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Abstract—The Gamma question was formulated by Andrews
et al. in “Asymptotic density, computable traceability and
1-randomness” (2013, available at http://www.math.wisc.edu/
∼lempp/papers/traceable.pdf). It is related to the recent notion of
coarse computability which stems from complexity theory. The
Gamma value of an oracle set measures to what extent each
set computable with the oracle is approximable, in the sense of
density, by a computable set. The closer to 1 this value is, the
closer the oracle is to being computable. The Gamma question
asks whether this value can be strictly in between 0 and 1/2.

We say that an oracle is weakly Schnorr engulfing if it
computes a Schnorr test that succeeds on all computable reals.
We show that each non weakly Schnorr engulfing oracle has
a Gamma value of at least 1/2. Together with a recent result
of Kjos-Hanssen, Stephan, and Terwijn, this establishes new
examples of such oracles. We also give a unifying approach to
oracles with Gamma value 0. We say that an oracle is infinitely
often equal with bound h if it computes a function that agrees
infinitely often with each computable function bounded by h. We
show that every oracle which is infinitely equal with bound 2d

n

for d > 1 has a Gamma value of 0. This provides new examples
of such oracles as well.

We present a combinatorial characterization of being weakly
Schnorr engulfing via traces, which is inspired by the study of
cardinal characteristics in set theory.

I. INTRODUCTION

Generic-case complexity is a subfield of computational
complexity. It started with the observation that some problems
that are difficult to solve in full are easy to solve on “most
inputs”, namely on a set of inputs of density 1. This notion
was introduced by Kapovich et al. [11]. They showed among
other things that for a large class of finitely generated groups,
the generic case complexity of the word problem is linear.

This notion has recently been extended by Jockusch and
Schupp [10]. The authors identify two notions that can be
proved to be incomparable. The first is generic computability,
where one must always give the right answer, without having
to provide an answer for a small set of inputs. The second
is coarse computability, where one always has to provide an
answer, with the possibility of being wrong on a small set of
inputs. In both cases, a set of inputs is considered small if it
is of upper density 0; this will be made precise in the paper.

Then Andrew et al. [1] assign a value γ to each set of
natural numbers. They use this to assign a value Γ to each
Turing degree. They prove that the Gamma values of 0, 1/2
and 1 can be realized by a Turing degree. If a degree has a
Gamma value strictly larger than 1/2, then it is computable
and its Gamma value, in fact, equals 1. They ask whether a

Turing degree can have a Gamma value strictly in between 0
and 1/2.

We provide a unifying approach to this question. Among
the non-computable degrees, the members of two kinds of
degree classes are known to have a Gamma value of 1/2: the
computably traceable degrees, and the computably dominated
random degrees. The proofs suggest that in the two cases
this holds for very different reasons. We show here that, on
the contrary, they are both contained in a common class that
implies a Gamma value of 1/2: being not weakly Schnorr
engulfing. Together with recent, yet unpublished work of
Kjos-Hanssen, Stephan, and Terwijn [14], this establishes new
examples of such degrees.

We also unify the examples of degrees with a Gamma value
of 0, by relating them with a property of degrees we call H-
infinitely often equal for an appropriate computable bound H .
We end the paper by giving a combinatorial characterization of
being weakly Schnorr engulfing, close to the notion of being
H-infinitely often equal.

II. PRELIMINARIES AND NOTATION

In this paper, we work in the space of infinite sequences
of 0’s and 1’s, the Cantor space, denoted by 2ω . We call
finite sequences of 0’s and 1’s strings, elements of the Cantor
space sequences and sets of sequences sets. We sometimes
also use the word sequence to denote sequences of various
objects (typically integers), and when we do so we will always
specify it to avoid any ambiguity. We also sometimes view a
sequence X as the subset of ω containing n iff X(n) = 1
without necessarily specify it. For a string σ, we denote the
set of sequences extending σ by [σ] and we call those sets
cylinders. We denote by λ the unique probability measure on
2ω such that λ([σ]) = 2−|σ| for any string σ, where |σ| denotes
the length of σ.

The Cantor space is endowed with the product topology,
for which a set is clopen iff it is a finite union of cylinders,
and open iff it is a countable union of cylinders. A set
U is effectively open, or Σ0

1, if there exists a computably
enumerable sequence of strings {σi}i∈ω such that U =

⋃
i[σi].

A set U is effectively closed, or Π0
1, if it is the complement

of a Σ0
1 set. Finally we denote by 〈., .〉 a fixed computable

bijection from ω × ω to ω.
We now introduce notation which is less standard than the

one of the previous paragraphs. It will be convenient to expose
the work of this paper, especially for results of Section V. For
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a sequence X ∈ 2ω and a finite interval I ⊂ ω, we denote
by X !I the string X(I(0))ˆ . . . ˆX(I(m − 1)), where m is
the length of I , and I(k) denotes the k-th element of I . For
a string σ and a finite interval I , we write [σ]I to denote the
set of sequences extending σ, that is, {X ∈ 2ω : X !I= σ}.
For a finite interval I ⊂ ω and a clopen set J ⊆ 2ω , we write
J ⊆ 2I if there exists a set of strings σ0, . . . ,σk of length |I|
such that J =

⋃
i≤k[σi]I .

In this paper we will be interested in having a canonical
coding between sequences and functions f : ω → ω which are
strictly bounded by some H : ω → ω. Such a function H will
generally be an order function, that is, a computable function
H such that H(n) ≤ H(n + 1) and limn H(n) = +∞. To
make the coding work nicely, we will always assume that H
is of the form 2H̃(n). Given a sequence X and such a bound
H(n) = 2H̃(n), we denote by fX the function corresponding
to X . Formally we define H ′(n) =

∑
m<n H̃(m) (with

H ′(0) = 0), and fX(n) to be the integer less than 2H̃(n)

which is represented in binary by the string X ![H′(n),H′(n+1)).
Conversely, given f with f(n) < H(n) = 2H̃(n), we write Xf

to denotes the sequence X such that fX = f .

A. Preliminaries on coarse computability
The notion of coarse computability has received a lot of recent
attention; see for instance [1] and [9].

Definition II.1. A sequence A is coarsely computable if there
is a computable sequence X such that the lim inf of the
frequency of positions n on which A(n) = X(n), equals 1.
More formally, let us introduce the function:

ρ(Z) = lim inf
n

|Z ∩ [0, n]|
n

The sequence A is coarsely computable if for some com-
putable sequence X we have ρ(A↔ X) = 1, where A↔ X
denotes the sequence which, seen as a subset of ω, contains
n iff A(n) = X(n).

A real number can naturally be assigned to sequences. This
number can be seen as an indication of how far the sequence
is from being coarsely computable. It is defined by:

γ(A) = sup
X computable

ρ(A↔ X)

We will refer to this as the gamma value of A. Andrews,
Cai, Diamondstone, Jockusch and Lempp [1] had the interest-
ing idea to define a similar value for Turing degrees, which
indicates how far a degree is from being computable:

Γ(d) = inf{γ(A) : A ∈ 2ω is of degree d}

This will be referred to in this paper as the Gamma value of
d (with a capital ‘G’). In practice we will often write Γ(A) for
a set A ∈ 2ω to mean Γ(d) where d is the Turing degree of A.
It is easy to see that one can equivalently consider Γ(A) to be
the infinium over the values γ(B) for every B ≤T A, rather
than just every B ≡T A. The reason is that given any B <T A,
we can add to the sequence B all the information about A at

some very sparse computable set of positions, giving a new
set Turing equivalent to A, with the same gamma value as B
has.

