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Calibrating the complexity of ∆0
2 sets

via their changes

André Nies
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The computational complexity of a ∆0
2 set will be calibrated by the amount

of changes needed for any of its computable approximations. Firstly, we study
Martin-Löf random sets, where we quantify the changes of initial segments.

Secondly, we look at c.e. sets, where we quantify the overall amount of changes

by obedience to cost functions. Finally, we combine the two settings. The dis-
cussions lead to three basic principles on how complexity and changes relate.
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Introduction

In computability theory one studies the complexity of sets of natural num-

bers. A good arena for this is the class of ∆0
2 sets, that is, the sets Turing

below the Halting problem ∅′. For, by the Shoenfield Limit Lemma, they

can be approximated in a computable way. More precisely, the lemma says

that a set Z ⊆ N is Turing below the halting problem ∅′ if and only if there

is a computable function g : N × N → {0, 1} such that Z(x) = lims g(x, s)

for each x ∈ N. We will write Zs for {x : g(x, s) = 1}. The sequence 〈Zs〉s∈N
is called a computable approximation of Z.

The paper is set up as a play in three acts. The main topic of the play is

to study the complexity of a ∆0
2 set Z by quantifying the amount of changes

that are needed in any computable approximation (Zs)s∈N of Z.

• In the first act, we will do this for random ∆0
2 sets. They are played

by knights living in a castle who do a lot of horseback riding.

• In the second act, we will do it mainly for computably enumerable

(c.e.) sets. They are played by poor peasants living in a village who

are trying to pay their taxes.

• In the final act, we will relate the two cases. The knights and the

peasants meet.
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The purpose of this work is to provide a unifying background for results

in the papers [3,6–8,10,11,13]. It contains many new observations on the

amount of changes of knights and peasants, and how they relate. However,

it does not contain new technical results.

Martin-Löf randomness

Our central algorithmic randomness notion is the one due to Martin-Löf

[18]. It has many equivalent definitions. We give one:

Definition 1.1. We say that a set Z ⊆ N is Martin-Löf random (ML-

random) if for every computable sequence (σi)i∈N of binary strings with∑
i 2−|σi| < ∞, there are only finitely many i such that σi is an initial

segment of Z.

Note that limi 2−|σi| = 0, so this means that we cannot “Vitali cover” Z

(viewed as the binary expansion of a real number) with the collection of

dyadic intervals corresponding to (σi)i∈N. A sequence (σi)i∈N as above is

called a Solovay test (see e.g. [22, 3.2.2]).

Left-c.e. sets

We will often consider a special type of ∆0
2 set. We say that Z ⊆ N is left-

c.e. if it has a computable approximation (Zs)s∈N such that Zs ≤L Zs+1,

where ≤L denotes the lexicographical ordering. For instance, Ω, the halting

probability of a universal prefix-free machine U (see, for instance, [22, Ch.

2]), is left-c.e. To see this, let Ωs be the measure of U-descriptions σ where

the computation U(σ) has converged by stage s. This is a dyadic rational,

which we identify with a binary string.

It is well known that Ω is ML-random. For general background on al-

gorithmic randomness, see [4,22].

Quantifying changes

We introduce the terminology needed to quantify the changes of initial

segments for a computable approximation of a ∆0
2 set.

Definition 1.2. Let g : N → N. We say that a ∆0
2 set Z is a g-change set

if it has a computable approximation (Zs)s∈N such that an initial segment

Zs �n changes at most g(n) times.

We also say that Z is g-computably approximable, or g-c.a. To be ω-c.a.

means to be g-c.a. for some computable g.
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We give an important example.

Proposition 1.1. Every left-c.e. set is a g-change set for some g = o(2n).

Proof. Fix a computable approximation (Zs)s∈N of Z such that Zs ≤L
Zs+1 for each s. It suffices to note that if Z �k is stable by stage t, then for

every n > t, Z �n changes at most t+ 2n−k times.

