Let τ0, . . . , τi be all strings τ of length g(s + 1, e) such that

they are the leftmost extension of τ �g(s,e) for which Q ∩ [τ ] ≠ ∅. Note, that we can find these strings using the oracle ∅
′.

Now let

(Q )1,s = {X : X ∈ Q ∧ ∃j ≤ i(τj ≺ X)}.
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Here the idea is that (Q )1,s consists of those X ’s from Q such that X �g(s+1,e) is the beginning of the leftmost member of Q
extending X �g(s,e).

We will ensure that

• ifm /∈ ∅
′′ then B ∈ (Q )0

• ifm ∈ ∅
′′ then B ∈ (Q )1,j for some j.

For any set X , membership of X in aΠ0
1 class is alwaysΠ0

1 relative to X , and, therefore, computable from X ′. So we can
compute a value ∅

′′(m) from B′ by asking whether B ∈ (Q )0.
During our construction, which is relative to ∅

′, we cannot decide which case applies (m ∈ ∅
′′ or m /∈ ∅

′′). Thus, if m
enters∅

′′ at step s it may not be possible to take any of τ0, . . . , τi mentioned above, due to actions of other strategies. Instead,
we take a properly chosen n (as explained later) and choose some string of length g(n + 1, e), say ρ, which is the leftmost
extension of ρ �g(n,e) for which Qe ∩ [ρ] ≠ ∅. Then we define

(Q )1(ρ) = {X : X ∈ Q ∧ ρ ≺ X)}

and we ensure that B ∈ (Q )1(ρ). Note, that (Q )1(ρ) ∩ (Q )0 = ∅.
Isolated strategy to make B weakly Demuth random — called wD strategy. To guarantee that our constructed set B is weakly
Demuth random we will have to ensure that B /∈ Vm for infinitely manym.

Given aΠ0
1 class Qe, ∅ ≠ Qe ⊆ P we can compute k such that λQe > 2−k. Then Qe \Vk+1 is a nonemptyΠ0

1 class. Provided
that Qe was already a restriction on B, to which class to belong to, the next restriction will be Qe \ Vk+1. Let us denote this
class bywD(Qe).
The construction.We build, computably in ∅

′, a sequence of strings (σs)s∈N such that σs ≼ σs+1 for all s, where B =


s σs. We
will also build, not computably in ∅

′ but only in ∅
′′, a sequence ofΠ0

1 classes (Bm)m∈N together with their indices (em)m∈N.
To adapt it to our construction we define computably in ∅

′ their approximations, which at step s we denote by Bm[s] and
em[s]. For eachm there will be only finitely many changes in these sequences and they settle down eventually to their limit
values.

Let σ−1 = ∅, B−1 = P and e−1 be an index of P (here all approximations equal to these final values).
Step s. Look whether there ism ≤ s which enters ∅

′′ at step s (in a standard enumeration of ∅′′ relatively to ∅
′).

Case 1. If yes, let m be the least such. For all j < m approximations to Bj and ej remain at this step the same as at step s − 1.
Further, let n, n ≥ s, be the least number for which g(n, em−1[s − 1]) ≥ |σs−1|. Define aΠ0

1 class Am = (Bm−1[s − 1])1(ρ),
where ρ is the leftmost string of length g(n+1, em−1[s−1]) extending σs−1 for which Bm−1[s−1]∩[ρ] ≠ ∅. Let τm be ρ. To
the class Am apply one more wD strategy to getwD(Am), and let Bm[s] bewD(Am) and em[s] its index. It remains to redefine
classes Bj[s] for all j, m < j ≤ s. This is done inductively. Suppose Bj−1[s] (and its index ej−1[s]) and a string τj−1 are already
defined for j,m < j ≤ s.
If j /∈ ∅

′′
[s], then define Aj = (Bj−1[s − 1])0 and apply one more wD strategy to Aj to get Bj[s], together with its index ej[s].

Also let τj = τj−1.
If j ∈ ∅

′′
[s], then let ρ be the leftmost string of length g(1, ej−1[s]) extending τj−1 for which Bj−1[s] ∩ [ρ] ≠ ∅. Define

Aj = Bj−1[s] ∩ [ρ], τj = ρ and, further, apply one more wD strategy to Aj to get Bj[s] together with its index ej[s].
Finally (at the end of this process), let σs = τs.
Case 2. If there is no such m, then for all j, j < s approximations to Bj and ej remain at this step the same as at step s − 1.
Further, let As = (Bs−1[s])0, apply one more wD strategy to As to get Bs[s] together with its index es[s]. Let σs = σs−1. This
ends the construction.