The Gamma question is: which real numbers can be realized
by the Gamma value of a degree? In [1] Andrews et al. proved
that Γ(A) > 1/2 iff Γ(A) = 1 iff A is computable. They
also gave examples of sequences A with Γ(A) = 1/2 and
examples of sequences A with Γ(A) = 0. These examples
will be detailed in Section III. It is unkown whether some
sequence has a Gamma value strictly between 0 and 1/2.

B. Preliminaries on algorithmic randomness

Algorithmic randomness uses the tools of computability
theory to give a formal definition of the notion of a random
infinite binary sequence, the type of sequence we would expect
as the result of independent coin tosses. The reader can refer
to [19] or [8] for a background on algorithmic randomness.
We briefly discuss the notions important for this paper.

1) Martin-Löf randomness: The first satisfactory definition
of randomness was given by Martin-Löf in [17]:

Definition II.2. A Martin-Löf test is given by a uniform
intersection

⋂
n Un of effectively open sets such that the

function n .→ λ(Un) is bounded by a decreasing computable
function with limit 0. We say that a sequence X is Martin-Löf
random if it belongs to no Martin-Löf test.

Note that one can analogously define sequences which are
Martin-Löf random for any computable probability measure
µ, by simply replacing λ by µ in the above definition. Such
notions will be discussed at the end of Section III-A.

2) Schnorr randomness: The notion of Schnorr randomness
was introduced by Schnorr [23], who was aiming at a concept
that is more constructive than the one of Martin-Löf.

Definition II.3. A Schnorr test is given by a uniform inter-
section

⋂
n Un of effectively open sets such that the function

n .→ λ(Un) is computable and decreasing with limit 0. We
say that a sequence X is Schnorr random if it belongs to no
Schnorr test. For a sequence A we denote by A-Schnorr tests
and A-Schnorr random sequences the relativized notions.

It is well known that Schnorr randomness is strictly weaker
than Martin-Löf randomness. Downey and Griffiths [7] gave
another characterization of Schnorr randomness. It can be seen
as an effective version of the Borel Cantelli lemma. We review
their result in terms of the following test notion. Our term
is derived from the corresponding term “Solovay test”; recall
Solovay tests characterize Martin-Löf randomness.

Definition II.4. A Schnorr-Solovay test is a computable se-
quence {Cn}n∈ω of clopen sets such that

∑
n λ(Cn) is finite

and computable. A sequence X is captured by a Schnorr-
Solovay test {Cn}n∈ω if X is in infinitely many sets Cn, that
is, X ∈

⋂
n

⋃
k≥n Ck.
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We say that Test 2 covers Test 1 if every sequence failing
Test 1 also fails Test 2. Downey and Griffiths [7] proved
that Schnorr-Solovay tests characterize Schnorr randomness.
Actually, their notion of a total Solovay tests is slightly more
general than ours in that their components Cn in Definition II.4
are effectively open sets uniformly in n, rather than clopen
sets. They proved that each Schnorr test can be covered by
a total Solovay test, and vice-versa. On the other hand, it is
clear that every total Solovay test can be covered by a Schnorr-
Solovay test, by replacing each open set Cn by an effective
sequence of clopen sets with union Cn. So our notion used
here is indeed equivalent to theirs.

Proposition II.5 ([7]). A sequence X is Schnorr random iff
it is not captured by any Schnorr-Solovay test.

Definition II.6. A Schnorr-Solovay test {Cn}n∈ω is called
independent if the sequence {Cn}n∈ω is independent in the
usual sense of probability theory: λ(

⋂
r∈F Cr) =

∏
r∈F λ(Cr)

for each finite set F .

As we will see in Section V, each non-Schnorr random is
captured by an independent Schnorr-Solovay test of a very
special kind.

Definition II.7. An interval test is given by a uniformly
computable sequence of pairs {In,Jn}n∈ω where the In are
pairwise disjoint increasing finite intervals (i.e., max(In) <
min(In+1)), each Jn ⊆ 2In is a clopen set uniformly
computable in n, and

∑
n λ(Jn) is finite and computable.

3) Higher randomness: Randomness has recently been
studied from the viewpoint of higher computability. The
reader may refer to [22] or [18] for background on higher
computability, and to [19] or [18] for background on higher
randomness. Here we summarise the main notions used in the
paper.

A set of sequences or of integers is Π1
1 if it can be defined by

a second order formula of arithmetic with arbitrary quantifiers
over the integers, but only universal quantifiers over infinite
objects (sequences or functions). We also forbid negations in
a Π1

1 formula, to avoid having a ‘hidden’ existential quantifier
over infinite objects. A set of sequences or of integers is Σ1

1 if it
can be defined by a formula of arithmetic with only existential
quantifiers over infinite objects. Finally a set sequences or of
integers is ∆1

1 if it is both Π1
1 and Σ1

1.

Definition II.8. A sequence X is ∆1
1-random if it belongs to

no ∆1
1 set A ⊆ 2ω with λ(A) = 0. A sequence X is Π1

1-
random if it belongs to no Π1

1 set A ⊆ 2ω with λ(A) = 0.

The Gandy-Spector theorem gives a powerful analogy be-
tween the notions of computable/recursively enumerable sets
of integers and ∆1

1/Π1
1 sets of integers. Informally, one can

picture a Π1
1 set of integers as being effectively enumerable

along some “ordinal stages of computation” α < ωck
1 , rather

than just finite stages of computation, where ωck
1 is the least

non-computable ordinal, that is, the least ordinal α such that
there is no c.e. relation R ⊆ ω × ω which is a well-order of

order type α. Similarly, one can picture a ∆1
1 set of integers

as being effectively enumerable along some “ordinal stages of
computation” which are bounded by some α < ωck

1 .
Of particular interest in higher randomness is the set {X ∈

2ω : ωX
1 > ωck

1 } of sequences X such that the least non-
computable ordinal relatively to X , namely ωX

1 , is larger than
ωck
1 . We have the following theorem:

Theorem II.9 (Chong, Nies, Yu [4]). A sequence X is Π1
1-

random iff it is ∆1
1-random and ωX

1 = ωck
1 .

In higher computability there is a version of the halting
problem, called Kleene’s O, which is defined as the set of all
e such that the binary c.e. relation coded by e is a total well-
order of the integers1. Every Π1

1 set is many-one reducible to
Kleene’s O.

Theorem II.10. For a sequence X we have ωX
1 > ωck

1 iff
Klenne’s O is ∆1

1(X).

Finally we state here what is known as the van Lambalgen
theorem for Π1

1-randomness. The sequence X ⊕ Y is defined
by (X ⊕ Y )(2n) = X(n) and (X ⊕ Y )(2n+ 1) = Y (n).

Theorem II.11. For sequences X,Y we have that X ⊕ Y is
Π1

1-random iff X is Π1
1-random and Y is Π1

1(X)-random.

In particular, if a Π1
1-random sequence X is in a Π1

1(Y )
nullset then Y is in a Π1

1(X) nullset.

C. Preliminaries on weakly Schnorr engulfing sequences, and
traces

It is well known that unlike the case of Martin-Löf random-
ness, there exists no universal Schnorr test, that is, no Schnorr
test covering all the others. One can prove this by showing
that every Π0

1 set of computable positive measure contains a
computable sequence, so that no Schnorr test contains every
computable sequence (see for instance Fact 3.5.9 in [19]). We
are interested in oracles that strengthen the power of Schnorr
tests, in that some Schnorr test relative to the oracle captures
all the computable sequences.

Definition II.12. A sequence A is weakly Schnorr engulfing
if there exists an A-Schnorr test containing all the computable
sequences.