If we say that a ∆0
2 set needs more than g changes, we simply mean that it

is not a g-change set. Figueira, Hirschfeldt, Miller, Ng and Nies [6] studied

such lower bounds for the changes of random ∆0
2 sets.

Proposition 1.2. [6] Let Z be a random ∆0
2 set. Let q : N→ R+ be com-

putable and nonincreasing. If Z is a bq(n)2nc-change set then limn q(n) > 0.

For example, let q(n) = 1/ log log n. Then limn q(n) = 0. Thus, no Martin-

Löf random set is a b2n/ log log nc-change set. As a consequence, for the

number of initial segment changes for Ω, the upper bound o(2n) is not far

below 2n.

Act 1: Martin-Löf random sets and initial segments

The players:

Ω, the king.

Z, a raundon ∆0
2-knight.

More knights.

The scene: The fields outside a castle.

2.1. Randomness enhancement

The randomness enhancement thesis states that for a Martin-Löf raun-

don Z,

Z gets more random ⇔ Z is computationally less complex.

The thesis was explicitly and in full generality first mentioned in Section 4

of Nies [20], and published in [23]. Particular instances were given in the

literature much earlier on, possibly as far back as Kurtz [15].

The thesis was was initially observed only for randomness notions not

compatible with being ∆0
2. Recall that a set Z is weakly 2-random if Z is

not in any null Π0
2 class; Z is 2-random if it is ML-random relative to ∅′;
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Z is low for Ω if Ω is ML-random relative to Z. Lowness for Ω was first

studied in Nies, Terwijn and Stephan [25].

Example 2.1. Let Z ⊆ N be ML-random. Then

Z and ∅′ form a minimal pair ⇔ Z is weakly 2-random,

Z is low for Ω ⇔ Z is 2-random.

The first example is due to Hirschfeldt and Miller; see [22, 5.3.16]. The

second example follows from literature results: by Kurtz [15], 2-randomness

is equivalent to randomness relative to ∅′. Chaitin realized that Ω ≡T ∅′.
Since Ω is ML-random, we can now invoke van Lambalgen’s theorem to

conclude that Ω is ML-random in Z iff Z is ML-random in Ω. The result

was first explicitly mentioned in [25].

In contrast, the following, later result of Franklin and Ng [8] is also

relevant for ∆0
2 ML-random sets Z. A difference test consists of a sequence

of uniformly given Σ0
1 classes Am and a further Σ0

1 class B such that λ(Am−
B) ≤ 2−m for each m. To pass the test means to be out of Am − B for

some m. A set Y is difference random if it passes all difference tests.

Example 2.2 ( [8]). Let Z be ML-random. Then

Z is Turing incomplete ⇔ Z is difference random.

Weak Demuth randomness is a property strictly in between weak 2-random

and ML-random; see for instance [16,17]. Franklin and Ng have recently

introduced a property of a c.e. set A called strong promptness, which strictly

implies being promptly simple: there is a computable enumeration (As)s∈N
of A and an ω-c.a. bound g such that |We| ≥ g(e) implies that A promptly

enumerates some element of We. They used this property to provide a

further, related, example of randomness enhancement that is also relevant

to ∆0
2 sets: a ML-random Z does not compute a strongly prompt set if and

only if it is weakly Demuth random.

2.2. Malory’s thesis

All the quotes below are from Le Morte D’Arthur (1483) by Sir Thomas

Malorya.

Book III, Chapter IX: How Sir Tor rode after the knight with the brachetb,

aSir Thomas Malory was an English writer who died 1471. His major work, “Le Morte

d’Arthur”, is a prose translation of a collection of legends about King Arthur (OED). It
was printed in 1483 by William Caxton, who also acted as a (somwehat sloppy) editor.
bA brachet is a small hunting dog.
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and of his adventure by the way.

(...) And anon the knight yielded him to his mercy. But, sir, I have

a fellow in yonder pavilion that will have ado with you anon. He

shall be welcome, said Sir Tor. Then was he ware of another knight

coming with great raundonc, and each of them dressed to other,

that marvel it was to see; but the knight smote Sir Tor a great

stroke in midst of the shield that his spear all to-shivered. And Sir

Tor smote him through the shield below of the shield that it went

through the cost of the knight, but the stroke slew him not. (...)

