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Abstract. This work contributes to the programme of studying effective versions of “almost
everywhere” theorems in analysis and ergodic theory via algorithmic randomness. Consider the
setting of Cantor space {0, 1}N with the uniform measure and the usual shift (erasing the first
bit). We determine the level of randomness needed for a point so that multiple recurrence in
the sense of Furstenberg into effectively closed sets P of positive measure holds for iterations
starting at the point. This means that for each k ∈ N there is an n such that n, 2n, . . . , kn
shifts of the point all end up in P. We consider multiple recurrence into closed sets that possess
various degrees of effectiveness: clopen, Π0

1 with computable measure, and Π0
1. The notions

of Kurtz, Schnorr, and Martin-Löf randomness, respectively, turn out to be sufficient. We
obtain similar results for multiple recurrence with respect to the k commuting shift operators

on {0, 1}N
k

.

1. Introduction

A major subarea of mathematical logic seeks to understand the effective content of math-
ematics; that is, to understand what part of mathematics is algorithmic and to calibrate the
computational resources needed for classical theorems. Ever since Turing’s original paper [14]
analysis has been part of this tradition. The last decade or so has seen a great deal of work
using algorithmic tools to understand and calibrate our intuitive understanding of randomness
of an individual sequence (Downey and Hirschfeldt [3], Nies [13], Li-Vitanyi [11]). For example,
a real can be regarded as random if no effective betting strategy succeeds in making infinite
capital betting on the bits of the real. A natural area for the combination of these two parts of
effective mathematics is in the area of “almost everywhere” theorems. For example, Brattka,
Miller and Nies [1] have established that computable randomness of a real corresponds precisely
to differentiability at the real of computable nondecreasing functions.

The present paper contributes to this program. We consider one of the most powerful areas
of mathematics arising in the 20th century, beginning with the work of Poincairé, Birkhoff, von
Neumann and others: ergodic theory. This theory is concerned with “average case long term
behavior” of certain kind of recurrent systems, and has applications from pure mathematics to
classical physics. For ergodic theory and in particular the multiple recurrence theorem, see the
recent edition of Furstenberg’s book [5].

2. Background in ergodic theory

We begin with some background that will lead to our main definition. A measurable operator
T : X → X on a probability space (X,B, µ) is called measure preserving if µT−1(A) = µA for
each A ∈ B. One says that A ∈ B is invariant under T if T−1A = A (up to a null set). T is
ergodic if the only T -invariant measurable subsets of X are either null or co-null1.

A classical result here is that almost all points in a probability space behave in a regular
way. For example, consider the following result due to Pioneeré, which can be seen as the first
ergodic theorem.

2010 Mathematics Subject Classification. Primary 03D32; Secondary 37A30.
1Ergodicity of T is implied by various mixing properties. Relevant for us is strong mixing, which means that

for A,B ∈ B, limn→∞ µ(A ∩ T−nB) = µ(A)µ(B).
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Theorem 2.1 (Poincaré Recurrence Theorem). Let (X,B, µ) be a probability space, T : X → X
be measure preserving, and let A ∈ B have positive measure. For almost all x ∈ X, T−n(x) ∈ A
for infinitely many n.

The remarkable theorem of Furstenberg says that in certain circumstances, Tn(x) ∈ E for
a collection of n that forms an arithmetical progression. More generally, suppose we have k
commuting measure preserving operators. There is an n and a positive measure set of points
so that n iterations of each of the operators Ti, starting from each point in the set, ends in A:

Theorem 2.2 (Furstenberg multiple recurrence theorem, see [5] Thm. 7.15).
Let (X,B, µ) be a probability space. Let T1, . . . , Tk be commuting measure preserving operators
on X. Let A ∈ B with µA > 0. There is an n > 0 such that 0 < µ

⋂
i T
−n
i (A).

For this paper the following equivalent formulation of Thm. 2.2 matters. We will verify their
equivalence at the end of this section.

Corollary 2.3. With the hypotheses of Thm. 2.2, for µ-a.e. x ∈ A, there is an n > 0 such that
x ∈

⋂
i T
−n
i (A).

An important special case is that Ti is the power V i of a measure-preserving operator V .