A weaker property of oracles has already been proved
equivalent to a tracing property: some Schnorr test relative
to the oracle is not covered by any plain Schnorr test. We first
define the tracing property.

Definition II.13 (Terwijn and Zambella [24]). A computable
trace is a computable sequence {Tn}n∈ω of finite sets of
integers given by strong indices. Formally Tn = Dp(n) where
p : ω → ω is a computable function and Dn is the set
containing m iff there is a 1 at position m of the binary
expansion of n. An oracle A is computably traceable if there

1The definition of Kleene is actually more complex in order to ease effective
definitions by induction over elements of this set. For our purposes the present
definition suffices.
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is a computable bound H : ω → ω such that: for every
function f ≤T A, there is a computable trace {Tn}n∈ω with
|Tn| < H(n) and f(n) ∈ Tn for each n.

Intuitively, an oracle is computably traceable if every func-
tion f it computes is ‘close to computable’, in that one can
compute a small set of values f(n) belongs to. By a result of
Terwijn and Zambella [24], together with Kjos-Hanssen, Nies
and Stephan [13], we have:

Theorem II.14. For an oracle A the following are equivalent:
• A is not computably traceable.
• There is an A-Schnorr test covered by no Schnorr test.
• There is an A-Schnorr test containing a Schnorr random.

Oracles failing any of these properties are said to be low
for Schnorr randomness. We will show the connection between
being weakly Schnorr engulfing and the Gamma question. We
shall also give in Section V a combinatorial characterization of
being weakly Schnorr engulfing, by showing its equivalence
with another tracing property.

D. Preliminaries on hyperimmune sequences
The following is a central notion of computability theory.

Definition II.15. An oracle X is computably dominated if for
every function f ≤T X , there exists a computable function g
such that f ≤ g, that is, f(n) ≤ g(n) for every n. An oracle
X that is not computably dominated is also said to be of
hyperimmune degree.

Kurtz proved in [16] that a sequence is hyperimmune iff
it Turing computes a weakly-1-generic sequence, that is, a
sequence which is in every dense Σ0

1 subset of 2ω . We state
here a less famous, though interesting, third equivalent notion:

Definition II.16. A function f : ω .→ ω is infinitely often
equal (i.o.e. for short) if it coincides infinitely often with every
computable function. An sequence A is of i.o.e. degree if it
Turing computes an i.o.e. function.

For the sake of completeness we include a proof of a well-
known equivalence.

Proposition II.17. The following are equivalent for a se-
quence A.

• A is of hyperimmune degree.
• A is of i.o.e degree.

Proof. If f : ω .→ ω is an i.o.e. function, then f + 1
is clearly dominated by no computable function. Conversely
suppose that a function g : ω .→ ω is bounded by no
computable function. Let {Φe}e∈ω be an effective list of the
partial computable functions, and {Re}e∈ω be a list of Boolean
values initialized to “false”. At stage n, we define f(n) to be
Φk(n)[g(n)], where k is the least integer less than n such that
Φk(n)[g(n)] halts and Rk is false. Then we set Rk to “true”.
If no such k exists we let f(n) = 0.

Note first that a function f is i.o.e. iff it is coincides
once with every computable function (using that the class of

computable functions is invariant under finite changes). If Φe

is total, then the function n .→ min{t : Φe(n)[t] halts} is
total and computable. Thus it is dominated by g infinitely
often. Now it is easy to check that f coincides at least once
with every computable function.

In this paper, we will be interested in sequences of hyper-
immune degree through their i.o.e. characterization. We will
also be interested in computably dominated sequences that are
random. It is well-known that, while the set of computably
dominated sequences has measure 0, some are still Schnorr
random [19]; further, each computably dominated Schnorr
random is already Martin-Löf random. We will refer to these
sequences simply as the computably dominated random se-
quences.

III. THE GAMMA VALUES

A. Gamma value of 1/2 and being weakly Schnorr engulfing

The only two known examples of sequences with a Gamma
value of 1/2 have been the non-computable, computably
traceable sequences and the computably dominated random
sequences [1]. They are quite different from each other: while
sequences of the first kind are close to computable, sequences
of the second kind are far from computable (as they are
random).

We identify a third property of an oracle implied by both
properties above, which suffices to get a Gamma value of
1/2: being not weakly Schnorr engulfing. As computably
traceable sequences are low for Schnorr randomness, they are
not weakly Schnorr engulfing (see Theorem II.14). Rupprecht
[21] proved that computably dominated random sequences are
not weakly Schnorr engulfing. It remains to prove that any
non-weakly Schnorr engulfing sequences has a Gamma value
of 1/2 (or of 1 in case it is computable).

Theorem III.1. Let A be not weakly Schnorr engulfing. Then
Γ(A) ≥ 1/2.

Proof. Let B ≤T A. For each d ∈ N we will define a Schnorr-
Solovay test (Gk)k∈N relative to A such that ρ(B ↔ R) ≥
1/2− 1/d for each sequence R not captured by this test. For
each d some computable sequence R passes the test for d, so
this will show that γ(B) ≥ 1/2.

Let Ik be defined inductively as the set of k consecutive
integers following Ik−1: I0 = ∅, I1 = {1}, I2 = {2, 3}, . . . .
Given k let

Gk = {Z : Z(i) 2= B(i) for a ratio of bits in Ik of at least
1/2 + 1/d}

which is a clopen set computed uniformly in k from A. By
the usual Chernoff bounds we have λGk ≤ e−2k/d2

. Clearly∫∞
r e−2x/d2

dx ≥
∑∞

k=r+1 e
−2k/d2

. Since
∫∞
r e−2x/d2

dx =

d2e−2r/d2

effectively converges to 0 as r → ∞, the real∑
k λGk is computable in A. Thus (Gk)k∈N is a Schnorr-

Solovay test relative to A as required.
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In [1] it is proved that any sequence which is computably
dominated and random with respect to a computable measure
has a Gamma value of 1/2 (unless it is computable, which can
happen if it is an atom of the measure). Rupprecht’s proof
in [21] can be modified to show that no sequence which is
computably dominated and random for a computable measure
is weakly Schnorr engulfing. It is natural to wonder whether
besides these and the non-computable, computably traceable
sequences, there are other sequences with a Gamma value
of 1/2. Recently Kjos-Hanssen, Stephan, and Terwijn [14]
constructed a sequence which is not weakly Schnorr engulfing
(and hence computably dominated), not computably traceable,
and not DNC (see e.g. [19, Ch. 4] for the definition of DNC,
which abbreviates ”diagonally non-computable”). A non-DNC
sequence cannot be random for any atomless computable
measure. (For instance, use Demuth’s result [6] that any
Martin-Löf random with respect to an atomless computable
measure Turing computes a Martin-Löf random with respect
to the uniform measure λ, together with the fact that every
Martin-Löf random is DNC.) Thus, together with the result
of Kjos-Hanssen et al., we have obtained new examples of
sequences with a Gamma value of 1/2.

B. Gamma value of 0 and infinite equality
The two known examples of sequences with a Gamma

value of 0 are the sequences of hyperimmune degree, and the
sequences of PA degree. The latter are the sequences which
Turing compute a complete extension of Peano arithmetic. It is
well-known that these conicide with the sequences that Turing
compute a member of any non-empty Π0

1 set, uniformly in a
code for this set. It is also well known that some of them are
computably dominated. These two types of sequences seem
to have a Gamma value of 0 for quite different reasons, when
one looks at the respective proofs in [1]. We identify here a
third notion implied by both, which already suffices to get a
Gamma value of 0. This notion is a weakening of being i.o.e.,
where one introduces a bound on the functions.