Obviously, B is∆0
2. By a standard induction argument it is straightforward to show that B′ can find, for allm, limit values

em ofΠ0
1 classes Bm. Since each Bm arises by an application of a wD strategy, B is weakly Demuth random. It remains to show

that ∅
′′

≤T B′. As pointed out before, m /∈ ∅
′′ if and only if B ∈ (Bm−1)

0. Since membership of any set X in a Π0
1 class is

computable from X ′, we can computably in B′ decide whetherm ∈ ∅
′′. �

The preceding result can be generalized: all possible degrees above the degree of the halting problem are assumed as
jumps of weakly Demuth random∆0

2 sets.

Theorem 3.2. Let P be aΠ0
1 class of positive measure. For any set A ≥T ∅

′ that is c.e. in ∅
′, and any set C such that ∅ <T C ≤T ∅

′,
we can find a weakly Demuth random∆0

2 set B ∈ P such that B′
≡T A and C ≰T B.

Proof of Theorem 3.2. The above proof can be easily modified as follows.

(1) The jump inversion method is applied not to ∅
′′ but rather to a given set A which c.e. in ∅

′ and ≥T ∅
′.

(2) The method of the proof is well compatible with the method of

• the proof of the Low Basis Theorem, introduced by Jockusch and Soare [14],which is used to control the jump of B, i.e. to
ensure that B′

≤T A
• avoiding an upper cone above a given noncomputable∆0

2 set,

since the latter methods are forcing withΠ0
1 classes and only require ∅

′ as an oracle. �
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Before we proceed to superhighness, we need to review some definitions from [23, Section 5.3].

Definition 3.3. (i) Amonotonic cost function is a computable function

c : N × N → {x ∈ Q2: x ≥ 0}

that is nonincreasing in the first, and nondecreasing in the second argument.

Definition 3.4. (i) A computable approximation of a set A is an effective sequence (As)s∈N of strong indices for finite sets such
that A(x) = lims As(x) for each x.
(ii) Given a computable approximation (As)s∈N and a cost function c , the total cost of A-changes is−

x,s

c(x, s) [[x is least s.t. As−1(x) ≠ As(x)]].

We say (As)s∈N obeys c if this quantity is finite.
(iii) We say that a set A obeys c , written A |H c , if some computable approximation of A obeys c .

In [11] (also see [23, 8.5.3]) a monotonic cost function c is called benign if there is a computable function g such that

x0 < x1 < . . . < xk & ∀i < k [c(xi, xi+1) ≥ 2−n
] implies k ≤ g(n).

In the following we show that no weakly Demuth random set is superhigh. This strengthens the result of [15] that no
weakly 2-random set is superhigh.We obtain this result as a corollary to the Theorem 3.5 below that there is a c.e. set which
obeys a given benign cost function, and is not below anyweakly Demuth random. This is interesting on its own right because
of the persistent open question [20] whether each K -trivial set A is below an incomplete ML-random Y . Since K -triviality is
equivalent to obeying a certain benign cost function cK by [22], we know that, at least, such a Y cannot always be weakly
Demuth random.

Theorem 3.5. Let c be a benign cost function. Then there is a c.e. set A |H c such that A ≰T Y for each weakly Demuth random
set Y .

Proof. LetΘ be the Turing functional such thatΘ0e1X
= ΦX

e for each oracle X . If A = ΦX
e for some weakly Demuth random

X , then Y = 0e1X is also weakly Demuth random and A = ΘY . So it suffices to build a c.e. set A |H c and a Demuth test
(Gm)m∈N such that for each Y we have

A = ΘY
→ Y ∈


m

Gm.

Given the cost function c we define numbers vk which are large enough so that c(vk, t) ≤ 2−k for each t . At a stage swe
have approximations vk[s] for k ≤ s. Let v0[0] = 0. At stage s > 0, let j be least such that j = s or c(vj[s − 1], s) ≥ 2−j.

• For k < j let vk[s] = vk[s − 1].
• For k ≥ j (re)define values vk[s] in an increasing fashion and larger than all numbers previously mentioned,

and such that c(vk[s], s) < 2−k.

Suppose c is benign via a computable function g . Note that the value of vk changes for at mostg(k) =
∑

j≤k g(j) times.
Construction of a c.e. set A and a Demuth test (Gm)m∈N.
Stage s

(a) The version of Gm at stage s is

Gm[s] = {Z: ΘZ
≽ As �v⟨m,i⟩[s]+1},

where i is the number of times a number of the type v⟨m,l⟩ has so far been enumerated into A.
(b) If λGm,s[s] > 2−m put v⟨m,i⟩ into As+1.