Corollary 2.4. Let (X,B, µ) be a probability space. Let V be a measure preserving operator.
Let A ∈ B and µA > 0. For each k, for µ-a.e. x ∈ A there is an n such that ∀i.1 ≤ i ≤ k [x ∈
V −ni(A)].

This is the form which, as Furstenberg [5] showed, can be used to derive Szemerédi’s the-
orem on arithmetic progressions; also see Graham, Rothschild and Spencer [7]. (A full “al-
most everywhere” version of Corollary 2.4 would assert that for µ-a.e. x there is n such that
∀i.1 ≤ i ≤ k [x ∈ V −ni(A)]. Note that we can expect such a version only for ergodic operators,
even if k = 1. For, if A is S-invariant, then an iteration starting from x 6∈ A will never get
into A.)

We will mostly assume that (X,B, µ) is Cantor space 2N with the product measure λ. In the
following X,Y, Z will denote elements of Cantor space. We will work with the shift T : 2N → 2N

as the measure preserving operator. Thus, T (Z) is obtained by deleting the first entry of the
bit sequence Z. We note that this operator is (strongly) mixing, and hence strongly ergodic,
namely, all of its powers are ergodic.

The following is our central definition.

Definition 2.5. Let P ⊆ 2N be measurable, and let Z ∈ 2N. We say that Z is k-recurrent in
P if there is n ≥ 1 such that

(�) Z ∈
⋂

1≤i≤k
T−ni(P).

We say that Z is multiply recurrent in P if Z is k-recurrent in P for each k ≥ 1.

In other words, Z is k-recurrent in P if there is n ≥ 1 such that removing n, 2n, . . . , kn bits
from the beginning of Z takes us into P.

We only consider multiple recurrence for closed sets. Note that for (multiple) recurrence in
the sense of Thm. 2.2, this is not an essential restriction, because any set of positive measure
contains a closed subset of positive measure.

Goal of this paper. Algorithmic information theory is an area of research which attempts
to give meaning to randomness of individual events. We remind the reader that A ∈ 2ω is
Martin-Löf random if A 6∈ ∩iUi where {Ui : i ∈ N} is a computable collection of Σ0

1 classes
with µ(Ui) ≤ 2−i, and A is weakly (or Kurtz) random if A 6∈ Q for every Π0

1 null class Q. For
background on randomness notions, see [13, Ch. 3] or [3, Chapters 6 and 7].

Since limit laws in probability theory embody certain intuitive properties associated with
randomness, it is important to establish that objects of study in algorithmic randomness satisfy
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such laws. Indeed, the Law of Large Numbers [15], the Law of Iterated Logarithm [16], Birkhoff’s
Ergodic theorem [17, 4] and the Shannon-McMillan-Breiman Theorem [8, 9] are satisfied by
Martin-Löf random sequences. These results serve to justify the intuition that the set of Martin-
Löf random points is a canonical set of measure 1 which obeys all effective limit laws that hold
almost everywhere.

In this vein, we analyse how weaker and weaker effectiveness conditions on a closed set P
ensure multiple recurrence when starting from a sequence Z that satisfies a stronger and stronger
randomness property for an algorithmic test notion. We begin with the strongest effectiveness
condition, being clopen; in this case it is easily seen that weak (or Kurtz) randomness of Z
suffices. As most general effectiveness condition we will consider being effectively closed (i.e.
Π0

1); Martin-Löf-randomness turns out to be the appropriate notion. The proof will import
some method from the case of a clopen P. Note that Π0

1 subsets of Cantor space are often
called Π0

1 classes.
The major part of the present work establishes the multiple recurrence property of algorith-

mically random sequences under the left-shift transformation. In the question of “structure
versus randomness” in measure-preserving dynamical systems, this represents a setting which
has a high degree of randomness. In contrast, in the final section, we consider very structured
systems, namely Kronecker systems. We provide a proof of the principle, well-known in practice,
that such systems exhibit multiple recurrence for all points.