Definition III.2. Given a computable bound H : ω .→ ω, we
say that f : ω .→ ω is H-infinitely often equal (or H-i.o.e.)
if f coincides infinitely often with every computable function
strictly bounded by H . A sequence A is of H-i.o.e. degree if
A Turing computes an H-i.o.e. function.

Recall that by Proposition II.17, sequences of hyperimmune
degree are of i.o.e. degree (with no bound).

Theorem III.3. Any PA degree is H-i.o.e. for any computable
bound H of the form 2H̃ .

Proof. Let A be of PA degree. There exists an A-computable
list {Xe}e∈ω of sequences that contains all the computable
ones. To see this, note that uniformly in a partial computable
function Φe, A computes a member of the Π0

1 set

{X : ∀n ∀t [Φe(n)[t] ↑ or Φe(n)[t] = X(n)]}.

Given any total computable function H̃ , define H ′(n) =∑
m<n H̃(m) (with H ′(0) = 0). We let the A-computable

function f map n to the natual number corresponding to the
string Xn ![H′(n),H′(n+1)). If is clear that f is H-i.o.e. for
H(n) = 2H̃(n).

We now prove that sequences of H-i.o.e. degree for a
sufficiently fast growing function H have a Gamma value of 0.

Theorem III.4. Let d > 1 be a real. If A is of 2(d
n)-i.o.e.

degree, then Γ(A) = 0.

Proof. We first prove that if A is of 2(a
n)-i.o.e. degree for a

natural number a > 1, then Γ(A) ≤ 1/a. Consider a 2(a
n)-

i.o.e. function f that we can bound without loss of generality
by 2(a

n). Let H(n) =
∑

m<n a
m (with H(0) = 0). We define

the f -computable set Bf such that Bf ![H(n),H(n+1)) equals
the string corresponding to the n-th value of f . Consider now
any computable sequence X and its bitwise complement X ,
together with the function fX which to n associates the integer
corresponding to the string X ![H(n),H(n+1)). In particular as
f infinitely often coincides with fX , there are infinitely many
n such that from position H(n) to H(n + 1) − 1, sequences
X and B disagree all the time, which implies

|(B ↔ X) ∩ [0, H(n+ 1))|
H(n+ 1)

≤ H(n)

H(n+ 1)

As an = (a − 1)H(n) − 1, we have H(n + 1) = H(n) +
(a− 1)H(n)− 1. Hence a ratio of at most H(n)/(aH(n)−
1) bits is guessed correctly by X on the initial segment of
length H(n+1). As this happens infinitely often and for every
computable sequence X , we conclude that γ(B) ≤ 1/a and
hence Γ(A) ≤ 1/a.

We shall now prove that if A is of 2(d
n)-i.o.e. degree for

any real d > 1, then A is of 2(a
n)-degree for any natural

number a > 1. To do so we first argue that if f is H-i.o.e. for
some function H , then the function n .→ f(2n) is H(2n)-
i.o.e. or the function n .→ f(2n + 1) is H(2n + 1)-i.o.e.
Indeed suppose that some computable function g1 bounded
by H(2n) is such that g1(n) 2= f(2n) for every n and that
some computable function g2 bounded by H(2n+ 1) is such
that g2(n) 2= f(2n + 1) for every n. Then the computable
function g such that g(2n) = g1(n) and g(2n+1) = g2(n) is
never equal to f , which is a contradiction.

Given a 2(d
n)-i.o.e. function f and any integer a > 1,

let k be such that 2(d
k×n) ≥ 2(a

n) (a value k bigger than
logd(a) suffices). By repeating the operation described above
sufficiently often, we easily see how to compute from f a
function f ′ which is 2(d

k×n)-i.o.e. and hence 2(a
n)-i.o.e. It

follows that Γ(A) = 0.

Rupprecht [21], Thm. 19, constructed a sequence which
is weakly Schnorr engulfing, computably dominated and not
DNC. His proof can be slightly modified to construct a
sequence which is for any given computable function H̃ , of
2H̃(n)-i.o.e. degree, and both computably dominated and not
DNC. As every PA degree is DNC, this provides new examples
of sequences with a Gamma value of 0.
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C. Gamma values with respect to bases other than 2

We consider here the Gamma value for real numbers ex-
pressed in different bases. For an integer b ≥ 2 we denote the
space of infinite sequences of elements in {0, . . . , b − 1} by
bω . For A ∈ bω we define the value γb(A) as before, except
we now consider a supremum over computable elements of
bω . The definition of Γb(A) is also as before, except we now
consider an infimum over elements of bω which are Turing
equivalent to A. Finally for a (non rational) real r ∈ R
we define Γb(r) to be Γb(A) for A ∈ bω the canonical
representation of r in base b.

Let us argue that for any base b ≥ 2 and any real r we
have Γb+1(r) ≤ Γb(r). Indeed for every sequence A ∈ bω we
obviously have γb(A) = γb+1(A). As every elements of bω

is also an element of (b + 1)ω , the infimum in the definition
of Γb+1(r) is done over more elements than in the definition
of Γb(r). In particular if γ2(r) = 0 then γb(r) = 0 for any
b ≥ 2.

By straightforward modifications of the proof of Theo-
rem III.1, for any sequence A ∈ bω which is not weakly
Schnorr engulfing we have Γb(A) = 1/b. What is really of
interest here is the proof that any sequence A ∈ bω such that
Γb(A) > 1/b is computable: The proof of this in [1] for the
case b = 2 uses a “majority vote” technique, that cannot be
used directly for larger bases. This will be made clear in what
follows.

Definition III.5. For any sequence A ∈ 2ω , seen as a subset
of ω, we denote by #A

c : ωc → ω the function which on
x1, . . . , xc returns |A ∩ {x1, . . . , xc}|.

Note that #A
c can take at most c+1 distinct values. Kummer

[15] proved that if A is not computable, one cannot trace #A
c

by a c.e. trace containing strictly less than c + 1 values. The
proof was later simplified by Owings [20]:

Theorem III.6. [Kummer] Let c ≥ 2. Suppose A is an oracle
such that #A

c is traceable via some trace {Tn}n∈ω , where each
Tn is c.e. uniformly in n and |Tn| ≤ c. Then A is computable.

We will use this in the proof of the following theorem:

Theorem III.7. Let A ∈ bω . If Γb(A) > 1/b then A is
computable.

Proof. Let Ã ∈ 2ω be some effective binary encoding of A.
The sequence #Ã

b−1 can be seen as an element of to bω . We
perform a majority vote argument as in [1], except that we
now do not need an absolute majority to win. We define a
sequence B ∈ bω that encodes every bit of #Ã

b−1 with many
repetitions. Inductively we define intervals In by I0 = {0}
and In+1 = {k : an < k ≤ (n + 1) × sn}, where an
is the last position in the interval In and sn the sum of the
length of the intervals I0 to In. For any k ∈ In we define
B(k) = #Ã

b−1(n). As B is Turing computable from A, we
must have γb(B) > 1/b. Hence there is a computable sequence
C such that lim infn |B ↔ C ∩ [0, n]|/n > 1/b.