From this quote one can derive what we will call Sir Thomas Malory’s

thesis.

Let Z be a Martin-Löf raundon ∆0
2 set. Then

Z gets more raundon ⇔ Z needs more changes.

Combining the two theses

We combine the randomness enhancement thesis with Malory’s thesis by

“transitivity”. This yields the main principle of this act: for a ML-random

∆0
2 set Z,

Z is computationally less complex ⇔ Z needs more changes.

We will give multiple evidence for this principle. Firstly, we consider

random ∆0
2 sets that are complex. This should mean that they can be com-

putably approximated with few changes. Thereafter, we consider random

∆0
2 sets that are not complex. They should need a lot of changes.

Evidence for the main principle: Complex random ∆0
2 sets.

1. Chaitin’s halting probability Ω is Turing complete. By Fact 1.1, its rate

of change is o(2n), which is at the bottom of the scale of possible changes

for a random ∆0
2 set.

2. Consider all the ML-random sets that are ω-c.a. (Def. 1.2). These sets

change much less than a general ∆0
2 set. By the already mentioned unpub-

lished work of Hirschfeldt and Miller (see [22, 5.3.15]), it turns out that

cThe Old French noun “randon”, great speed, is derived from “randir”, to gallop. It has

been used in English since the 14th century. When used in a metaphorical way, “randon”
meant “impetuousity” (OED). Malory’s spelling “raundon” may have been an attempt

to represent the French pronounciation.
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they are “jointly” complex: there is an incomputable c.e. set Turing (even

weak truth-table) below all of them. In contrast, by the low basis theorem

with upper cone avoidance, for each incomputable c.e. set A, there is a

ML-random ∆0
2 set Z not Turing above A. The closer to computable A is,

the more Z has to change; certainly Z is not ω-c.a. in general.

Evidence for the main principle: Non-complex random ∆0
2 sets.

Recall that a set Z ⊆ N is low if Z ′ ≤T ∅′, and superlow if Z ′ ≤tt ∅′. To be

superlow, a ML-random ∆0
2 set needs to change considerably, by a result

of Figueira, Hirschfeldt, Miller, Ng and Nies.

Theorem 2.1. [6, Cor. 24] Suppose that a Martin-Löf random set Z is

superlow. Then Z is not an O(2n) change set.

In fact, in [6, Thm. 23] they showed the slightly stronger result that Z is

not an O(h(n)2n) change set for some order function h.

In contrast, mere lowness can be achieved with fewer changes:

Theorem 2.2. [6, Thm. 11] Some low Martin-Löf random set Z is an

o(2n) change set.

We note that the latter result also appears to give some contrary evi-

dence to the main principle that Z is computationally less complex if and

only if Z needs more changes: The set Z constructed in Theorem 2.2 has

a rate of change similar to the one of Ω, but is low. This suggests that

we would need a fine analysis of change bounds in o(2n) to differentiate

between Ω and low random sets. In the the proof of Theorem 2.2, the func-

tion m(k) quantifying the “o” in o(2n), that is, the minimal r such that

for each n ≥ r, Z �n has at most 2n−k changes, is an ω-c.a. function with

O(4k) increases. In contrast, Ω only needs O(2k) increases of its analogous

function.

Act 2: Computably enumerable sets and cost functions

The players:

Ω, the King.

A, an abject ∆0
2 peasant.

The king’s tax collector.

The scene: A village.

Book VIII, CHAPTER IV: How Sir Marhaus came out of Ireland for to ask

truage of Cornwall, or else he would fight therefore.
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(...) Then it befell that King Anguish of Ireland sent to Cornwall

for his truaged, that Cornwall had paid many winters. And all that

time Cornwall was behind of the truage for seven years. And they

gave unto the messenger of Ireland these words and answer, that

they would none pay; and bade the messenger go unto his King

Anguish, and tell him we will pay him no truage. (...)

