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Abstract. There exists a universal object in the class of left-computably

enumerable (left-c.e.) metric spaces with diameter bounded by a con-

stant under effective isometric embeddings. There is no such universal

object in the class of all left-c.e. metric spaces.

What is an appropriate effective version of the notion of a Polish met-

ric space? We view Polish metric spaces as triples M = (M,d, 〈pk〉k∈N)

where d is the distance function, and 〈pk〉k∈N is a designated dense se-

quence. We call the points pi the special points. We say that M is

computable if d(pi, pk) is a computable real uniformly in i, k. There has

been recent work on computable metric spaces, for instance by Nies and

Melnikov [2, 3].

Natural generalisations of the notion of a computable metric space are

the following.

Definition 1. We say that a Polish metric spaceM = (M,d, 〈pk〉k∈N) is

a left-c.e. [right-c.e.] metric space if d(pi, pk) is a left-c.e. real [right-c.e.

real] uniformly in numbers i, k ∈ N. We write ds(p, q) for the distance of

special points p, q at stage s.

For left-c.e. metric spaces, intuitively speaking, the distance between

points can increase over time. For right-c.e. metric spaces, the distance

decreases.
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In this paper we study the left-c.e. case. We were motivated by a

seemingly unrelated area: of research on Π0
1 equivalence structures with

domain the set N of natural numbers in Ianovski et al. [1]. An equivalence

structure can be seen as a pseudometric space, where the distance of two

points is 0 if they are equivalent, and 1 otherwise. Thus the notion of

a left-c.e. metric space generalizes Π0
1 equivalence structures. Similarly,

right-c.e. metric spaces generalize Σ0
1 equivalence structures.

It turns out that the left-c.e. case yields the more interesting com-

putability theoretic properties. There exists a universal object in the class

of left-c.e. metric spaces with diameter bounded by a left-c.e. constant

under effective embeddings. In contrast, there is no such universal object

in the class of all left-c.e. metric spaces. For right-c.e. metric spaces, it is

easily shown that a universal object exists in both the bounded and the

unbounded case.

Example 1. Let β be a left-c.e. real. Then [0, β] is a left-c.e. metric

space; so is the circle of radius β with the Euclidean metric inherited

from R2. In fact [0, β] has a computable presentation even if β is non-

computable. (Note that this presentation is not effectively compact.) In

contrast, the circle of radius β does not have a computable presentation

at all if β is noncomputable. To see this, given n, find points q0, . . . , qn−1
among the pi such that ∀i, k |d(qi, qi+1) − d(qk, qk+1)| ≤ 2−n (where ad-

dition is taken mod n). This means the points qi are the corners of an

n-gon up to small error. Hence
∑

i<n d(qi, qi+1) converges to 2πβ effec-

tively. So 2πβ is computable. (In more detail, each side of the n-gon has

length within 2−n of 2β cos(π/n), so the error for the n-th approximation

is at most n2−n + 2β|π − n cos(π/n)|.)
Let E be a Π0

1 equivalence relation on N. Define d(x, y) = 1−1E(〈x, y〉),
namely 0 if Exy and 1 otherwise. Clearly this metric makes N a left-c.e.

metric space (with pk = k). This space has a computable presentation,

though not uniformly. Note that the Π0
1 equivalence relations can be

uniformly identified with left-c.e. metric spaces where the set of possible

distances is {0, 1}.

Definition 2. A Cauchy name in a metric space with distinguished

dense sequence M = (M,d, 〈pk〉k∈N) is a function g on N such that

d(pg(i), pg(k)) ≤ 2−i for each i ≤ k.

The Cauchy names in a left-c.e. metric space form a Π0
1 subclass of

Baire space. This together with the examples seems to suggest it is more

natural to look at left-c.e. spaces, rather than at right-c.e. ones.
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Definition 3. An isometric embedding g from a left-c.e. [right-c.e.] met-

ric spaces M = (M,d, 〈pk〉k∈N) to another N = (N, d, 〈qk〉k∈N) is called

computable if uniformly in k one can compute a Cauchy name for g(pk).

Theorem 2. Let γ > 0 be a left-c.e. real. Within the class of left-c.e.

metric spaces of diameter at most γ, there is a left-c.e. metric space U
which is universal with respect to computable isometric embeddings.

Proof. For the duration of the proof, a left-c.e. pre-metric function will

be a symmetric function h : N × N → [0, γ] such that h(v, v) = 0 and

h(v, w) is a left-c.e. real, uniformly in v, w. Such a function is presented

by its c.e. undergraph G = {〈v, w, q〉 : q ∈ Q+
0 ∧ v ≤ w ∧ q ≤ h(v, w)}.

Let ht(x, y) = max{q : 〈v, w, q〉 ∈ Gt} so that h(v, w) = supt ht(v, w).

Lemma 1. Given a pre-metric function h, one can effectively determine

a c.e. set W that is an initial segment of N, and a pre-metric function

g such that g satisfies the triangle inequality on W ; if h satisfies the

triangle inequality then W = N and g = h.

