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Abstract. Borwein and Ditor (Canadian Math. Bulletin 21 (4), 497-
498, 1978) proved the following. Let A ⊂ R is a measurable set of positive
measure and let 〈rm〉m∈ω be a null sequence of real numbers. For almost
all z ∈ A, there is m such that z + rm ∈ A.
In this note we mainly consider the case that A is Π0

1 and the null
sequence 〈rm〉m∈ω is computable. We show that in this case every Ober-
wolfach random real z ∈ A satisfies the conclusion of the theorem. We
extend the result to finitely many null sequences. The conclusion is now
that for almost every z ∈ A, the same m works for all of them.
We indicate how this result could separate Oberwolfach randomness from
density randomness.

1 Introduction

Our paper is based on the following result, which extends a previous
weaker result by Kestelman [11].

Theorem 1 (D. Borwein and S. Z. Ditor [4], Thm 1(i)). Suppose
A ⊂ R is a measurable set of positive measure and 〈rm〉m∈ω is a sequence
of real numbers converging to 0. For almost all z ∈ A, there is an m such
that z + rm ∈ A.

Since one can consider the tails of a given null sequence of reals, for
almost every z ∈ A there are in fact infinitely many m such that z +
rm ∈ A. (This is the form in which they actually stated the result.)
We thank A. Ostaszewski for pointing out the Borwein-Ditor theorem to
Nies during his visit at the London School of Ecomonics in June 2015.
Ostaszewski’s 2007 book with Bingham provides some background related
to topology [3].

Nies’ colloquium at LSE was about the study of effective versions of
“almost everywhere” theorems via algorithmic randomness. The goal for
that direction of study is to pin down the level of algorithmic random-
ness needed for a point x so that the conclusion of a particular effective
version of the theorem holds. For instance, Pathak et al. [15] study ef-
fective versions of the Lebesgue differentiation theorem, Brattka et al [5]



look at the a.e. differentiability of nondecreasing functions, Galicki and
Turetsky [10] study the a.e. differentiability of Lipschitz functions on Rn,
and Miyabe et al [13] consider the Lebesgue density theorem, recalled in
Thm. 4 below.

Unless stated otherwise, we will consider effectively closed (i.e. Π0
1 )

sets A ⊆ R. Without also imposing an effectiveness condition on the null
sequences, the points z for which the Borwein-Ditor property holds for
all Π0

1 sets are precisely the 1-generics. Recall that a real is 1-generic if
it is not on the boundary of any Σ0

1 set.

Proposition 2 z ∈ R is 1-generic ⇐⇒ for every Π0
1 set A ⊂ R con-

taining z and for every null sequence of real numbers 〈rm〉m∈ω, z ∈ A+rm
for some m.

Proof. (⇒) Suppose z 6∈ A+rm for all m. Then z belongs to the boundary
of the complement of A, B = R \ A, a Σ0

1 class.
(⇐) Suppose z ∈ R is not 1-generic. Then it belongs to the boundary of
some Σ0

1 set B ⊂ R. Let 〈zm〉m∈ω be a sequence of points in B converging
to z. Define rm = z − zm for all m. Then A = R \ B is a Π0

1 class, z ∈ A,
〈rm〉m∈ω is a sequence converging to 0, and z 6∈ A+ rm for all m.

2 Comparison of Lebesgue density and the Borwein-Ditor
property

The definitions below follow [2]. Let λ denote Lebesgue measure on R.

Definition 3. We define the lower Lebesgue density of a set C ⊆ R at a
point z to be the quantity

%(C|z) := lim inf
γ,δ→0+

λ([z − γ, z + δ] ∩ C)
γ + δ

.

Note that 0 ≤ %(C|z) ≤ 1.

Theorem 4 (Lebesgue [12]). Let C ⊆ R be a measurable set. Then
%(C|z) = 1 for almost every z ∈ C.

The Borwein-Ditor theorem is analogous to the Lebesgue density the-
orem. Both results say that for almost every point in a measurable class
there are, in a specific sense, many arbitrarily close other points in the
class.