Cost functions

Suppose the King issues a tax law. This is a computable function c : N ×
N → Q+ that is nondecreasing in s, and nonincreasing in x. Consider a

computable approximation (As)s∈N of a ∆0
2 peasant A. Suppose that on

day s, the number x is least such that As(x) changes. Then the tax the

peasant pays is c(x, s). The established terminology for such a tax law is

“cost function”. Cost functions were used in an ad-hoc way in [5,14,21].

The general theory was developed in [22, Section 5.3], and in more depth

in [11,24].

Definition 2.3 ( [22]). We say a ∆0
2 set A obeys a cost function c if A

has a computable approximation such that the total tax is finite.

Let c∗(x) = sups c(x, s). We say that a cost function c has the limit

condition if limx c∗(x) = 0. Informally, this is a fair tax law. We show that

one can obey each fair tax law without being taxed to death (where death =

computable). This result has roots in the work of Kučera and Terwijn [14]

who built an incomputable low-for-random set. Downey et al. [5] gave a

construction like this for the particular cost function

c(x, s) =

s∑
w=x+1

2−Ks(w)

in order to build an incomputable K-trivial set (see below). In full gener-

ality, the construction was first stated in [22, Thm. 5.3.5].

Proposition 2.3. Suppose a cost function c has the limit condition. Then

there is a promptly simple set A obeying c.

Proof. We meet the usual prompt simplicity requirements

PSe: |We| =∞ ⇒ ∃s∃x [x ∈We,s −We,s−1 ∧ x ∈ As].

dtribute
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We define a computable enumeration 〈As〉s∈N as follows. Let A0 = ∅. At

stage s > 0, for each e < s, if PSe has not been met so far and there is

x ≥ 2e such that x ∈ We,s − We,s−1 and c(x, s) ≤ 2−e, put x into As.

Declare PSe to be met.

Note that 〈As〉s∈N obeys c, since at most one number is put into A for the

sake of each requirement. Thus the total tax the peasant A pays is bounded

by
∑
e 2−e = 2.

If We is infinite, there is an x ≥ 2e in We such that c(x, s) ≤ 2−e for

all s > x, because c satisfies the limit condition. We enumerate such an x

into A at the stage s > x where x appears in We, if PSe has not been met

yet by stage s. Thus A is promptly simple.

In the traditional interpretation (such as [26]), being promptly simple

would mean that the set changes quickly. So it seems the result says that a

set can change quickly in that traditional sense, yet change little in the sense

of the cost function. There is no contradiction because actually, A only has

to change quickly once for each infinite c.e. set We. This is possible even if

the global amount of changes is small.

We also note that the actual amount of tax paid is immaterial as long as

it is finite: we can always modify the computable approximation so that the

tax becomes arbitrarily small. Thus, a single cost function only distinguishes

between sets that change little, and sets that change a lot. Later on, we will

also consider classes of cost function. Jointly obeying each cost function in

such a class yields a finer way to gauge the amount of changes.

When studying obedience to a single cost function, we can focus on the

c.e. sets.

Proposition 2.4 ( [22], Prop. 5.3.6). Suppose a ∆0
2 set A obeys a cost

function c. Then there is a computably enumerable set D ≥T A such that

D also obeys c. If A is ω-c.a., then we can in fact achieve that D ≥tt A.

Recall that K(x) denotes the prefix-free complexity of a string x (see

e.g. [22, Ch. 2], or [4]). The Levin-Schnorr theorem characterizes ML-

randomness of Z via having an initial segment complexity K(Z �n) of

about n, which is near the upper bound (see e.g. [22, 3.2.9]). Recall

that a set A is K-trivial if for some b, ∀nK(A �n) ≤ K(n) + b. Since

K(n) ≤ 2 log n + O(1) is the lower bound, this means that A is far from

random.