Verification. Since we have c(vk[s], s) ≤ 2−k, the total cost of A-changes is at most 2.
Givenm, as long as we are at (a), the version Gm[s] can change at mostg(⟨m, i⟩) times. If we pass (b), all the later versions

are disjoint from the previous versions because we chose the vk in an increasing fashion at each stage. Hence we pass (b) for
at most 2m times. The total number of times the version of Gm can change is thereby bounded by 2m

·g(⟨m, 2m
⟩).

Clearly, if A = ΘY then Y is in the final version of Gm for eachm. �

Corollary 3.6. No weakly Demuth random set is superhigh.

Proof. For each ML-random superhigh set Y , Greenberg [10, proof of Theorem 5.1] defines a benign cost function c such
that A |H c implies A ≤T Y for each c.e. set A. (In fact c only depends on the truth-table reduction procedure showing that
∅

′′
≤tt Y ′.) If we let A be the c.e. set obeying c given by the foregoing theorem, this shows that Y cannot be weakly Demuth

random.
It is also possible to prove this result directly, without relying on Theorem 3.5. Rather, one only uses some of themethods

of [10, Theorem 5.1]: given a truth-table reduction procedure Γ one builds a monotonic Demuth test such that each set Z
with ∅

′′
= Γ (Z ′) fails the test. �
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4. Demuth randomness and strong jump-traceability

We begin with some preliminaries. As in [10], we define a Turing functional to be a partial computable function
Γ : 2<ω × ω → ω, such that for all x < ω, the domain of Γ (−, x) is an antichain of 2<ω (in other words, that domain
is prefix-free). The idea is that the functional is the collection of minimal oracle computations of an oracle Turing machine.
For any set A and number x, we let Γ A(x) = y if there is some initial segment τ of A such that Γ (τ , x) = y. Then Γ A is an
A-partial computable function, and every A-partial computable function is of the form Γ A for some Turing functional Γ . We
write Γ A(x) ↓ if x is in the domain of Γ A; otherwise we write Γ A(x) ↑. The use of a computation Γ A(x) = y is the length of
the unique initial segment τ of A such that Γ (τ , x) = y.

If (As)s∈N is a computable approximation for a∆0
2 set A, and (Γs)s∈N is an effective enumeration of (the graph of) a Turing

functional, then we let Γ A
[s] = Γ As

s .
The following is a special case of [10, Theorem 3.5].

Lemma 4.1. Suppose the c.e. set A is superlow. Then for each Turing functional Γ there is a computable enumeration (As)s∈N of
A and a computable function g such that g(x) bounds the number of stages s such that Γ A(x)[s − 1] is defined with use u and
As �u≠ As−1 �u.

In the situation of the lemma we say the computation Γ A(x)[s − 1] is destroyed at stage s.

Proof. Let (As)s∈N be some computable enumeration of A. There is a Turing functional∆ such that for each x and each stage
s such that ΓA(x)[s] ↓, the output of∆A(x)[s] is the stage t ≤ swhen this computation became defined. Clearly the defined
distinct values∆A(x)[s] are increasing in s.

By [21] A is jump-traceable. Thus, there is a c.e. trace (Tx)x∈N with computable bound g for ∆A. Define a computable
sequence of stages as follows. Let s0 = 0. For i ≥ 0, let

si+1 = µs > si.∀x < si [Γ
A(x)[s] ↓−→ ∆

A(x)[s] ∈ Tx,s].

Define a computable enumeration (As)s∈N of A by As(x) = Asi(x) for si ≤ s < si+1. For each s such that Γ A(x)[s] is newly
defined, a further element must enter Tx. Thus (As)s∈N is as required. �

Theorem 4.2. Suppose the c.e. set A is Turing below a Demuth random set. Then A is strongly jump-traceable.

Proof. Since a Demuth random set is Turing incomplete, A is a basis for ML-randomness. Hence A is low for K and therefore
superlow. See [23, 5.1.23] for more detail.

Fix a Turing functional Φ . For each order function h we will build a c.e. trace (Tx)x∈N such that #Tx ≤ h(x); we will also
define a Demuth test (Gm)m∈N such that, whenever A = ΦY , we have

∃
∞x JA(x) ∉ Tx ⇒ Y fails (Gm)m∈N. (1)

Thus, if A = ΦY for some Demuth random set Y , then A is strongly jump-traceable.
Fix an order function h. For m ∈ N let

Im = {x: 2m
≤ h(x) < 2m+1

}.