We claim that for sufficiently large n, the ratio of positions
k in In such that C(k) = #Ã

b−1(n) is strictly greater than 1/b.
Assume otherwise. Then there are arbitrarily large n such that
at most 1/b positions in In are guessed correctly by C. Recall
sn−1 is the number of positions before In. As there are n more
positions in In than in all the previous intervals together, we
have a ratio of at most

sn−1 + (nsn−1)/b

sn−1 + nsn−1
=

1 + n/b

1 + n

positions up to the maximum of In that are guessed correctly.
This expression has limit 1/b as n goes to infinity. It then
follows that

lim inf
k

|B ↔ C ∩ [0, k]|/k ≤ 1/b,

which is a contradiction.
Therefore for n large enough, the sequence C must guess in

the interval In strictly more than 1/b of the bits correctly. Also
they can be at most b− 1 values which are given by C with a
ratio strictly bigger than 1/b. By building the computable trace
with all these values, we have a trace for #Ã

b−1, which implies
by Theorem III.6 that Ã, and then A, is computable.

Question III.8. Let r ∈ [0, 1] be non-computable. Do we have
for all integers b, c ≥ 2 that Γb(r) = 1/b iff Γc(r) = 1/c?

D. The Gamma value in the higher setting
In this section we study a notion analogous to being weakly

Schnorr engulfing in the setting of higher computability.
Thereafter we discuss a higher version of the Gamma question.

Definition III.9. A sequence A is weakly ∆1
1 engulfing if there

is a ∆1
1(A) nullset containing every ∆1

1 sequence.

For an A-computable ordinal α, we write A(α) to denote
the α-th jump of A. There are several equivalent ways to
concretely define this set, for example via H-sets, as initially
done by Kleene and Spector (see [22]), or as the set of codes
for A-c.e. binary relations coding total orders of order-type
strictly smaller than some ordinal, as in [18]. The important
point is that A(α) should be a Σ0

α(A)-complete set.
It is well known (see for example [5] or Proposition 4.2.5

in [18]) that if A is ∆1
1-random, then it is GLα for every

computable ordinal α, that is, A(α) ≡T A⊕ ∅(α). Using this,
we prove the following theorem about Π1

1-random sequences:

Theorem III.10. Suppose A is Π1
1 random. Then A is not

weakly ∆1
1 engulfing.

Proof. Consider a ∆1
1(A) nullset S. As ωA

1 = ωck
1 we have

some computable ordinal α such that S is a Σ0
α(A) set. By the

effective regularity of Lebesgue measure relativized to A, we
can approximate S from above by a uniform intersection of
∆1

1(A) open sets
⋂

n Un with λ(Un) ≤ 2−n. Using again that
ωA
1 = ωck

1 , we have a computable ordinal α such that each Un

is Σ0
1(A

(α)) uniformly in n. Now because A is ∆1
1 random it

is GLα and then each Un is also Σ0
1(A⊕ ∅(α)) uniformly in

n. Consider an index for the Π0
2(A⊕∅(α)) set

⋂
n Un, namely
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an effective list of Σ0
1 sets Un relative to the oracle. We can

now modify this index such that for any oracle X we have
λ(UX

n ) ≤ 2−n, without changing Un for oracles for which we
already have λ(UX

n ) ≤ 2−n (in particular the oracle A⊕∅(α)).
For any X consider now the ∆1

1(X) set:

SX = {Z : X ∈
⋂

n

UZ⊕∅(α)

n }

and the ∆1
1 set:

N = {X : λ(SX) > 0}

We claim that N contains every ∆1
1 sequence belonging to⋂

n UA⊕∅(α)

n and that λ(N ) = 0. Since some ∆1
1 sequence is

not contained in N , this will show that A is not weakly ∆1
1

engulfing.
If X is ∆1

1 and belongs to
⋂

n UA⊕∅(α)

n we clearly have
A ∈ SX . Since SX is ∆1

1 and A is ∆1
1 random, this implies

λ(SX) > 0. This shows the claim.
To verify that λ(N ) = 0 it suffices to show that N contains

no Π1
1 random sequence. We apply the van Lambalgen theorem

for Π1
1-randomness Theorem II.11. Suppose that Y is Π1

1-
random in order to prove Y /∈ N . Suppose for some Z we have
Y ∈

⋂
n UZ⊕∅(α)

n . In particular as Y is not Π1
1(Z)-random

Z is not Π1
1(Y )-random. Then NY is included in the set of

sequences which are not Π1
1(Y )-random. As this is a set of

measure 0 we have λ(NY ) = 0. Hence Y is not in N .

We now define counterparts of γ and Γ in the higher setting:

γh(A) = sup
X∈∆1

1

ρ(A↔ X)

Γh(A) = inf{γh(B) : B is ∆1
1(A)}

As in the setting of computability, Γh(A) > 1/2 iff A is
∆1

1. To show this, one follows the same proof as the one of
Proposition 1.4. in [1], using a “majority vote” technique.

Still as in the setting of computability, and following the
same proof as the one of Theorem III.1, if A is not weakly
∆1

1 engulfing then Γh(A) = 1/2. In particular:

Theorem III.11. Every Π1
1-random sequence Z satisfies

Γh(Z) = 1/2.

Consequently, for Γ, the situation is quite different in the
higher setting: The set of sequences with a Gamma value of
1/2 has measure 1, whereas it has measure 0 in the lower
setting.

A notion of being infinitely often equal also makes sense
in the higher setting.

Definition III.12. Let H : ω .→ ω be a ∆1
1 bound. A function

f : ω .→ ω is higher H-i.o.e. if it is infinitely often equal to
every ∆1

1 function bounded by H . A sequence A is of H-i.o.e.
hyperdegree if there is some higher H-i.o.e. function which is
∆1

1(A).

It is clear that the proof of Theorem III.4 can be adapted
to the higher setting to obtain for any real d > 1 that any A

of 2d
n

-i.o.e. hyperdegree has a higher Gamma value of 0. In
particular, if ωX

1 > ωck
1 then Γh(X) = 0.

The fact that every hyperimmune function computes an
infinitely often equal function (see II.17) has no analogue in
the higher setting. Kihara [12] has defined a sequence X such
that some function f bounded by no ∆1

1 function is ∆1
1(X),

but no infinitely often equal function is ∆1
1(X).

IV. INFINITELY OFTEN EQUALITY

We have seen that both being weakly Schnorr engulfing and
the Gamma question are connected with the notion of infinite
equality. We study this notion on its own right in some more
detail.

c-i.o.e. for c ≥ 2 H(n)-i.o.e with H computable
order function s.t.

∑
n

1
H(n) =∞

not computable H(n)-i.o.e with H computable
order function s.t.

∑
n

1
H(n) <∞

Fig. 1. Known implications for i.o.e. degrees

It is clear that the two implications of Fig. 1 hold. We also
need to argue that they are strict. First let us prove the left
part of Fig. 1. It is obvious that being of 2-i.o.e. degree is
equivalent to being not computable, but for c > 2 some more
complicated argument is required. Here again, we can use the
function #A

c of Definition III.5 and Theorem III.6 to deduce
the following:

Theorem IV.1. Suppose A is not c-i.o.e. for some integer
c ≥ 2. Then A is computable.

Proof. The function g(〈x1, . . . , xc−1〉) = #A
c (x1, . . . , xc−1)

is clearly A-computable and strictly bounded by c. Suppose it
never coincides with a computable function f that is strictly
bounded by c. Then we can capture g (and hence #A

c ) with
the computable trace {Tn}n∈ω such that Tn contains every
number less than c except f(n). It follows from Theorem III.6
that A is computable.

By the following proposition, the first implication is strict:
there exists a non-computable sequence which is not of H-
i.o.e. degree for any order function H .

Proposition IV.2. Suppose A is computably traceable. For
any order function H and any function f ≤T A, there exists
a computable function g < H such that f is always different
from g.

