
Studying randomness through computation
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1 How were you initially drawn to the study of
computation and randomness?

My first contact with the area was in 1996 when I still worked at the University
of Chicago. Back then, my main interest was in structures from computability
theory, such as the Turing degrees of computably enumerable sets. I analyzed
them via coding with first-order formulas. During a visit to New Zealand, Cris
Calude in Auckland introduced me to algorithmic information theory, a subject
on which he had just finished a book [3]. We wrote a paper [4] showing that
a set truth-table above the halting problem is not Martin-Löf random (in fact
the proof showed that it is not even weakly random [33, 4.3.9]). I also learned
about Solovay reducibility, which is a way to gauge the relative randomness of
real numbers with a computably enumerable left cut. These topics, and many
more, were studied either in Chaitin’s work [6] or in Solovay’s visionary, but
never published, manuscript [35], of which Cris possessed a copy.

In April 2000 I returned to New Zealand. I worked with Rod Downey and
Denis Hirschfeldt on the Solovay degrees of real numbers with computably enu-
merable left cut. We proved that this degree structure is dense, and that the
top degree, the degree of Chaitin’s Ω, cannot be split into two lesser degrees [9].
During this visit I learned about K-triviality, a notion formalizing the intuitive
idea of a set of natural numbers that is far from random.

To understand K-triviality, we first need a bit of background. Sets of natural
numbers (simply called sets below) are a main topic of study in computability
theory. Sets can be “identified” with infinite sequences of bits. Given a set A,
the bit in position n has value 1 if n is in A, otherwise its value is 0. A string
is a finite sequence of bits, such as 11001110110. Let K(x) denote the length of
a shortest prefix-free description of a string x (sometimes called the prefix-free
Kolmogorov complexity of x even though Kolmogorov didn’t introduce it). We
say that K(x) is the prefix-free complexity of x. Chaitin [6] defined a set A ⊆ N
to be K-trivial if each initial segment of A has prefix-free complexity no greater
than the prefix-free complexity of its length. That is, there is b ∈ N such that,
for each n,
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K(A�n) ≤ K(n) + b.

(Here A �n is the string consisting of the first n bits of A. On the right hand
side the number n is represented in base 2 by a string.)

Martin-Löf [22] introduced a mathematical notion of randomness that is
nowadays regarded as central. It is commonly referred to as Martin-Löf (ML-
) randomness, and sometimes as 1-randomness. We will discuss this notion in
detail in the next section. K-triviality of sets is the opposite of ML-randomness:
K-trivial sets are “antirandom”. For, the Levin-Schnorr Theorem says that Z is
Martin-Löf random if and only if there is a constant d such that for each n, we
have K(Z �n) ≥ n − d; on the other hand, Z is K-trivial if the values K(Z �n)
are within a constant of their lower bound K(n), which is at most 2 log n.

Chaitin showed that each K-trivial set is ∆0
2, that is, the set is Turing

below the halting problem. Downey, Hirschfeldt and I worked our way through
Chaitin’s proof, the construction in Solovay’s manuscript of an incomputable
K-trivial, and Calude and Coles’ improvement where the set constructed is
also computably enumerable (c.e.), which means that one can effectively list its
elements in some order. Downey realized that there is a connection between
K-triviality of A and a notion introduced by Zambella [37]: a set A ⊆ N is low
for ML-randomness if

each ML-random set is already ML-random relative to A.

The phrase “relative to A” means that we can include queries to A in the
computations determining, for instance, a ML-test. In this context A is called
an “oracle set”. Kučera and Terwijn [20] proved that such set can be c.e. but
incomputable. Thus, the notion of relative ML-randomness does not always
distinguish the oracles with some computational power.

A lowness property of a set expresses that the set is, in some specific sense,
close to being computable. Unlike K-triviality, which expresses being far from
random, Zambella’s property is a lowness property defined in terms of relativized
randomness.

At first these topics seemed exceedingly strange to me. Starting from April
2000, it took me almost exactly two years to understand the notions of K-
triviality, and being low for ML-randomness.