Let (As)s∈N be a computable enumeration of A such that the conclusion of Lemma 4.1 holds for the jump functional J via a
computable bound g .
Construction of the c.e. trace (Tx)x∈N

For eachmwe run a procedure formwhich defines Tx for each x ∈ Im. The actions of these procedures will be exploited
later to define the Demuth test (Gm)m∈N. Namely, if JA(x) ∉ Tx for some x ∈ Im, then Y ∈ Gm for each Y such that A = ΦY .

The procedures for different m act independently. In the following fix m. The procedure for m has a parameter v which
is nondecreasing over stages. Initially v = 0. At stage swe have a description of a c.e. open set

G = {Z: ΦZ
≽ As �v}. (2)

Let Gs be the clopen set approximating G at stage s, namely, Gs = {Z: ΦZ
[s] ≽ As �v}.

Procedure for m

(a) While λG ≤ 2−m do:
if there is a new convergence JA(x) ↓ for x ∈ Im,
raise v to the stage number.

(b) Enumerate JA(x)[s] into Tx for each x ∈ Im such that this computation is defined.
(c) Wait for a stage s such that As �v≠ As−1 �v .
(d) Let v = s and goto (a).
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Claim 1. For each x we have #Tx ≤ h(x).
Let m be the number such that x ∈ Im. Thus 2m

≤ h(x). Each time the procedure for m goes back to (a), A �v has changed.
Because the parameter v is non-decreasing over stages, this means that the next set G defined in (2) will be disjoint from
the previous versions. Since λG exceeds 2−m when the procedure enters (b), the procedure enters (b) for at most 2m times.
This proves Claim 1.

We now wish to define the Demuth test (Gm)m∈N. We cannot let Gm copy all the versions of G the procedure for m goes
through. Since we have to keep the values of v nondecreasing, typically v is much larger than the maximum of the uses of
the computations JA(x) for x ∈ Im. This means that even if we have applied Lemma 4.1 to J , there may be too many changes
of A �v for the computable enumeration (As)s∈N used in the construction.

As a remedy, we introduce a new enumeration (As)s∈N of A. For this, we define an auxiliary functionalΓ which always has
output 0. Givenm, initialize a counter iwith value −1. When v is raised at a stage s in (a) of the procedure form, increment
i and define Γ A(⟨m, i⟩)with use v. From now on, each time A �v changes, redefine Γ A(⟨m, i⟩)with the same use.

Recall that g(x) bounds the number of times JA(x) can become destroyed with the given computable enumeration of A.
Then the maximum value of i is bounded by r(m) = 2m ∑

x∈Im g(x).
Now, by Lemma 4.1, there is a computable enumeration (As)s∈N of A and an increasing computable function f such that

Γ
A(w) gets destroyed at most f (w) times.
At any stage s, for each m, if v is the parameter of Procedure m, let Gm copy the c.e. open set {Z: ΦZ

≽ As �v}, as long as
its measure does not exceed 2−m. (This is similar to (2) but with the new enumeration of A.)

Clearly, Gm can only change at a stage s if ΓAs−1(⟨m, i⟩) is destroyed for the current i < r(m). Hence the number of times
Gm changes is bounded by

∑
i<r(m) f (⟨m, i⟩). This shows that (Gm)m∈N is a Demuth test.

Claim 2. The property (1) is satisfied.
Suppose that A = ΦY , and that there are infinitely many m such that JA(x) ∉ Tx for some x ∈ Im. For such an m, whenever
the procedure form reaches (c) it will after some waiting go back to (a), because the use of JA(x) is at most v for each x ∈ Im.
This can happen at most 2m times, so eventually the procedure stays permanently at (a).

Recall that the number of times the parameter v is raised is bounded by r(m). For the final value of this parameter, since
ΦY

≽ A �v , we put Y into the final version of Gm by a stage swhenA �v= A �v= As �v . �

Wegive an application. Recall that eachML-random∆0
2 set Turing bounds an incomputable c.e. set (Kučera; see [23, Thm.

4.2.1]). However, a stronger statement fails: Y0 ≰T Y1 for ML-random ∆0
2 sets does not imply that some c.e. set A is below

Y0 but not below Y1. Still better would be to find ML-random ∆0
2 sets Y0 ≢T Y1 that bound the same c.e. sets. This remains

open.
Note that if a set Y = Y0 ⊕ Y1 is ML-random then Y0, Y1 are ML-random and Y0 |T Y1.