Proof of lemma. Define a partial computable sequence of stages by t−1 =

−1, t0 = 0 and

ti+1 ' µt > ti ∀v, w ≤ ti
[
ht(v, w)− h̃t(v, w) ≤ 2−i

]
∧(1)

∀v, w ≤ ti−1[h̃t(v, w) ≥ h̃ti(v, w)],(2)

where

h̃t(v, w) = inf{
∑
r<ti

ht(qr, qr+1) : q0, . . . , qti ≤ ti ∧ q0 = v ∧ qti = w}.

Note that h̃t(v, w) ≤ ht(v, w), and h̃t satisfies the triangle inequality on

[0, ti]. Informally, the sequence of stages can only be continued at a stage

t > ti if the “improved version” h̃t that satisfies the triangle inequality is

close enough to ht; furthermore, for values v, w ≤ ti−1 its value at t must

be at least the one at the last relevant stage ti.

If we define ti+1 we also put (ti−1, ti] into W. Finally, for v, w ∈ N,

if v ∈ W ∧ w ∈ W we let g(v, w) = sup{h̃ti+1
(v, w) : v, w ≤ ti}, and

otherwise g(v, w) = 0.

Each h̃ti+1 satisfies the triangle inequality on [0, ti], so from the mono-

tonicity in ti it is clear that the pre-metric function g satisfies the triangle

inequality on W .

Claim 3. Suppose that h satisfies the triangle inequality. Then there are

infinitely many stages ti, so W = N and g = h.
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We proceed by induction on i. Suppose that ti is defined. Assume

that ti+1 remains undefined. Given ε > 0 let s > ti be a stage such that

∀x, y ≤ ti [h(x, y) − hs(x, y) ≤ ε/ti. Then for each v, w ≤ ti we have

h(v, w) ≤ h̃s(v, w) + ε. Thus lims>ti h̃s(v, w) = h(v, w). This shows that

both (1) and (2) are satisfied for sufficiently large s. Hence ti+1 will be

defined, contradiction. This concludes the inductive step and the proof

of the lemma. �

Clearly one can effectively list all the left-c.e. pre-metric functions as

h0, h1, . . . Let 〈Wn, gn〉n∈N be the pairs of a c.e. initial segment of N
and a pre-metric function and given by the Lemma. Note that (Wn, gn)

presents a metric space for each n. The required universal left-c.e. metric

space U is an effective disjoint union of these spaces, where the distance

between points in different components is γ. More formally, let f be a

1-1 computable function with range
⋃

n{n} × Wn. Let pk = k be the

special points of U , and define

dU(i, k) = γ if f(i)0 6= f(k)0; otherwise, let

dU(i, k) = gp(f(i)1, f(k)1), where p = f(i)0 = f(k)0.

Given a left-c.e. metric space M = (M,d, 〈qr〉r∈N), there is n such that

hn(r, s) = d(qr, qs). This hn satisfies the triangle inequality. So qr →
f−1(〈n, r〉) is a computable isometric embedding M → U as required.

Note that the range of the embedding only contains special points of U ,

which can be thought of as Cauchy names that are constant. �

From the proof of the foregoing theorem for γ = 1, it is clear that

{〈i, k〉 : dU(i, k) = 0} is a universal Π0
1 equivalence relation under com-

putable reducibility in the sense of [1]. In this way we have re-obtained

their existence result for such an object.

The bound γ on the diameter in Theorem 2 is necessary. If we discard

that bound, there is no universal object in the class of all left-c.e. metric

spaces with respect to computable isometric embeddings by the following

fact.

Proposition 1. Let M = (M,d, 〈pk〉) be a left-c.e. metric space. There

exists a left-c.e. ultrametric space A such that A can not be isometrically

embedded into M.

Proof. We make A a discrete metric space with domain consisting solely

of special points q0, q1, . . . We use the pair q2n, q2n+1 to destroy the n-th

potential computable embedding into M. Such an embedding f would

be given by computably associating to qk a Cauchy name for f(qk). In
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particular, the map sending qk to the first component of this Cauchy

name is computable. Note that this component is a special point pr of

M which has distance at most 1 from f(qk).

Let 〈φn〉n∈N be an effective listing of partial computable functions with

domain an initial segment of N. By the discussion above, it suffices to

meet the requirements

Rn : φn total ⇒ dA(q2n, q2n+1) > d(φn(q2n), φn(q2n+1)) + 2.

Construction. At stage s, for n = 0, . . . , s, if φn(q2n), φn(q2n+1) are

defined, let vn,s = ds(φn(q2n), φn(q2n+1)) + 3; otherwise vn,s = 0. Set

dA,s(q2n, q2n+1) = vn,s towards satisfying Rn.

For each n 6= k, and a = 2n, 2n+ 1, b = 2k, 2k + 1, set

dA,s(qa, qb) = max(vn,s, vk,s).

It is clear that the distances in A remain finite. Also the ultrametric

inequality holds because trivially for reals u, v, w we have

max(u,w) ≤ max(max(u, v),max(v, w)).

We apply this to distances of the form dA(q2n, q2n+1) to get the ultra-

metric inequality between points from three different pairs. Finally, each

requirement Rn is met. �

The structure of our universal objects appears to be quite arbitrary.

We ask whether an extra condition can be satisfied that would make

them unique under computable isomorphism. This condition is effective

homogeneity in the sense of Fräıssé theory.

Question 4. Can a universal Π0
1 equivalence relation, or left-c.e. metric

space, be effectively homogeneous?
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