Related results. As mentioned above, in the theory of algorithmic randomness, we are inter-
ested in which limit laws in probability theory are applicable to algorithmically random objects.
Of particular interest are computable versions of theorems in dynamical systems. An early re-
sult is the theorem of Kučera [10] that a sequence X is Martin-Löf random if and only if for
every Π0

1 class P with positive measure, there is a tail of X which is in P . This result can be re-
cast into ergodic-theoretic language using the left-shift transformation. Bienvenu, Day, Hoyrup,
Mezhirov and Shen [2] have generalized this to arbitrary computable ergodic transformations.
They show that for a computable probability space and a computable ergodic transformation
T , a member x in the space is Martin-Löf random if and only if for every Π0

1 set P of posi-
tive measure, there is an n such that Tnx ∈ P . These results can be viewed as how Poincaré
recurrence relates to algorithmic randomness notions.

Birkhoff’s ergodic theorem states that for every ergodic transformation T defined on a prob-
ability space (X,F , µ) and for every function f ∈ L1(X), the average 1

n

∑n−1
i=0 f(T ix) converges

to
∫
fdµ for µ-almost every x ∈ X. The question of how Birkhoff’s ergodic theorem relates to

algorithmic randomness has been studied starting with V’yugin [17]. Gács, Hoyrup and Rojas
[6] establish that a point x in a computable probability space under a computable ergodic trans-
formation T : X → X is Schnorr random2 if and only if it obeys the Birkhoff ergodic theorem
with respect to all Π0

1 sets of computable positive measure — i.e. the asymptotic frequency
with which the orbit of x visits such a Π0

1 set P is exactly the probability of P . Franklin,
Greenberg, Miller and Ng [4] show that under the same setting, but without the assumption
that the measure of the Π0

1 set be computable, a point x is Martin-Löf random if and only if it
obeys the Birkhoff ergodic theorem with respect to Π0

1 sets of positive measure.

Proof that Thm. 2.2 and Cor. 2.3 are equivalent. Cor. 2.3 clearly yields Thm. 2.2 because
it implies that

⋂
i T
−n
i (A) has positive measure for some n. Conversely, let us show that Thm.

2.2 yields Cor. 2.3. Let Rn =
⋂

i T
−n
i (A). We recursively define a sequence 〈np〉p<N of numbers

and a descending sequence 〈Ap〉p<N of measurable sets, where 0 < N ≤ ω.

Let n0 = 0, and A0 = A. Suppose np and Ap have been defined. If µAp = 0 let N = p+1 and
finish. Otherwise, let np+1 be the least n > np such that µ(Ap∩Rn) > 0, and let Ap+1 = Ap−Rn.

2Recall that C is called Schnorr random if C 6∈ ∩iUi where {Ui : i ∈ N} is a computable collection of Σ0
1

classes with µ(Ui) = 2−i; like Kurtz randomness, a notion strictly weaker than Martin-Löf randomness.
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Let AN =
⋂

p<N Ap. Then µAN = 0: This is clear if N is finite. If N = ω and µAN > 0, by

Thm. 2.2 there is n such that µ(Rn ∩ AN ) > 0. This contradicts the definition of Ap+1 where
np < n ≤ np+1.

Since µAN = 0, Cor. 2.3 follows.

Notation. For a set of strings S ⊆ 2<ω, by [S]≺ we denote the open set {Y ∈ 2N : ∃σ ∈ S [σ ≺
Y ]}. We write λ[S]≺ for the measure of this set, namely λ([S]≺).

Recall that we mainly work with the shift T : 2N → 2N as the measure preserving operator.
We will write Zn for Tn(Z), the tail of Z starting at bit position n. Thus, for any C ⊆ 2N,
Z ∈ 2N and k ∈ N, Z ∈ T−k(C)↔ Zk ∈ C.

3. Multiple recurrence for weakly random sequences

Recall that Z is weakly (or Kurtz) random if Z is in no null Π0
1 class. This formulation is

equivalent to the usual one in terms of effective tests.

Proposition 3.1. Let P ⊆ 2N be a non-empty clopen set. Each weakly random bit sequence Z
is multiply recurrent in P.

Proof. Suppose Z is not k-recurrent in P for some k ≥ 1. We define a null Π0
1 class Q containing

Z. Let n0 be least such that P = [F ]≺ for some set of strings of length n0. Let nt = n0(k + 1)t

for t ≥ 1. Let

Q =
⋂
t∈N
{Y :

∨
1≤i≤k

Yint 6∈ P}.