Corollary 4.3. There is an ML-random∆0
2 set of the form Y0 ⊕ Y1 such that each c.e. set Turing below Y0 is Turing below Y1.

Proof. Let Y1 be an ML-random superlow set. Let Y0 be a ∆0
2 set that is Demuth random relative to Y1. By van Lambalgen’s

theorem, Y is ML-random.
If A is c.e. and A ≤T Y0, then A is s.j.t., whence A ≤T Y1 by [10]. �

5. A basis theorem for computably dominated sets

Theorem 5.1. Let P be a non-emptyΠ0
1 class. Suppose that B >T ∅

′ isΣ0
2 . Then there is a computably dominated set Y ∈ P such

that Y ′
≤T B.

Proof. We combine

(a) permitting below B relative to ∅
′ with

(b) the techniques of the LowBasis Theoremand the basis theorem for computably dominated sets of Jockusch and Soare [14]
(also see [23, Theorem 1.8.42] for the latter).

Fix an enumeration (Bs)s∈N of B relative to ∅
′. We use the function cB ≤T B given by cB(i) = µt > i. Bt �i= B �i for the

permitting. Note also that cB ⊕ ∅
′
≡T B.

Construction relative to B ofΠ0
1 classes (P i)i∈N. Let P0

= P .
Stage 2i + 1. If

P2i
∩ {X: JX (i) ↑} ≠ ∅,

then let P2i+1 be this class. Otherwise, let P2i+1
= P2i.

Stage 2i + 2. See whether there is e ≤ i which has not been active so far such that for somem ≤ cB(i)we have

Q i
e,m := P2i+1

∩ {X: ΦX
e (m) ↑} ≠ ∅.

If so let e be the least such number, letm be the least such number for e, and let P2i+2
= Q i

e,m. Say that e is active. Otherwise,
let P2i+2

= P2i+1.
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By the compactness of Cantor space there is a set Y ∈


r P
r (in fact Y is unique).

Verification. Since B can determine an index for P r uniformly in r , we have Y ′
≤T B by the usual argument of the Low Basis

Theorem. Each k is active at most once, and if so thenΦY
k is partial. Suppose now thatΦY

k is total.
Claim. There is i such thatΦZ

k is total for each Z ∈ P2i+1.
This claim implies that there is a computable function dominating ΦZ

k for each Z ∈ P2i+1, by the argument in the proof of
the basis theorem for computably dominated sets in [23, Theorem 1.8.42].

If the claim fails then we show B ≤T ∅
′, contrary to the hypothesis. Let i0 be such that no j < k is active from stage 2i0

on. Using the oracle ∅
′ we will inductively find an index for theΠ0

1 class P2i for i ≥ i0, as well as a stage n such that Bn �i has
its final value.

Fix an index for P2i0 in advance. If we have an index for P2i, the oracle ∅
′ can find an index for P2i+1. Now, to find an index

for P2i+2, search for the least n such that Q i
k,n ≠ ∅. This n exists because we assume the claim fails. Then cB(i) < n, otherwise

we would now ensure that ΦY
k (n) is undefined. Thus Bn �i= B �i, and using ∅

′ we can determine the value of cB(i). Further,
using ∅

′ we can find the least e ≤ i which is active at stage 2i + 2 via some m ≤ cB(i), and hence compute an index for
P2i+2. �

Corollary 5.2. There is a weakly 2-random set Y that does not compute a 2-f.p.f. function.

Proof. Let B >T ∅
′ be aΣ0

2 set such that B′
≡T ∅

′′. By Theorem 5.1 there is a computably dominated ML-random set Y such
that Y ≤T B. Thus Y is weakly 2-random. Every 2-f.p.f function computes a 2-d.n.c. function (Kučera; see [23, 4.3.16]). Hence
∅

′′
≤T B ⊕ ∅

′ by the completeness criterion of Arslanov [1] relativized to ∅
′, contradiction. �

This result might also be obtained by adapting Kurtz’s rather complex proof [19], that no 2-random set Y is computably
dominated, to the more general case that Y computes a 2-d.n.c. function. An easy alternative proof can be obtained from a
more recent result in the literature. By a result of [24] relative to ∅

′, there is a set Y <T ∅
′′ such that Y is Schnorr random

relative ∅
′ and left-Σ0

2 . Then Y is weakly 2-random and does not compute a 2-f.p.f. function again by [1] relative to ∅
′.
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