Downey realized, during his visit to the University of Chicago in February
2001, that the dynamics of the Kučera-Terwijn construction of a set that is
low for ML-randomness can be adapted for an easy construction of an incom-
putable, but c.e. K-trivial set. From 2002 on, the language of cost functions
was developed as an abstract framework for such constructions; see [33, Section
5.3].

End of May 2001 I left the University of Chicago. I had more than a year
ahead of me for pure research, knowing that I would safely start at the Univer-
sity of Auckland in mid-2002. In July 2001, Denis Hirschfeldt and I together
travelled to Italy. After that, we met with Rod Downey at the Vienna sum-
mer conference of the Association for Symbolic Logic. Progress was slow but
steady. For a while, we believed that a K-trivial set can be Turing complete!
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However, in discussions of Downey and Hirschfeldt, obstructions to building a
Turing complete K-trivial emerged.

In August 2001 a group of researchers including Denis Hirschfeldt, Frank
Stephan and Jan Reimann met at the University of Heidelberg. Denis had the
crucial idea how to turn these obstructions into a proof that each K-trivial set
is Turing incomplete. Eventually we published these findings in [10]. The mech-
anism in Hirschfeldt’s construction has been described by a stack of decanters
holding precious wine [11]. The height of the stack is essentially given by the
constant b in the definition of K-triviality of the set A. Wine is first poured
into the top decanter (in smaller and smaller quantities). A decanter that is not
at the bottom can be emptied into the next lower decanter. The purpose is to
fill the bottom decanter up to a certain amount, while spilling as little as pos-
sible; this yields a contradiction to the Turing completeness of A. An elaborate
argument one could call a “garbage lemma” shows that the amount one spills
is indeed bounded. Such garbage lemmas recur in several related results.

After the stay in Heidelberg I went to Novosibirsk for a month, and worked
with Andrei Morozov on questions related to algebra and its interaction with
logic. I returned to the topics discussed above during an epic trip to Lake Baikal,
Mongolia and then China on the Trans-Siberian Railway. I remember working
on this in Goryachinsk, a resort for Soviet war veterans on the remote Eastern
side of the lake 3 hours by minibus from Ulan-Ude, the capital of the Russian
province of Buryatia. I also remember a hotel room in Southern China where I
was trying to write up a proof that in the c.e. Turing degrees, each proper Σ0
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ideal has a low2 upper bound [1]. This is the mix of old and new I was immersed
in. As the class of K-trivials is closed under effective join ⊕ and every K-trivial
is Turing incomplete [10], the c.e. K-trivials seemed to be a natural candidate
for such an ideal, except that we didn’t know yet whether the K-trivials are
closed downward under Turing reducibility ≤T.

2 What have we learned?

A set of natural numbers can be studied under two aspects, its randomness and
its computational complexity. We now understand both aspects. We also know
that they are closely related. There are strong interactions from computability
to randomness, and conversely, from randomness to computability.

2.1 The randomness aspect of a set

For infinite sequences of bits, there is no single formal notion corresponding to
our intuition of randomness. Our intuition is simply too vague for that. Instead,
there is a hierarchy of formal randomness notions, determined by the strength
of the algorithmic methods that are allowed for defining a test concept. This
can be traced back to the admissible selection rules of von Mises [36].

The infinite sequences of bits form the points of a topological space called
Cantor Space. Martin-Löf [22] defined a set to be random in a formal sense if it
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passes each test in a certain collection of effective tests: a ML-test is a sequence
(Gm)m∈N of uniformly c.e. open sets in Cantor space of “size” at most 2−m

(formally, the size is the product measure λGm). Z passes this test if Z is not
in all Gm. Z is Martin-Löf random if it passes all ML-tests.

Many notions in the hierarchy of formal randomness notions can be defined
via modifying Martin-Löf’s test notion. If passing effective statistical tests such
as the law of large numbers is all you want, then your notion might be Schnorr
randomness, which is weaker than ML-randomness. A test (Gm)m∈N has to
satisfy the additional condition that the size of Gm is a computable real number
uniformly in m.