The following characterizes K-triviality among peasants by obedience to

the King’s tax law cΩ, defined by cΩ(x, s) = Ωs − Ωx. This is the amount



October 7, 2012 21:15 WSPC - Proceedings Trim Size: 9in x 6in NiesALC2011RandomChanges

9

Ω increases from x to s. Note that cΩ actually depends on a particular

computable approximation of Ω as a left-c.e. real.

Theorem 2.3 ( [21], [24]). A is K-trivial ⇔ A obeys cΩ.

The implication ‘⇐’ is not hard. The implication ‘⇒’ is also not very

hard for a c.e. set A, but needs the full power of the so-called golden run

method of [21] in the case of a general ∆0
2 set A. (The proof in [21] was for

the cost function cK.)

Corollary 2.1. Every K-trivial set is Turing below a computably enumer-

able K-trivial set.

Recall the main principle from Act 1: for a ML-random ∆0
2 set Z.

Z is computationally less complex ⇔ Z needs more changes.

For c.e. sets A, we propose a principle that is antipodal to the one for

random ∆0
2 sets:

A is computationally less complex ⇔ A obeys stricter cost functions.

Thus, for c.e. sets, being less complex means changing less. We give

evidence for this principle, in fact also in the case of left-c.e. sets. Similar

to Act 1, we proceed from sets of high complexity to sets of low complexity,

and see that this complexity matches their changes in the predicted way.

We first show that the King pays no taxes. Thereafter we see that peasants

get poorer and poorer as they obey stricter and stricter tax laws.

Evidence 1. The left-c.e. set Ω is Turing complete. It obeys no cost function

of any reasonable strength, by the following observation.

Proposition 2.5. If c is a cost function with c(x, s) ≥ 2−x for all x, s,

then no Martin-Löf random ∆0
2 set Z obeys c.

Proof. We view Zs as a binary string. At stage s > 0, if there is a least p

such that Zs(p) 6= Zs−1(p), we add the string Zs �p+1 to an effective

list of strings (σi)i∈N as in Definition 1.1. If Z obeys c via 〈Zs〉s∈N, then∑
i 2−|σi| <∞. Since σi ≺ Z for infinitely many i, Z is not ML-random.

Evidence 2. Bickford and Mills [1] studied sets A such that A′ ≤tt ∅′. They

called these sets abject. They mainly studied this property for c.e. sets.

Mohrherr [19] introduced the term “superlow” for this property and also

provided results outside the c.e. sets.

The following was first proved using the so-called golden run method.
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Theorem 2.4 ( [21]). Each K-trivial set is superlow. Thus, obeying cΩ

implies superlowness.

Evidence 3. Let JA be a universal partial computable functional with ora-

cle A. Strong jump traceability, introduced in [7], is a lowness property of

a set A saying that the possible values of JA are very limited: if JA(x) is

defined at all, then it is contained in a tiny c.e. set Tx obtained uniformly

from x. In [7] a c.e. but incomputable strongly jump traceable set was

built. Cholak et al. [2] showed among other things that some c.e. K-trivial

set is not strongly jump traceable. In later papers such as [3,10], strong

jump traceability was studied in great depth. For general background, see

Section 10.13 of the excellent book [4], and also Section 8.5 of [22].

A cost function c is called benign [11] if one can bound computably in k

the number of pairwise disjoint intervals [x, s) with increments c(x, s) ≥
2−k. For instance, the cost function cΩ used in Theorem 2.3 is benign via

the bound k → 2k. Clearly, benignity implies the limit condition.

Theorem 2.5 ( [11]). Let A be c.e. Then

A is strongly jump traceable ⇔ A obeys each benign cost function.

Together with Greenberg et al. [10], this shows that a c.e. set is strongly

jump traceable iff it is below each ω-c.a. ML-random set. This strengthens

the result of Hirschfeldt and Miller from Act 1 that such a set can be

incomputable.

Elaborating on Proposition 2.3, Franklin and Ng have shown that every

benign cost function is obeyed by a strongly prompt set.