An open set C clearly has lower Lebesgue density 1 at each of its
members. Thus, the simplest non-trivial case is when C is closed. We



say that a real z ∈ [0, 1] is a density-one point if %(C|z) = 1 for every
effectively closed class C containing z. Similar to the implication (⇒) of
Proposition 2, every 1-generic is a density-one point. So being a density-
one point is by itself not a randomness notion, and neither is the Borwein-
Ditor property for effectively closed sets. In both cases, to remedy this one
has to add as an additional condition that the real is Martin-Löf random.

Definition 5. Let z ∈ R be ML-random. We say that z is density ran-
dom if z is also a density-one point.

Definition 6. Let z be ML-random. We say that z is Borwein-Ditor
(BD) random if for each Π0

1 set A ⊆ R with z ∈ A, and each computable
null sequence of reals 〈rm〉m∈ω, there is an m such that z + rm ∈ A.

Neither of the two randomness notions is equivalent to ML-randomness,
because the least element of a non-empty effectively closed set of ML-
randoms is neither density random nor BD-random. Density randomness
is in fact known to be stronger than difference randomness (i.e. ML-
randomness together with Turing incompleteness) by Bienvenu et al. [2]
together with Day and Miller [6]. Much less is known at present about
the placement of BD-randomness within the established notions.

3 Oberwolfach randomness implies BD randomness

Ah! the ancient pond
as a frog takes the plunge
sound of water

(Matsuo Basho)

To simplify notation, we identify the unit interval with Cantor space ω2 in
what follows, ignoring dyadic rationals. For a string σ, as usual by [σ] we
denote the corresponding basic dyadic interval; for example [101] denotes
the interval [5/8, 3/4].

Bienvenu et al. [1] introduced Oberwolfach (OW) randomness, and
also gave the following equivalent definition. A left-c.e. bounded test is a
descending sequence 〈Vn〉 of uniformly Σ0

1 classes in Cantor space such
that for some nondecreasing computable sequence of rationals 〈βs〉 with
β = sups βs <∞, we have λ(Vn) ≤ β − βn for all n. Z is OW-random iff
Z passes each such test in the sense that Z 6∈

⋂
n Vn.

OW-randomness implies density randomness [1]. The converse impli-
cation remains unknown. The question is intriguing. All the equivalent



characterizations of OW-randomness are within the, by now, almost clas-
sical framework of computability and randomness [14,7]. For instance, if Z
is ML-random, Z is OW-random iff it does not compute every K-trivial
set [1]. On the other hand, the seemingly very close notion of density
randomness is defined analytically, and mainly has analytical characteri-
zations such as via differentiability of interval-c.e. functions in [13, Thm.
4.2].

Using Theorem 1 it is easy to check that weak 2-randomness im-
plies BD-randomness. We show that the much weaker notion of OW-
randomness already implies BD-randomness.

While density and BD randomness are analogous, it seems unlikely
that density implies BD. This provides evidence that OW-randomness is
strictly stronger than density randomness.

Theorem 7 Let Z be Oberwolfach random. Then Z is BD random.

Proof. Suppose we are given a Π0
1 class P ⊆ ω2 with Z ∈ P, and a

computable null sequence of reals 〈rm〉m∈ω. We may assume that rm ≤
2−m. Let 〈σm〉m∈ω be a computable prefix-free sequence of strings such
that S = ω2 \ P = [{σm : m ∈ N}]≺, and let Sm = [σ0, . . . , σm−1]

≺,
the class of all bit sequences extending one of the σi. Let q(m) = 1 +
max(m,maxi<m |σm|). Now define a left-c.e. bounded test by

Gm =
⋂

i≤q(m)

(S + rm) \ Sm.

Clearly this is a descending sequence of uniformly Σ0
1 sets. Let

β = λS and βm = λSm −m2−m

so that β = supm βm.

Claim. λGm ≤ β − βm.

We actually show this bound for S + rq(m) \ Sm instead of Gm. Since
A\C ⊆ (A\B)∪(B\C) for sets A,B,C, and by the translation invariance
of λ,

λ(S + rq(m) \ Sm) ≤ λ(S \ Sm) + λ(Sm + rq(m) \ Sm).