If computability theoretic criteria matter to you, then Schnorr randomness
is not enough because there is a Schnorr random set Z where the sequence of
bits in the even positions is Turing equivalent to the bits in the odd positions
[33, 3.5.22]. This cannot happen any longer for a ML-random set. But maybe
you also think that a real with computably enumerable left cut, such as Ω,
should not be called random (when viewed in its binary representation). In
that case, try weak 2-randomness. A Π0

2 class in Cantor Space has the form
{Z : Z �n∈ R for infinitely many n}, where R is some computable set of strings.
Z is weakly 2-random if Z is in no Π0

2 class of measure 0. Next is 2-randomness,
namely ML-randomness relative to the halting problem. This notion was already
studied in 1981 by Kurtz [21]. He showed that each 2-random Z is c.e. in
some set Y <T Z. Similar to ML-randomness, it has a characterization via
incompressibility of initial segments: Z is 2-random ⇔ for infinitely many n
the initial segment Z �n is incompressible in the sense of plain Kolmogorov
complexity C (see [33, 3.6.20]).

So far, all tests were definable in arithmetic. If such tests are not sufficient,
your notion might be ∆1

1 randomness, surprisingly proposed by Martin-Löf in
[23] as “the” formal randomness notion. A ∆1

1 class is a sort of effective Borel
class, and a set is ∆1

1 random if it is in no ∆1
1 class of measure 0. Martin-Löf’s

main result in that short paper states that there is no universal test in this sense
(also see [33, after 9.3.5]). The strongest effective notion is Π1

1 randomness,
studied in [15]. All null Π1

1 classes are now tests. There is a largest one ([16],
or see [15] for a direct proof). Interestingly, this notion is relevant in effective
model theory: if a countable structure has with probability 1 a presentation
computable in an oracle, then it already has a presentation computable in each
Π1

1 random oracle. (This is due to Kalimullin and Nies, slightly extending work
of Greenberg, Montalban, and Slaman. See the the March 2010 entry in the
Logic Blog on my web site.)

To summarize, the intuitive idea of randomness for sets corresponds to a
whole hierarchy of formal notions. We mentioned most of the main notions:

Π1
1-random ⇒ ∆1

1-random ⇒
2-random ⇒ weak 2-random ⇒ ML-random ⇒ Schnorr random.

For three notions, there is a universal test. Do you know which ones they
are?
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2.2 The computational complexity aspect of a set

In contrast to randomness, we have a clear intuition of what a computable set
(or function) is. The Church-Turing thesis states that this intutive notion has
a clear-cut formal counterpart, the sets computable by a Turing machine. If
we search our mind for an intution on the complexity of incomputable sets,
things become less clear. Perhaps there is an intuition what it means to be
“close to computable”. However, the formal notions that have been proposed,
the so-called lowness properties already mentioned in Section 1, are rather dis-
parate. They can even exclude each other outside the computable sets. For
instance, a set A is called computably dominated if each function that can be
computed with A as an oracle is dominated by a computable function. The only
computably dominated sets that are Turing below the halting problem are the
computable sets. A diagram of 12 lowness properties is given on page 361 of
[33].

2.3 Using computability to understand randomness

In the beginning of this section I explained how computability theoretic tools
are used to introduce formal randomness notions. Once defined formally, one
can also study randomness, or its absence, via computability. Let A be a set of
natural numbers. There are theorems supporting each of the following princi-
ples.

(1) A is far from random ⇔ A is close to computable.

(2) Suppose A already has a certain randomness property. Then
A is more random ⇔ A is closer to computable.

I will now give mathematical evidence for both principles. At present the main
evidence for (1) is the following.

Theorem 2.1 A is K-trivial ⇔ A is low for Martin-Löf randomness.

After the China visit at the end of 2001, I went on to Thailand, and then took a
plane to the US to work with Richard Shore at Cornell. Now, at the beginning
of 2002, I found myself travelling by bus, starting from the South of Mexico,
through all the countries of Central America. I ended up on a small island
called Isla Grande off the North coast of Panama, where I began working on the
question posed in [20] whether each set that is low for ML-randomness is ∆0