By definition of n0 the conditions in the same disjunction are independent, so we have

λ(
∨

1≤i≤k
Yint 6∈ P) = 1− (λP)k < 1.

By definition of the nt for t > 0, the class Q is the independent intersection of such classes
indexed by t. Therefore Q is null. Clearly Q is Π0

1.
By hypothesis Z ∈ Q. So Z is not weakly random. �

4. Multiple recurrence for Schnorr random sequences

Theorem 4.1. Let P ⊆ 2N be a Π0
1 class such that 0 < p = λP and p is a computable real.

Each Schnorr random Z is multiply recurrent in P.

We note that this also follows from a particular kind of effective version of Furstenberg
multiple recurrence (Cor. 2.3), as explained in Remark 6.3 below. However, we prefer to give a
direct proof avoiding Cor. 2.3.

Proof. We extend the previous proof, working with an effective approximation B = 2N − P =⋃
s Bs where the Bs are clopen. We may assume that Bs = [Bs]

≺ for some effectively given set
Bs of strings of length s.

We fix an arbitrary k ≥ 1 and show that Z is k-recurrent in P. Given v ∈ N we will define
a null Π0

1 class Qv ⊆ 2N which plays a role similar to the class Q before. We also define an
“error class” Gv ⊆ 2N that is Σ0

1 uniformly in v. Further, λGv is computable uniformly in
v and λGv ≤ 2−v, so that 〈Gv〉v∈N is a Schnorr test. If Z passes this Schnorr test then Z
behaves essentially like a weakly random in the proof of Proposition 3.1, which shows that Z is
k-recurrent for P.

For the details, given v ∈ N, we define a computable sequence 〈nt〉. Let n0 = 1. Let
n = nt ≥ (k + 1)nt−1 be so large that

λ(B − Bn) ≤ 2−t−v−k.
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As in the proof of Proposition 3.1, the class

Qv = {Y : ∀t
∨

1≤i≤k
Yint ∈ Bnt}

is Π0
1 and null. The “error class” for v at stage t is

Gtv = {Y :
∨

1≤i≤k
Yint ∈ B − Bnt}.

Notice that λGtv ≤ k2−t−v−k, and this measure is computable uniformly in v, t. Let Gv =
⋃

tG
t
v.

Then λGv is also uniformly computable in v, and bounded above by 2−v, as required.
If Z is Schnorr random, there is v such that Z 6∈ Gv. Also, Z 6∈ Qv, so that for some t we

have Zint ∈ P for each i with 1 ≤ i ≤ k, as required. �

5. Multiple recurrence for ML-random sequences

For general Π0
1 classes, the right level of randomness to obtain multiple recurrence is Martin-

Löf randomness. We first remind the reader that even the case of 1-recurrence characterizes
ML-randomness. This is a well-known result of Kučera [10].

Proposition 5.1. Z is ML-random ⇔ Z is 1-recurrent in each Π0
1 class P with 0 < p = λP.

Proof. ⇒: see e.g. [13, 3.2.24] or [3, 6.10].
⇐: ML-randomness of a sequence Z is preserved by adding bits at the beginning. By the Levin-
Schnorr Theorem, the Π0

1 class P = {Y : ∀nK(Y �n) ≥ n− 1} consists entirely of ML-randoms.
So, if Z is not ML-random, then no tail of Z is in the Π0

1 class P. Further, λP ≥ 1/2. �

Theorem 5.2. Let P ⊆ 2N be a Π0
1 class with 0 < p = λP. Each Martin-Löf random Z is

multiply recurrent in P.

Proof. As before we fix an arbitrary k ≥ 1 in order to show that Z is k-recurrent in P. First we
prove the assertion under the additional assumption that 1−1/k < p. This generalises Kučera’s
argument in ‘⇒’ of the proposition above, where k = 1 and the additional assumption 0 < p is
already satisfied.

Let B ⊆ 2<ω be a prefix-free c.e. set such that [B]≺ = 2N −P. We may assume that B0 = ∅
and for each t > 0, if σ ∈ Bt − Bt−1 then |σ| = t. We define a uniformly c.e. sequence 〈Cr〉
of prefix-free sets which also have the property that at stage t only strings of length t are
enumerated.