Proof. Suppose f < H is Turing below some computably
traceable set A. As proved in [24], for any computable order
function H ′, as slowly growing as we want, the function f
can be traced via a computable trace {Tn}n∈ω bounded by
H ′. We simply take H ′ < H . To compute g(n) we can then
take any value smaller than H(n) and not in Tn.
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Let us now prove that the second implication is strict: for
any order function H there exists a sequence of H(n)-i.o.e.
degree such that

∑
n 1/H(n) = ∞, but not of H(n)-i.o.e.

degree for any order function H such that
∑

n 1/H(n) <∞.
This is done via a computably dominated random. For the next
proposition, we use the weak notion of Kurtz randomness,
which is defined by not being in any Π0

1 null set.

Proposition IV.3. Suppose A is Kurtz random. Then A is of
H(n)-i.o.e. degree for any order function H = 2H̃ such that∑

n 1/H(n) =∞.

Proof. Consider a computable function f < H . Let H ′(n) =∑
m<n H̃(m) (with H ′(0) = 0). Let In = [H ′(n), H ′(n+1)),

then we have by hypothesis that
∑

n λ([f(n)]In) =∞ (where
f(n) is seen as a string of length In). Also as the In are
pariwise disjoint, by Borel-Cantelli we have

λ




⋂

n

⋃

m≥n

[f(m)]Im



 = 1

and then for each n we have λ(
⋃

m≥n[f(m)]Im) = 1. It
follows that if X is Kurtz random there are infinitely many n
such that X !In= f(n), where X !In is seen as an integer less
than 2|In|. Also this is true for any computable function f , and
it then follows that the X-computable function g(n) = X !In
is H(n)-i.o.e.

It is easy to see that if a sequence is of H(n)-i.o.e. degree
for an order function H such that

∑
n 1/H(n) < ∞, then it

is weakly Schnorr engulfing. A more general statement will
actually be proven in Proposition V.3. It follows that any
computably dominated random is of H(n)-i.o.e. degree for
any order function H such that

∑
n 1/H(n) =∞, but not of

H(n)-i.o.e. degree for any computable order function H such
that

∑
n 1/H(n) < ∞. For instance, such a sequence is of

2log(n)-i.o.e. degree and not of 22 log(n)-i.o.e. degree.

Question IV.4. Is there some X of 2n-i.o.e degree that is not
of f(n)-i.o.e degree for some computable f(n) >> 2n? If
yes, can f(n) be taken to be 22

n

?

V. WEAKLY SCHNORR ENGULFING AND TRACING

The notions of being weakly Schnorr engulfing and being
H-infinitely often equal for H sufficiently fast growing are
both connected to the Gamma question stated in the abstract,
via Theorem III.1 and Theorem III.4, respectively. At first
sight, these notions appear to be unrelated. We give a com-
binatorial characterization of being weakly Schnorr engulfing,
using traces whose members are strictly bounded by some
computable function. This will bring the notion of being
weakly Schnorr engulfing closer to the notion of being of
H-i.o.e. degree for some H . Both the tracing property and
being infinitely often equal were introduced in search of
computability theoretic analogues of combinatorial notions
from set theory used to analyse cardinal characteristics (see
[3]). We will also apply analogues of the methods employed
in that area.

Definition V.1. For a computable function H : ω .→ ω of
the form 2H̃(n), we say that a computable trace {Tn}n∈ω is a
computable H-trace if for each n, elements of Tn are strictly
bounded by H(n). If furthermore

∑
n |Tn|/H(n) is finite and

computable, the trace {Tn}n∈ω is called a small computable
H-trace. We say that a function f < H is captured by a
computable H-trace {Tn}n∈ω if for infinitely many n we have
f(n) ∈ Tn.

Note that a computable H-trace can be small only for
functions H such that

∑
n 1/H(n) <∞. The idea underlying

small traces is to have
∑

n λ([Tn]H(n)) finite and computable,
where [Tn]H(n) is the set of strings of length H̃(n) corre-
sponding to elements of Tn.

We shall see that a sequence is weakly Schnorr engulfing iff
it computes some small H-trace capturing every computable
function bounded by H . In order to conduct the proof, the
notion of an interval test defined in II.7 plays a key role: still
via some coding between strings of length H̃(n) and integers
smaller than H(n), we can view any small computable H-trace
as an interval test, and vice-versa. The goal of this section if
to prove the following theorem:

Theorem V.2. A sequence A is weakly Schnorr engulfing ⇔
for some computable function H , there is an A-computable
small H-trace capturing every computable function bounded
by H .

We begin with the easier implication “⇐” of Theorem V.2.

Proposition V.3. Suppose {Tn}n∈ω is a small H-trace rela-
tive to A that captures every computable function bounded by
H = 2H̃ . Then A is weakly Schnorr engulfing.

Proof. We define an interval test {In,Jn}n∈ω by viewing
each member of Tn as a string σ of length H̃(n). Let
H ′(n) =

∑
m<n H̃(m) (with H ′(0) = 0). For each n, let

In = [H ′(n), H ′(n + 1)), and let Jn be the union of all the
sets [σ][H′(n),H′(n+1)) for every member of Tn encoding a
string σ of length H̃(n).

It is clear that {In,Jn}n∈ω is an interval (and hence
Schnorr) test relative to A that captures every computable
sequence.

We now prove the implication “⇒” of Theorem V.2. The
idea is to try to cover any A-computable Schnorr test by an
A-computable interval test. In order to do so we consider
algorithmic versions of some results from set theory. An
algorithmic version of a theorem of Bartoszyński [2] (see also
Theorem 2.5.11 in [3]) implies that it is not possible in general
to cover a Schnorr test by a single interval test 2. We can,
however, always cover a Schnorr test by two interval tests.
The proof we give here is similar to the proof of Theorem
2.5.7 in [3].

Lemma V.4. Given a Schnorr test and a computable sequence
of positive rationals {εn}n∈ω , there exists a computable

2We don’t know if every Schnorr test can be covered by a single indepen-
dent Schnorr-Solovay test
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sequence of integers n0 < m0 < n1 < m1 < . . . and com-
putable sequences of clopen sets {J1,n}n∈ω and {J2,n}n∈ω
such that:

• J1,k ⊆ 2[nk,nk+1) and J2,k ⊆ 2[mk,mk+1)

• λ(J1,k) ≤ εk and λ(J2,k) ≤ εk
• Any sequence captured by the Schnorr test is in⋂

n

⋃
k≥n J1,k or in

⋂
n

⋃
k≥n J2,k.

The proposition can be relativized in the usual way to any
oracle A.

Proof. By the discussion after Definition II.4 there is a
Schnorr-Solovay test covering the given Schnorr test. We can
suppose without loss of generality that each clopen set of
the Schnorr-Solovay test is of the form [σ] for a string σ.
Thus, the test is given by a computable sequence of strings
{σn}n∈ω . We define an auxiliary computable sequence of
integers p0 < q0 < p1 < q1 < . . . such that J1,k depends
on the strings σi for qk ≤ i < pk+1. and J2,k depends on
the strings σi for pk+1 ≤ i < qk+1. The idea is the following:
once we have put the first p strings σi into the first component
of our first interval test, we remember the maximal length n
of those strings. We then put the next q strings into the first
component of the second interval test, for sufficiently large q
so that the sum of the measure of each remaining string is
smaller than ε×2−n. In particular we then know that the sum
of the measures of each remaining string of which we remove
the n first bits, is still small enough. We repeat the operation,
now making sure that the measure of what remains to be put in
the second trace is small enough. We proceed in this fashion,
alternating between the two traces. Fig. 2 illustrates the choice
of pk < qk < pk+1 < qk+1 < . . . . Fig. 3 illustrates the choice
of nk < mk < nk+1 < mk+1 < . . . .