2.
Eventually, I was able to obtain an affirmative answer. Having left Isla Grande,
I wrote up a 7 page paper with this result in the internet cafés of Panama
City and submitted it to the 2002 FOCS conference, where it was promptly
rejected. See [28] for this proof. Later on, I improved the methods to obtain
the implication “⇐” of Theorem 2.1. In 2003 I obtained an even stronger result
involving computable randomness, which concludes this line of argument (if each
set that is ML-random is still computably random in A, then A is K-trivial).
The result appeared in [29]; see the unpopular Theorem 8.3.10 in my book [33].
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I hitched a ride on a yacht from Ciudád Colon in Panama to Isla Mujeres in
Mexico. I spent two weeks in the beautiful ocean off the Eastern Coast of Central
America. My company consisted of two elderly gentlemen who hated each other,
one paranoid cat, and an adventurer from the US who had the project to hide his
savings in a bank on the Caribbean Island of St. Thomas because of a paternity
lawsuit that awaited him at home. These were the conditions under which I
started thinking about the implication “⇒” of Theorem 2.1. After a stop at
Playa Tulum I went on to visit friends in Jalapa, the capital of the Mexican
state of Veracruz. Staying there for a month, I got closer and closer to proving
that remaining implication, without believing it was true at that time. I started
from the decanter proof in [10] that each K-trivial is Turing incomplete. As an
intermediate result, I proved that each c.e. K trivial has a lowness property
called c.e. traceability, which for c.e. sets is equivalent to being array recursive.
Next, I showed that the K-trivial are closed downward under Turing reducibility
(which is not at all clear from the definition). Given a K-trivial set A and a
set B that is Turing below A, I built a prefix-free machine showing that B is K-
trivial. Unlike the previous decanter proof, this construction has a tree of runs
of decanters. There must be a “golden run”, namely a run that does not return
while all the runs it calls do return. At the golden run node the required object
is constructed, in this case, a prefix-free machine showing that B is K-trivial.

From Jalapa I went to Chicago to meet Denis Hirschfeldt. He realized that
the golden run method shows the stronger result that each K-trivial set A is
low for K: using A as an oracle does not yield shorter prefix-free descriptions
of strings. This property, introduced by Muchnik Jr. in 1999, easily implies
being low for ML-randomness. To define it formally, A is low for K if there is
a constant d such that KA(y) ≥ K(y) − d for each string y. Interestingly, we
cannot find the golden run node in this construction, we can only prove that it
exists. This is necessarily so: there is no effective way to obtain, from an index
for the c.e. set A and the constant b for K-triviality of A, the constant d via
which A is low for K [33, 5.5.5]. (In the construction, only the double jump ∅′′
can find this golden run.)

Next I will discuss the principle (2) above: if A already has a randomness
property, then

A is more random ⇔ A is closer to computable.

This almost seems to contradict the principle (1), but note that (1) is about sets
that are far from random, while (2) is about sets that are already (somewhat)
random. The implication “⇐” has been called randomness enhancement : sat-
isfying a lowness property enhances the degree of randomness of A [27]. There
are numerous instances of the principle (2).

• Randomness properties stronger than ML-randomness are usually closed
downwards under ≤T within the ML-random sets, so they are given by
an “abstract” lowness property. Further, if A is ML-random, then A is
weakly 2-random⇔ every ∆0

2 set below A is computable (Hirschfeldt and
Miller; see [33, p. 135]), and A is 2-random ⇔ Ω is ML-random in A [32].
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• Let Z be Schnorr random set. If Z it is not high, then it is already ML-
random. If Z is even computably dominated, then in fact Z is weakly
2-random [32].

• If A is ∆1
1 random, then A is Π1

1 random ⇔ each function f that is hy-
perarithmetical in A is dominated by a hyperarithmetical function (Kjos-
Hanssen, Nies, Stephan and Yu [17]; also see [33, 9.4.6]).

2.4 Using randomness to understand computability

Computability theory is all about the computational complexity of sets of nat-
ural numbers. One can gauge the complexity of a set A by locating A in classes
of sets that all have a similar complexity. Examples of such classes are the
computable sets, the high sets (i.e., ∅′′ ≤T A′), the ∆0

2 sets (i.e., A is Turing
below the halting problem), and the ω-c.e. sets (A is Turing below the halting
problem, and, in addition, the reduction has a computably bounded use). The
Limit Lemma of Shoenfield says that a set A is ∆0

2 ⇔ the bit values A(x) can be
computably approximated with a finite number of mind changes; A is ω-c.e. ⇔
in addition, the number of mind changes is computably bounded. Randomness-
related concepts can be used both to introduce, and to study classes of similar
complexity.