For a string η and u ≤ |η|, we write (η)u for the string η with the first u bits removed. Let
C0 only contain the empty string, which is enumerated at stage 0. Suppose r > 0 and Cr−1

has been defined. Suppose σ is enumerated in Cr−1 at stage s (so |σ| = s). For strings η � σ
we search for the failure of k-recurrence in P that would be obtained by taking s bits off η for
k times. At stage t > (k + 1)s, for each string η of length t such that η � σ and

(∗)
∨

1≤i≤k
(η)si ∈ Bt−si,

and no prefix of η is in Cr
t−1, put η into Cr at stage t.

Claim 5.3. Cr is prefix-free for each r.

This holds for r = 0. For r > 0 suppose that η � η′ and both strings are in Cr. Let
t = |η|. By inductive hypothesis the string η was enumerated into Cr via a unique σ ≺ η, where
σ ∈ Cr−1. Then η = η′ because we chose the string in Cr minimal under the prefix relation.
This establishes the claim.

By hypothesis 1 > q = kλ[B]≺.

Claim 5.4. For each r ≥ 0 we have λ[Cr]≺ ≤ qr.
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This holds for r = 0. Suppose now that r > 0. Let σ ∈ Cr−1. The local measure above σ of
strings η, of a length t, such that

∨
1≤i≤k ηsi ∈ Bt−is is at most q. The estimate follows by the

prefix-freeness of Cr.
If Z is not k-recurrent in P, then Z ∈ [Cr]≺ for each r, so Z is not ML-random.
We now remove the additional assumption that 1−1/k < p. We define the sets Cr as before.

Note that any string in Cr has length at least r. Everything will work except for Claim 5.4: if
λ[B]≺ ≥ 1/k then λ[Cr]≺ could be 1. To remedy this, we choose a finite set D ⊆ B such that

the set B̃ = B−D satisfies λ[B̃]≺ < 1/k. Let N = max{|σ| : σ ∈ D}. We modify the argument
of Prop. 3.1, where the clopen set P there now becomes 2N − [D]≺.

Let C =
⋃

r C
r. Let Gm be the set of prefix-minimal strings η such that η ∈ C, and there

exist m many s > N as follows.

• η �s∈ C, and
• for some i with 1 ≤ i ≤ k, η �[si,s(i+1)) extends a string in D.

(Informally speaking, if there are arbitrarily long such strings along Z, then the attempted test
[Cr]≺ might not work, because the relevant “block” η �[si,s(i+1)) may extend a string in D, rather

than one in B̃.)
The sets Gm are uniformly Σ0

1. By choice of N and independence, as in the proof of Prop.
3.1 we have λ[Gm+1]

≺ ≤ (1 − vk)λGm, where v = λ(2N − [D]≺). If Z is ML-random we can
choose a least m∗ such that Z 6∈ [Gm∗ ]

≺.
Note that m∗ > 0 since G0 = {∅}. So choose ρ ≺ Z such that ρ ∈ Gm∗−1. Then ρ ∈ Cr for

some r, and no τ with ρ � τ ≺ Z is in Gm∗ .

We define a ML-test that succeeds on Z. Let C̃r = Cr. Suppose u > r and C̃u−1 has

been defined. For each σ ∈ C̃u−1, put into C̃u all the strings η � σ in Cu so that (∗) can be

strengthened to
∨

1≤i≤k(η)si ∈ B̃t−is, where s = |σ|.
Let q = kλ[B̃]≺. Note that λ[C̃u]≺ ≤ qu as before. By the choice of m∗ we have Z ∈⋂
u≥r[C̃

u]≺, so since q < 1, an appropriate refinement of the sequence of open sets
〈

[C̃u]≺
〉
u∈N

shows Z is not ML-random.
�

6. Towards the general case

6.1. Recurrence for k shift operators. The probability space under consideration is now

X = {0, 1}Nk
with the product measure. For 1 ≤ i ≤ k, the operator Ti : X → X takes one

“face” of bits off in direction i. That is, for Z ∈ X ,

Ti(Z)(u1, . . . , uk) = Z(u1, . . . , ui + 1, . . . , uk).

Z is multiply recurrent in a class P ⊆ X if [Z ∈
⋂

i≤k T
−n
i (P)] for some n.