We now give the formal construction. Let n0 = 0 and p0 =
0. Let q0 > 0 be the least integer such that

∑
n≥q0

2−|σn| ≤
ε0. Let m0 be the maximal value between 1 and the length of
the longest string σi for i < q0. Suppose pk, nk and qk,mk

have been defined. Let us define pk+1 and nk+1. Let pk+1 >
qk be the least integer such that

∑

n≥pk+1

2−|σn| ≤ 2−mkεk

and nk+1 the maximal value between mk + 1 and the length
of the longest string σi for qk ≤ i < pk+1. Finally let J1,k

be the clopen set equal to the union of [σi ![nk,nk+1)][nk,nk+1)

for any qk ≤ i < pk+1.

Suppose qk,mk and pk+1, nk+1 have been defined. Let us
define qk+1 and mk+1. Let qk+1 > pk+1 be the least integer
such that ∑

n≥qk+1

2−|σn| ≤ 2−nk+1εk+1

and let mk+1 be the maximal value between nk+1 + 1 and
the length of the longest string σi for pk+1 ≤ i < qk+1.
Finally let J2,k be the clopen set equal to the union of
[σi ![mk,mk+1)][mk,mk+1) (i.e., the sequences agreeing with σi

on [mk,mk+1)) for any pk+1 ≤ i < qk+1.

We verify that the constructed objects satisfy the required
conditions. Firstly, since n0 < m0 < n1 < m1 < . . . is
a computable sequence of integers, J1,k ⊆ 2[nk,nk+1) and
J2,k ⊆ 2[mk,mk+1) are effective sequences of clopen sets.

Secondly, for any k, by the choice of qk,
∑

i≥qk

2−|σi| < 2−nkεk.

Note that by the definition of J1,k we have

λ(J1,k) ≤ 2nk
∑

i≥qk

2−|σi|.

It follows that λ(J1,k) ≤ εk. The argument for λ(J2,k) ≤ εk
is similar.

Finally, if {σn}n∈ω contains infinitely many prefixes of X ,
then X is in

⋂
n

⋃
m≥n J1,m or in

⋂
n

⋃
m≥n J2,m.

In order to obtain Theorem V.2 we would need to merge the
two interval tests covering a Schnorr test into a single interval
test. As we mentioned already, this is not possible by the
algorithmic result of Bartoszyński’s result. It would be enough,
given an A-Schnorr test

⋂
n Un covering every computable

sequence, to mix the two interval A-Schnorr-Solovay tests
obtained via Lemma V.4 into a single interval A-Schnorr-
Solovay test that also captures every computable sequence,
without necessarily covering

⋂
n Un. This is what we achieve

now, adapting the proof of Theorem 2.5.12 of [3]. To do
so, we need to slightly modify Lemma V.4, so the sequence
n0 < m0 < n1 < m1 < . . . is not just A-computable
(once we relativize the lemma to A) but computable. Also
in order to achieve this, we need to restrict ourselves to
computably dominated oracles A. Fortunately, this is not an
obstacle for the harder implication ⇒ of Theorem V.2. We
argued already in Proposition II.17 that if A is hyperimmune,
A is of i.o.e. degree, and therefore certainly computes a small
H-trace capturing every computable function.

Lemma V.5. Suppose A is computably dominated. Given
an A-Schnorr test and a computable sequence of positive
rationals {εn}n∈ω , there exists a computable sequence of
integers n0 < m0 < n1 < m1 < . . . and A-computable
sequences of clopen sets {J1,n}n∈ω and {J2,n}n∈ω such that:

• J1,k ⊆ 2[nk,nk+1) and J2,k ⊆ 2[mk,mk+1),
• λ(J1,k) ≤ εk and λ(J2,k) ≤ εk
• Any sequence captured by the A-Schnorr test is in⋂

n

⋃
k≥n J1,k or in

⋂
n

⋃
k≥n J2,k.

Proof. The proof is similar to the one of Lemma V.4. Let
{σn}n∈ω be an A-Schnorr-Solovay test. Similarly we define
the sequence of integers p0 < q0 < p1 < q1 < . . . such that
J1,k will depend on the strings σi for qk ≤ i < pk+1, whereas
J2,k will depend on the strings σi for pk+1 ≤ i < qk+1. The
only change from the proof of Lemma V.4 is that the sequence
p0 < q0 < p1 < q1 < . . . now is computable, not merely A-
computable.

To make these sequences computable, we define FA :
ω ×Q→ ω to be the A-computable function which to (p, ε)
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p0 = 0 q0 p1 qk pk+1 qk+1. . .|σi| = m0 |σi| = n1 |σi| = nk+1 |σi| = mk+1

J1,0 ⊆ 2[n0,n1) J1,k ⊆ 2[nk,nk+1) J2,k ⊆ 2[mk,mk+1)

The strings σi for qk ≤ i < pk+1 have length at most nk+1

The strings σi for pk+1 ≤ i < qk+1 have length at most mk+1

Fig. 2. The choice of pk < qk < pk+1 < qk+1 < . . . in the proof of Lemma V.4

nk nk+1

mk−1 mk mk+1

J2,k−1 ⊆ 2[mk−1,mk) J2,k ⊆ 2[mk,mk+1)

J1,k ⊆ 2[nk,nk+1)

Fig. 3. The choice of nk < mk < nk+1 < mk+1 < . . . in the proof of Lemma V.4

associates the least integer q > p such that
∑

n≥q 2
−|σn| ≤ ε.

Note that FA is A-computable because
∑

n 2
−|σn| is A-

computable. We also define GA : ω × ω × ω → ω be the A-
computable function which to (p, q, n) associates the maximal
value between n + 1 and the length of the longest string σi

for p ≤ i < q. As A is computably dominated, both FA and
GA are bounded by some computable functions F and G.

Let n0 = 0 and p0 = 0. Let q0 be the result of
computing F (0, ε0). Let m0 be the result of computing
G(0, q0, 0). Suppose pk, nk and qk,mk have been defined.
Let us define pk+1 and nk+1. Let pk+1 be the result of
computing F (qk, 2−mkεk) and nk+1 the result of computing
G(qk, pk+1,mk). Finally let J1,k be the clopen set equal to
the union of [σi ![nk,nk+1)][nk,nk+1) for any qk ≤ i < pk+1.

Suppose qk,mk and pk+1, nk+1 have been defined. Let us
define qk+1 and mk+1. Let qk+1 be the result of computing
F (pk+1, 2−nk+1εk+1) and let mk+1 be the result of computing
G(pk+1, qk+1, nk+1). Finally let J2,k be the clopen set equal
to the union of [σi ![mk,mk+1)][mk,mk+1) for any pk+1 ≤ i <
qk+1.

It is clear that n0 < m0 < n1 < m1 < . . . is a computable
sequence of integers. It follows that J1,k ⊆ 2[nk,nk+1) and
J2,k ⊆ 2[mk,mk+1) is an A-computable sequence of clopen
sets. The rest of the verification is as in Lemma V.4.

We are now ready to mix the two interval A-Schnorr-
Solovay tests into one interval A-Schnorr-Solovay test cap-
turing every computable sequence.

Theorem V.6. Let A be weakly Schnorr engulfing. There
is an interval test {In,Jn}n∈ω relative to A that captures
every computable sequence. Moreover, the sequence {In}n∈ω
is computable.