Mostly the classes of similar complexity are lowness properties. A com-
mon paradigm for lowness is the weak-as-an-oracle paradigm: A is weak in a
specific sense when used as an oracle set in a Turing machine computation.
Via randomness-related concepts, two new lowness paradigms have emerged
[33, 27, 13].

The Turing-below-many paradigm says that A is close to computable be-
cause A is easy to obtain from an oracle set, in the sense that the class of
oracles computing A is large. Here, a class of oracles is considered large if it
contains random sets of a certain kind. So far, all sets satisfying an instance of
the Turing-below-many paradigm are ∆0

2 sets.
The inertness paradigm says that a set A is close to computable because it is

computably approximable with a small number of mind changes. In particular,
such a set is ∆0

2 by the Limit Lemma. For a mathematical formulation of the
inertness paradigm, one can use so-called cost functions. A cost function c(x, s)
is a computable function defined on pairs of natural numbers x, s. The values
c(x, s) are non-negative rationals. Cost functions are used to bound the total
quantity of changes of a ∆0

2 set, and especially that of a computably enumerable
set. At a stage s, if x is least such that I change my guess at A(x), then I have
to pay c(x, s). To achieve lowness, my goal is to build a set A that obeys c in
the sense that the total cost of changes is finite.

K-triviality has been characterized via the inertness paradigm [29]. Let
cΩ(x, s) be the measure of descriptions entering the domain of the universal
prefix-free machine between stages x and s; thus, cΩ(x, s) = Ωs − Ωx. The
single cost function cΩ does the job: In [30] it is shown that A is K-trivial ⇔
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some computable approximation of A obeys cΩ. Just like cΩ, most of the other
examples of cost functions are based on randomness-related concepts.

A further lowness property of a set is strong jump traceability. It was discov-
ered when Santiago Figueira visited Auckland for 3 months in 2003 [12]. Cholak,
Downey and Greeberg [7] showed that the c.e. strongly jump traceable sets form
a proper subclass of the c.e. K-trivials. The class has now been characterized via
all three lowness paradigms. The original definition is by the weak-as-an-oracle
paradigm, expressing that the jump JA(x) has very few possible values (it is
equivalent to require [12] that the relative Kolmogorov complexity CA(y) of a
string y is not far below C(y), which makes the notion an analog of being low
for K). The characterization via the Turing-below-many paradigm says that A
is Turing below each ML-random set Z that is ω-c.e. If A itself is ω-c.e., this
also expresses being far from random. For, there are many ω-c.e. ML-random
sets: besides Ω, we have the ones obtained via the Low Basis Theorem. They
can even be ML-random relative to one other. If an ω-c.e. A is “known” to all
of them, it must be far from random itself. (Are you convinced by this argu-
ment?) The characterization via the inertness paradigm says that a c.e. set A is
strongly jump traceable ⇔ A obeys all so-called benign cost functions (for ∆0

2

sets in general, at present only “⇐” is known).
The Turing-below-many paradigm seems to be more powerful than the weak-

as-an-oracle paradigm, because it allows us to get closer to being computable.
It even brings to light proper subclasses of the strongly jump traceable sets, for
instance the sets Turing below all ω2-c.e. ML-random sets [31].

3 What don’t we know (yet)?

We hope that new developments add to the present body of knowledge, and that,
in the worst case, they supersede known results. However, new developments
may also render previous results irrelevant.

The field of computability and randomness has now reached a state of “early
maturity”. Some notions, and results involving them, are generally agreed to be
fundamental, for instance Martin-Löf randomness and K-triviality. For other
notions, time will show. Let me assess the present knowledge critically.

3.1 Are we studying the right randomness notions?

There are various criteria for a good notion. The criteria (b)-(d) below work for
all of mathematics, while criterion (a) only applies to some of it.