Algorithmic randomness notions for points in X can be defined via the effective measure
preserving isomorphism X → 2N given by a computable bijection Nk → N. Modifying the
methods above, we show the following.

Theorem 6.1. Let P ⊆ X be a Π0
1 class with 0 < p = λP. Let Z ∈ X .

If Z is (a) Kurtz (b) Schnorr (c) ML-random, then Z is multiply recurrent in P
in case (a) P is clopen (b) λP is computable (c) for any P.

Proof. For the duration of this proof, by an array we mean a map σ : {0, . . . , n− 1}k → {0, 1}.
We call n the size of σ and write n = |σ|. The letters σ, τ, ρ, η now denote arrays. If σ is an
array of size n, for s ≤ n and i ≤ k let (σ)i,s be the array τ of size n− s such that

τ(u1, . . . , uk) = σ(u1, . . . , ui + s, . . . , uk)

for u1, . . . , uk ≤ n− s. This operation removes s faces in direction i, and then in the remaining
directions cuts the faces from the opposite side in order to obtain an array. For a set S of
arrays we define [S]≺ = {Y ∈ X : ∃σ ∈ S [σ ≺ Y ]} where the “prefix” relation ≺ is defined as
expected.
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Suppose that Z is not k-recurrent in P for some k ≥ 1.
(a). As in Prop. 3.1 we define a null Π0

1 class Q ⊆ X containing Z. Let n1 be least such that
P = [F ]≺ for some set of arrays of that all have size n1. Let

Q =
⋂
r≥1
{Y :

∨
1≤i≤k

T rn
i (Y ) 6∈ P}.

By the choice of n1 the conditions in the same disjunction are independent, so we have

λ(
∨

1≤i≤k
T rn
i (Y ) 6∈ P) = 1− pk < 1.

The Π0
1 class Q is the independent intersection of such classes indexed by r. Therefore Q is

null. By hypothesis Z ∈ Q. So Z is not weakly random.
(b). We could modify the previous argument. However, this also follows by the general fact in
Remark 6.3 below.
(c). The argument is similar to the proof of Theorem 5.2 above. The definition of the c.e. set B
and its enumeration are as before, except that each string of length n is now an array of size n.
In particular, an array enumerated at a stage s has size s.

Let C0 only contain the empty array, which is enumerated at stage 0. Suppose r > 0 and
Cr−1 has been defined. Suppose σ is enumerated in Cr−1 at stage s (so |σ| = s).

At a stage t > 2s, for each array η of size t such that η � σ and

(∗)
∨

1≤i≤k
(η)i,s ∈ Bt−s,

and no array that is a prefix of η is in Cr
t−1, put η into Cr at stage t. As before one checks that

Cr is prefix-free for each r.

Choose a finite set of arrays D ⊆ B such that the set B̃ = B −D satisfies λ[B̃]≺ < 1/k. Let
N = max{|σ| : σ ∈ D}. Let C =

⋃
r C

r. Let Gm be the set of prefix-minimal arrays η such that
η ∈ C, and there exist m many s > N as follows.

• η �{0,...,s−1}k∈ C, and

• for some i with 1 ≤ i ≤ k, (η)i,s extends an array in D.

The sets Gm are uniformly Σ0
1. By choice of N and independence λ[Gm+1]

≺ ≤ (1 − tk)λGm,
where t = λ(2N− [D]≺). If Z is ML-random we can choose a least m∗ be such that Z 6∈ [Gm∗ ]

≺,
and m∗ > 0 since G0 = {∅}. So choose η ≺ Z such that η ∈ Gm∗−1. Then η ∈ Cr for some r,
and no τ with η � τ ≺ Z is in Gm∗ .

Let C̃r = Cr. Suppose u > r and C̃u−1 has been defined. For each σ ∈ C̃u−1, put into C̃u all

the arrays η � σ in Cu so that (∗) can be strengthened to
∨

1≤i≤k(η)i,s ∈ B̃t−s, where s = |σ|
and t = |η|.