Recall that rk ≤ 2k. Hence by definition of q(m), for each i < m we have

λ([σm] + rq(m) \ [σm]) ≤ 2−q(m).



Therefore λ(Sm + rq(m) \ Sm) ≤ m2−q(m) ≤ m2−m as required for the
claim.

If Z + rn 6∈ P for each n then Z ∈
⋂
mGm, so Z is not OW-random.

We note that this proof works in much greater generality for an abelian
group (S,+) that is also a computable probability space (S, µ) with a
translation invariant measure, such that limr→0 µ((A + r)4A) = 0 ef-
fectively for every basic open set A. For instance, the general theorem
also applies to Cantor space with the usual ultrametric and the group
structure of the 2-adic integers (Z2,+).

Finally, similar to [4] we extend the foregoing theorem to the case of
finitely many null sequences, and show that for an OW-random Z, one
position works for all of them. This is in the spirit of multiple recurrence
in ergodic theory, initiated by Furstenberg and others in the 1970s [9].

Theorem 8 Let Z be Oberwolfach random. For each Π0
1 class P ⊆ ω2

with Z ∈ P, and k many computable null sequences of reals 〈rm,v〉m∈ω,
0 ≤ v < k, there is m such that Z + rm,v ∈ P for each v < k.

Proof. We may assume that rm,v ≤ 2−m for each v. Let 〈σm〉m∈ω, Sm,
q(m) and βm be defined as above. Let

Gm =
⋂

i≤q(m)

⋃
v<k

(S + ri,v) \ Sm.

Claim. λGm ≤ k(β − βm).

We actually show this bound for
⋃
v<k(S + rq(m),v) \ Sm instead of Gm.

By the translation invariance of λ,

λ
⋃
v<k(S + rq(m),v) \ Sm ≤ kλ(S \ Sm) + λ(

⋃
v<k Sm + rq(m),v \ Sm).

By the definition of q(m), we have

λ(
⋃
v<k Sm + rq(m),v \ Sm) ≤ km2−q(m) ≤ km2−m,

which establishes the claim.
If for each n there is v < k such that Z + rn,v 6∈ P, then Z ∈

⋂
mGm,

so Z is not OW-random.

4 Open questions

Due to the novelty of the concept of BD-randomness, a number of natural
questions remain; they are not necessarily hard. Our first two questions
have been tried by a number of researchers; the third has not been con-
sidered in any detail so far.



Question 9. Does density randomness imply BD randomness?

Question 10. Does BD-randomness imply difference randomness?

Question 11. Does lowness for BD-randomness coincide with lowness for
ML-randomness?

Miyabe et al. [13, Thm. 2.6] show that lowness for density randomness
coincides with lowness for ML-randomness. The containment “⊆” is im-
mediate from the result of Downey et al. [8] that Low(W2R,MLR) =
Low(MLR) (where W2R is the class of weakly 2-randoms). This proof
works the same for BD-randomness. Thus, low for BD-random implies
low for ML-random. However, the proof of the converse containment in
the case of density randomness cannot be adapted in any obvious way,
because we now have to consider a null sequence computable in the oracle.

Acknowledgement: research supported by the Marsden fund of New
Zealand and the Lions foundation.
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12. H. Lebesgue. Sur les intégrales singulières. Ann. Fac. Sci. Toulouse Sci. Math.
Sci. Phys. (3), 1:25–117, 1909.

http://arxiv.org/abs/1104.4465
http://arxiv.org/abs/1104.4465


13. K. Miyabe, A. Nies, and J. Zhang. Using almost-everywhere theorems from analysis
to study randomness. Bull. Symb. Logic, to appear, 2016.

14. A. Nies. Computability and randomness, volume 51 of Oxford Logic Guides. Oxford
University Press, Oxford, 2009. 444 pages. Paperback version 2011.

15. N. Pathak, C. Rojas, and S. G. Simpson. Schnorr randomness and the Lebesgue
differentiation theorem. Proc. Amer. Math. Soc., 142(1):335–349, 2014.


	A computational approach to the  Borwein-Ditor Theorem