(a) The notion corresponds to some intuitive idea. This is true for most of
the randomness notions of Subsection 2.1, and also for computable random-
ness, which is between ML-randomness and Schnorr randomness. Usually these
notions formalize at least one of the three intuitive “randomness paradigms”
introduced in [8] (typicalness, unpredictability, incompressibility of initial seg-
ments).
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(b) There are natural examples, or constructions, of instances of the notion.
This is true for ML-randomness and 2-randomness, where the examples are Ω,
and Ω relative to ∅′, respectively.

(c) The notion interacts richly with other sub-areas. Again, this is true for
several randomness notions of Subsection 2.1, for instance because of their in-
teraction with computability.

(d) The notion is a “sink”. That is, one reaches the same notion from dif-
ferent directions. To support this, there are coincidence results for Schnorr
randomness, ML-randomness, and 2-randomness. Originally defined via tests,
these three notions can be characterized via incompressibility of initial seg-
ments. Computable randomness can also be characterized in different ways: by
definition, Z is computably random if no computable betting strategy wins on
Z. However, recent research of Brattka, Miller and myself [2] shows that it is
equivalent to require that each non-decreasing computable function defined on
the unit interval is differentiable at (the real corresponding to) Z.

Of course, there may be undiscovered randomness notions that perform just
as well with these criteria.

3.2 Do the randomness notions really form a hierarchy?

For the notions presently known, the answer is “yes, mostly”. One notable
exception is Demuth randomness (see Section 3.6 of [33]), which is between 2-
randomness and ML-randomness, but is incomparable with weak 2-randomness.
This notion is interesting because, unlike weak 2-randomness, it is compatible
with being ∆0

2. It interacts strongly with lowness properties. For instance,
each c.e. set A below a Demuth random set Y is strongly jump traceable [18].
If Y is ∆0

2 then such a set A can be incomputable. Polynomial randomness
is incomparable with Schnorr randomness, because the proof of [32] that some
Schnorr random is not computably random actually produces a Schnorr random
that is not polynomially random (also see [33, Thm. 7.5.10]).

If the answer to the hierarchy question eventually becomes “no”, it would
be harder to claim that these notions have anything to do with our intuition of
randomness.

3.3 Are we studying the right lowness properties?

Let us apply the criteria for good notions (a)-(d) in Subsection 3.1. Many
lowness properties perform quite well in (b)-(d). As for (a), each of them catches
a bit of our intuition of being “close to computable”, but none of them formalizes
an intuitive idea just by itself. I will check the criteria (b)-(d) for two lowness
properties: lowness for ML-randomness, and superlowness.

Lowness for ML-randomness = K-triviality (b) has a natural construction:
a c.e. set obeying the cost function cΩ (see Subsection 2.4). It (c) interacts
well with randomness, and (d) coincides with heaps of other classes, such as
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being low for K, being a base for ML-randomness, and being low for weak
2-randomness (see [33, Section 5]).

We say that a set A is superlow if A′ is truth-table below the halting prob-
lem ∅′. Superlow c.e. sets can be built via finite injury. Non-c.e. superlow sets
with interesting properties, such as being ML-random or PA-complete, can be
built via the low basis theorem. So (b) is satisfied. For c.e. sets, superlowness is
equivalent to a property called jump traceability (see [33, 8.4.23]), which gives
us (d).

3.4 So, again, are our notions intrinsic, or accidental?

They are the former, hopefully. The randomness and lowness notions would
seem less accidental if they were introduced in different ways. For instance,
they could be specializations of more general formal notions. To obtain these
more general notions one could try to formalize the randomness and the lowness
paradigms discussed earlier on, which so far are informal meta-notions.

To be even more heretical, we could ask whether the whole distinction be-
tween the randomness and the computational complexity aspect of sets is more
than a historical accident, caused by the fact that people with different back-
grounds were working at different times and in different places. Currently we
develop these two aspects separately and then find interactions. Perhaps one
day they will be unified into a single theory. Perhaps one day there will only be
a general theory of access to the information of a set of natural numbers.

4 What are the most important open problems
in the field?

I expect there will be many interesting new problems in areas that are just
being developed, in particular the interaction of algorithmic randomness with
computable analysis [2], and ergodic theory. Instead, I will discuss two major
problems on randomness or its interaction with computability that have been
around for a while.