Let q = kλ[B̃]≺. Then λ[C̃u]≺ ≤ qu as before. By the choice of m∗ we have Z ∈
⋂

u≥r[C̃
u]≺,

so since q < 1, Z is not ML-random. �

6.2. The putative full result. It is likely that a multiple recurrence theorem holds in greater
generality. For background on computable probability spaces and how to define randomness
notions for points in them, see e.g. [6].

Conjecture 6.2. Let (X,µ) be a computable probability space. Let T1, . . . , Tk be computable
measure preserving transformations that commute pairwise. Let P be a Π0

1 class with µP > 0.
If z ∈ P is ML-random then ∃n[z ∈

⋂
i≤k T

−n
i (P)].

Remark 6.3. Let Un be the open set {x : x 6∈
⋂

i≤k T
−n
i (P)}. Then µ(P ∩

⋂
n Un) = 0 by the

classic multiple recurrence theorem in the version of Cor. 2.3. Since P ∩
⋂

n Un is Π0
2, weak

2-randomness of z suffices for the k-recurrence.
Jason Rute has pointed out that if X is Cantor space and µP is computable, then ∃n[z ∈⋂
i≤k T

−n
i (P)] for every Schnorr random z ∈ P. For in this case µÛn is uniformly computable
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where Ûn =
⋂

i<n Ui. Let P =
⋂

n Pn where the Pn are clopen sets computed uniformly in n.

Let Gn = Pn ∩ Ûn. Then Gn is uniformly Σ0
1 and µ(Gn) is uniformly computable. Refining the

sequence 〈Gn〉 we obtain a Schnorr test capturing z.

7. Effective Multiple Recurrence for Irrational Rotations

In the foregoing sections, we have seen examples of mixing systems that display effective
versions of Furstenberg multiple recurrence. At the other end of the spectrum, highly structured
systems also exhibit multiple recurrence. Such systems are called compact. An example is
irrational rotations of the unit circle. We discuss a fact from [5] which implies that every
point in such a system is multiply recurrent with respect to every of its neighbourhoods, rather
than merely the weakly random points. To establish this result, we briefly look at topological
dynamical systems. Such a system consists of a compact space X and a continuous operator
T : X → X.

Definition 7.1 ([5], Def. 1.1). A point x in a topological dynamical system (X,T ) is k-recurrent
if the condition of Definition 2.5 holds for each neighbourhood P of x.

Definition 7.2. Given a compact group G and a ∈ G, let Ta(x) = a · x. One calls (G,Ta) a
Kronecker system.

For instance, for α ∈ R, the system (R/Z, T ) where T (x) = α + x mod 1 is a Kronecker
system. There is a unique invariant probability measure, called the Haar measure, on a Kro-
necker system. Hence such a system can also be viewed as a measure-preserving system, which
turns out to be compact in the measure theoretic sense. It is known that every compact ergodic
system is equivalent to a Kronecker system in the sense that the two systems are isomorphic
when viewed on the σ-algebra of measurable sets mod null sets.

Lemma 7.3. (see [5], Chapter 1) Every point in a Kronecker system is 1-recurrent.

This is established by showing that there is some recurrent point x0 ∈ G, by first considering
a minimal subsystem consisting of points with dense orbits, and by applying the Zorn’s lemma.
Since G is a group, if there is any recurrent point in the system, then every point must be
recurrent.

We can use the lemma itself to strengthen it.

Lemma 7.4. Every point in a Kronecker system (G,Ta) is multiply recurrent.

Proof. Given an integer k ≥ 2, consider the tuple t = (a, a2, . . . , ak) in the compact group
H = Gk. The system (H, t) is also Kronecker. Every point is 1-recurrent in this system. In
particular, for every x ∈ G, the point y = (x, . . . , x) ∈ H is 1-recurrent.

If V is an open neighbourhood of x, then the cartesian power kV is an open neighbourhood
of y. So y · tn ∈ kV for some n. This means that xain ∈ V for each i ≤ k, as required. �

Let α be a computable irrational. Linda Brown Westrick [12, Section 1] has proved that
every ML-random point in [0, 1] is multiply recurrent in each Π0

1 class of positive measure for
at least one of the operators x→ (x+ α) mod 1 or x→ (x− α) mod 1. Note that this lends
some further evidence to Conjecture 6.2. However, even for Kronecker systems with computable
group structure and computable Haar measure, the conjecture is open.
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