Act 3: Computably enumerable sets below random ∆0
2 sets

The players:

Z, a raundon ∆0
2-knight

A, a c.e. peasant.

Village people.

The scene:

A forest between village and castle.

Book VI, Chapter X: How Sir Launcelot rode with a damosel and slew a

knight that distressed all ladies and also a villain that kept a bridge.

(...) And so Sir Launcelot and she departed. And then he rode in

a deep forest two days and more, and had strait lodging. So on
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the third day he rode over a long bridge, and there stert upon

him suddenly a passing foul churle, and he smote his horse on the

nose that he turned about, and asked him why he rode over that

bridge without his licence. Why should I not ride this way? said Sir

Launcelot, I may not ride beside. Thou shalt not choose, said the

churl, and lashed at him with a great club shod with iron. Then

Sir Launcelot drew his sword and put the stroke aback, and clave

his head unto the paps. At the end of the bridge was a fair village,

and all the people, men and women, cried on Sir Launcelot, and

said, A worse deed didst thou never for thyself (...)

We now consider the situation that A ≤T Z, where Z is a raundon

∆0
2 knight, and A is an incomputable c.e. peasant. We will see that

the more Z is allowed to change, the less A can change.

The changes of Z are quantified in the sense of initial segments (Act 1).

The changes of A are quantified by obeying cost functions (Act 2). This is

in line with combining the main principles of these Acts: if Z changes more

then Z is computationally less complex. So the set A ≤T Z is less complex

as well, and hence can change less.

The situation above occurs by the following classical theorem of Kučera

which says that every raundon ∆0
2 knight has an incomputable c.e. peasant

as a subject.

Theorem 2.6 ( [13]). Let Z be a random ∆0
2 set. Then there is a c.e.

incomputable set A such that A ≤T Z.

Greenberg and Nies [11] have given a cost function proof of Kučera’s the-

orem: A is a set obeying a certain cost function cZ associated with a com-

putable approximation of Z.

Unless Z ≥T ∅′, the peasant A in Kučera’s theorem is quite obedient.

That is, he is restricted in its amount of possible changes. This follows from

a result of Hirschfeldt, Nies, and Stephan.

Theorem 2.7 ( [12]). If Z is Turing incomplete, then a set A as in The-

orem 2.6 is necessarily K-trivial.

earchaic: a person of low birth; a peasant (OED)
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Depending on the ∆0
2 knight Z, a c.e. peasant subject to Z is can become

arbitrarily obedient by a result of Greenberg et al. [10, Theorem 2.6].

Theorem 2.8. Let P be a non-empty Π0
1 class consisting only of ML-

random sets. Let c be a cost function with the limit condition. Then there

is a ∆0
2 set Z ∈ P such that every c.e. set A ≤T Z obeys c.

This result has a complicated history. It started with the main result of

Greenberg [9].

Theorem 2.9. There is a ML-random ∆0
2 set Z such that every c.e. set A

Turing below Z is strongly jump traceable.

Greenberg built such a set Z directly in early 2009. Thereafter, Kučera and

Nies [16] showed that any Demuth random set Z (see [22, Section 3.6])

does the job. (This is another instance of the main principle of this act:

if Z is ∆0
2, it needs to change a lot in order to be Demuth random. This

means that A can only change little.) Greenberg et al. [10] defined a cost

function c such that every c.e. set A obeying c is strongly jump traceable.

They combined this with their Theorem 2.8 to obtain yet another proof of

the result of Greenberg.

In fact, in Theorem 2.8, instead of ML-randomness of Z we can take

membership in any non-empty Π0
1 class by a result of Nies [24]. In that

construction, the more restrictive c, the more Z has to change. If c is benign

as defined before Theorem 2.5, then it is not very restrictive. In this case, the

construction makes the set Z ω-c.a. This is predicted by (the contrapositive

of) the main principle of this act: if A is allowed more changes, then Z

can change less. The extension to Π0
1 classes shows that in Theorem 2.9,

randomness of Z can for instance be replaced by PA completeness.

Exeunt omnes.
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