4.1 Covering a K-trivial by an incomplete random

Kučera [19] built an incomputable but computably enumerable set A below any
given ∆0

2 ML-random set Z. If Z does not compute the halting problem (for
instance, Z is the bits of Ω in even positions), this yields an injury-free solution
to Post’s problem [34] whether some incomputable c.e. set is Turing incomplete.

The cost function construction of a K-trivial set yields a further injury-free
solution to Post’s problem ([10], or see [33, Section 5.3]). If Z is a Martin-
Löf random set that does not compute the halting problem, then every c.e.
set A Turing below Z is K-trivial [14]. Thus, in a sense, Kučera’s solution to
Post’s problem is a special case of the solution via building a K-trivial. It is
open whether the converse holds: given A, build Z. Essentially we are asking
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whether the two injury-free solutions to Post’s problem are equivalent. Since
every K-trivial set is below a c.e. K-trivial [29], we may omit the hypothesis
that A is computably enumerable.

Question 4.1 [14, 25, 8] Is every K-trivial set Turing below an incomplete
Martin-Löf random set?

Countless people have worked on this. There is no consensus which way the
answer will go.

There are several variants of Question 4.1. For instance, we say that A is
ML-noncuppable if A⊕ Z ≥T ∅′ implies Z ≥T ∅′ for ML-random Z. Every c.e.
ML-noncuppable is K-trivial (see [33, 8.5.15]).

Question 4.2 [25] Is every K-trivial set ML-noncuppable?

For background on the next variant of Question 4.1, see Subsection 3.2.

Question 4.3 [18] Is every strongly jump traceable (c.e.) set Turing below a
Demuth random?

4.2 Kolmogorov-Loveland randomness

An infinite sequence of bits (i.e., a set) is computably random if no computable
betting strategies succeeds on it. Such a strategy places a bet on the next bit
position in the usual ascending fashion. We say that a set Z is Kolmogorov-
Loveland random (KL-random) if no computable betting strategy succeeds even
when it is allowed to choose the next bit position on which it places a bet. The
implications are

Martin-Löf random ⇒ KL-random ⇒ computably rd. ⇒ Schnorr random.

All implications except the leftmost one are known to be strict. The strictness
of that implication is a major open question.

Question 4.4 [26, 25]
Does KL-randomness differ from Martin-Löf randomness?

A negative answer would defeat Schnorr’s critique of ML-randomness, because
KL-randomness is defined using a computable test concept. In [24] we obtained
various results showing that KL-randomness is, at the very least, much closer to
Martin-Löf-randomness than the other notions. For instance, the computable
dimension of a KL-random set is 1.

Lowness for KL-randomness implies K-triviality [29]. Separating the two
lowness properties would basically give an affirmative answer to Question 4.4.
The following would be interesting to begin with.

Question 4.5 Is some incomputable set low for KL-randomness?
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Recall that co-infinite sets can be identified with reals in the unit interval via
the representation in base 2. When viewed as notions about reals, computable
randomness and KL-randomness appear to rely on the representation of the
real in base 2. However, strategies that bet on rational intervals can be used to
show the base invariance for computable randomness. We do not know whether
KL-randomness of a real actually depends on the choice of the base 2.

Question 4.6 Is KL-randomness of a real number base-invariant?

This is probably just as hard to answer as Question 4.4. Most likely, for each
base, KL-randomness induces a distinct class of reals; these notions are all
incomparable, and therefore all different from Martin-Löf randomness on reals.

5 What are the prospects for progress?

Back in the 16th century, a prospect was an extensive view of a landscape.
Imagine you stand on a mountain top and see the immense area of computability
and randomness stretched out before you. Where do you want to go?

Let’s say you are a young researcher with some knowledge of the books
[5, 33, 8], but not too much respect for the results in there. Then you might
make progress on the new directions suggested in Section 3.

We would make progress on the open problems in Section 4 by convening a
group of researchers, young and old, on that mountain top.

Acknowledgments. I thank Christopher Porter for comments on earlier drafts
of this paper, and the editor Hector Zenil for getting me to write this.
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