Proof. We already discussed the case that A is hyperimmune.
So let us suppose that A is computably dominated. Fix a
decreasing computable sequence of positive rationals {εn}n∈ω
such that

∑
n εn × 2n+1 < ∞. By the previous lemma, we

can assume that we have a computable sequence of integers
n0 < m0 < n1 < m1 < . . . , together with A-computable
sequences of clopen sets {J1,n}n∈ω and {J2,n}n∈ω such that:

• J1,k ⊆ 2[nk,nk+1) and J2,k ⊆ 2[mk,mk+1)

• λ(J1,k) ≤ εk and λ(J2,k) ≤ εk
• Any computable sequence is in

⋂
n

⋃
m≥n J1,m or in⋂

n

⋃
m≥n J2,m

We are going to create relative to A an interval
test {[nk+1, nk+2),Rk}k∈ω by mixing {J1,k}k∈ ω and
{J2,k}k∈ ω . Then, assuming that a computable sequence X
is not in

⋂
n

⋃
m≥n Rm we are going to create, using X , an-

other interval A-Schnorr-Solovay test {[mk+1, nk+2), Tk}k∈ω
such that every computable sequence is necessarily in⋂

n

⋃
m≥n Tm. Fig. 4 illustrates the construction.

For k > 0, Let S1,k be the union of [σ][nk,mk) for every
strings σ of length mk − nk such that there are at least
2nk+1−mk−k many strings τ with [σˆτ ][nk,nk+1) ⊆ J1,k. We
have λ([S1,k]≺)2−k ≤ λ(J1,k) and then λ([S1,k]≺) ≤ 2kεk ≤
2kεk−1.

For k > 0, let S2,k be the union of [σ][nk,mk) for every
string σ of length mk − nk such that there are at least
2nk−mk−1−k many strings τ with [τ ˆσ][mk−1,mk) ⊆ J2,k−1.
We have λ([S2,k]≺)2−k ≤ λ(J2,k−1) and then λ([S2,k]≺) ≤
2kεk−1.

Let Rk = [S1,k+1]≺ ∪ [S2,k+1]≺. By the choice of
the εk, clearly {[nk+1, nk+2),Rk}k∈ω is an interval A-
Schnorr-Solovay test. If every computable sequence belongs to
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nk nk+1

mk−1 mk mk+1

S1,k

S2,k

T1,k

T2,k

Tk−1

Rk−1

X ![nk,mk) Y ![mk,nk+1) X ![nk+1,mk+1)

Fig. 4. Construction for Theorem V.6

⋂
n

⋃
m≥n Rm we are done. Otherwise there is a computable

sequence X such that X ![nk+1,nk+2) does not belong to Rk

for any k.
For k > 0 let T1,k be the union of [τ ][mk,nk+1) for any string

τ of length nk+1 −mk such that [X ![nk,mk) ˆτ ][nk,nk+1) ⊆
J1,k. Let T2,k be the union of [τ ][mk,nk+1) for any string τ of
length nk+1 −mk such that [τ ˆX ![nk+1,mk+1)][mk,mk+1) ⊆
J2,k.

As X must be in
⋂

n

⋃
m≥n J1,m or in

⋂
n

⋃
m≥n J2,m

and as no prefix of X belongs to Rk for any k, it implies
by definition of S1,k that there are at most 2nk+1−mk−k many
[τ ][mk,nk+1) in T1,k and by definition of S2,k+1 that there are
at most 2nk+1−mk−k−1 many [τ ][mk,nk+1) in T2,k.

In particular the clopen set Tk defined to be T1,k+1 ∪
T2,k+1, has measure less than 2−k+1. Also, the sequence
{[mk+1, nk+2), Tk}k∈ω is an A -interval test.

We now use the fact that the sequence n0 < m0 < n1 <
m1 < . . . is computable in order to prove that

⋂
n

⋃
m≥n Tm

contains every computable sequence. Suppose otherwise, that
is, some computable sequence Y is in no set Tk for any k. Then
the sequence Z = X ![n0,m0) ˆY ![m0,n1) ˆ . . . ˆX ![nk,mk)

ˆY ![mk,nk+1) is computable. Also we easily see that Z is
not in

⋂
n

⋃
m≥n J1,m as otherwise by definition of T1,k the

sequence Y would be captured by {[mk+1, nk+2), Tk}k∈ω .
Similarly we see that Z is not in

⋂
n

⋃
m≥n J2,m as oth-

erwise by definition of T2,k the sequence Y would be cap-
tured by {[mk+1, nk+2), Tk}k∈ω . This contradicts the fact
that both

⋂
n

⋃
m≥n J1,m and

⋂
n

⋃
m≥n J2,m contain ev-

ery computable sequence. Thus
⋂

n

⋃
m≥n Tm contains every

computable sequence.

Finally we can prove the harder direction of Theorem V.2:

Theorem V.2 “⇒”. Given a sequence A that is weakly
Schnorr engulfing, we have an interval A-Schnorr-Solovay test
{In,Jn}n∈ω capturing every computable sequence such that,
in addition, {In}n∈ω is computable. We define a computable

function H by H(n) = 2|In|, and a small A-computable H-
trace {Tn}n∈ω by letting Tn be the set of integers encoded by
the strings σ such that [σ]In ⊆ Jn. Suppose that a computable
function f : ω → ω bounded by H is not captured by
{Tn}n∈ω . Then the computable sequence X such that X !In
equals the string of length |In| corresponding to f(n) and
such that X(i) = 0 for i not in any In is not captured by
{In,Jn}n∈ω either, which is a contradiction.

We end the paper with a curious fact: in a sense, among the
weakly Schnorr engulfing sequences, the computably domi-
nated ones have more capturing power than the ones which
are not. Recall that a sequence is ∆0

2 iff it is computable from
the halting problem, ∅′, iff it is the pointwise limit of a uniform
list of computable sequences.

Proposition V.7. Suppose A is a computably dominated,
weakly Schnorr engulfing oracle. Then the set of ∆0

2 sequences
is contained in an A-Schnorr null set.

Proof. We shall prove that any A-Schnorr-Solovay test
{In,Jn}n∈ω , with each In computable uniformly in n, cap-
turing every computable sequence, also captures every ∆0

2

sequence. Consider a ∆0
2 sequence X , given as the pointwise

limit of a list {Xs}s∈ω where each Xs ∈ 2ω is computable
uniformly in s.

Suppose X is not captured by our A-Schnorr-Solovay test,
without loss of generality we can suppose that for every n we
have X !In /∈ Jn. Let us define the A-computable function f
which to the pair (t, n) associates the smallest s ≥ t such that
Xs !In /∈ Jn. As A is computably dominated, the function f
is bounded by some computable function g : ω × ω .→ ω.

We then define a computable sequence Y such that Y !In /∈
Jn for each n. Fix some n and compute successive values of
g(s, n) for every s starting from 0, until every value Xt !In
is identical for s ≤ t ≤ g(s, n). As the sequence {Xt !In}t∈ω
converges, we know that this will happen eventually. Define
then Y !In to be Xg(s,n) !In and Y be 0 on positions which
are in no In.
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It is clear that Y !In /∈ Jn for every n, because Xf(s,n) !In /∈
Jn, and as s ≤ f(s, n) ≤ g(s, n), Xg(s,n) !In= Xf(s,n) !In
by the choice of s.

The conclusion of Proposition V.7 does not hold if A is
hyperimmune. For if A = ∅′ then no A-Schnorr test contains
every A-computable element. It is worth mentioning that the
following analogue of Proposition V.7 is true with a similar
proof: If f is computably dominated and H-i.o.e., then also f
coincides infinitely often with every ∆0

2 function bounded by
H .
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