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Abstract. We study ideals in the computably enumerable Turing degrees, and their
upper bounds. Every proper Σ0

4 ideal in the c.e. Turing degrees has an incomplete

upper bound. It follows that there is no Σ0
4 prime ideal in the c.e. Turing degrees. This

answers a question of Calhoun [Cal93]. Every proper Σ0
3 ideal in the c.e. Turing degrees

has a low2 upper bound. Furthermore, the partial order of Σ0
3 ideals under inclusion is

dense.

1. Introduction

Let (U,≤,∨) be an uppersemilattice. A set I ⊆ U is an ideal if I is closed downwards,
and I is closed under the join operation ∨. We study ideals in the c.e. Turing degrees.
Our motivation is manifold. Firstly, collections of ideals form natural extensions of the
degree structure. Secondly, some important degree classes are ideals, such as being half of
a minimal pair in the c.e. degrees, or being the degree of a K-trivial set in the ∆0

2 degrees.
The latter example shows that the notion of an ideal can be seen as an abstract framework
for certain lowness properties, i.e. properties saying that a set is close to being computable.

An upper bound of an ideal I is a degree b such that I ⊆ [0,b]. Our leading question is
the following:

Let I be a proper ideal with a certain type of effective presentation. What
can we say about upper bounds of I?

It was motivated by the view of ideals as abstract lowness properties, for in that case one
would expect upper bounds that are far from Turing complete. Indeed, we use a general
result in this direction to show that some c.e. low2 set is Turing above all the K-trivials.
A further result enables us to answers a question of Calhoun [Cal93] in the negative: there
is no Σ0

4 proper prime ideal in the c.e. degrees.

Terminology for ideals. Fix an uppersemilattice (U,≤,∨). The ideal generated by a set
S ⊆ U consists of the elements of U that are below finite joins of elements in S. The set of
ideals of U is a lattice, where the meet of I, J is the intersection, and the join is the ideal
generated by I ∪ J . Thus, I ∨ J = {x ∈ U : ∃y ∈ I ∃z ∈ J [x ≤ y ∨ z]}. An ideal I is called
proper if I 6= U .

Each u ∈ U determines the ideal û = {x : x ≤ u}, called a principal ideal. The map
u→ û is a usl embedding of U into its ideal lattice.

Describing ideals. There are two interrelated approaches for describing a certain ideal I
in the c.e. degrees. Similar observations apply to the ∆0

2 degrees.
(a) One can generate I by a uniformly c.e. sequence; such an ideal is said to be uniformly

generated. The class of uniformly generated ideals is closed under join in the lattice
of ideals.
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(b) One can describe its index set ΘI = {e : the degree of We is in I} within the arith-
metical hierarchy. If ΘI is Σ0

k etc. we say that I is a Σ0
k ideal. Each principal ideal

is Σ0
4. For k ≥ 4 the class of Σ0

k ideals forms a sublattice of the lattice of ideals.

Each Σ0
3 ideal is uniformly generated by Yates [Yat69]. Each uniformly generated ideal

is Σ0
4. We will see that the converse implications fail.

Main results. By the Thickness Lemma (see [Soa87]) every proper uniformly generated
ideal has an incomplete upper bound. We strengthen and vary this in several ways in order
to address our leading question.

• Firstly, each proper Σ0
4 ideal in the c.e. degrees has an incomplete upper bound

(Theorem 2.1). This strengthens the Thickness Lemma result for uniformly gen-
erated ideals. The proof makes essential use of the fact that there is a high
non-cuppable degree (see [Mil81]).

• Secondly, each proper Σ0
3 ideal in the c.e. degrees has a low2 upper bound (The-

orem 4.4). We first prove in Lemma 4.1 the useful fact that each uniformly c.e.
subsequence of a proper Σ0

3 ideal is uniformly low2.

A summary of the results is given in Table 1. This relies on some definitions. Recall
that a set A is low if A′ ≤T ∅′, and superlow if A′ ≤tt ∅′ (equivalently, A′ ≤wtt ∅′). An
index for reduction procedures showing these properties is called a lowness index, and a
superlowness index of A, respectively.

Definition 1.1. We say that a uniformly c.e. sequence of sets (Ai) is uniformly low if given
an input e one can compute a lowness index for ⊕i≤eAi; it is uniformly superlow if from e
one can compute a superlowness index for ⊕i≤eAi. We will also apply these definitions to
sequences of c.e. degrees.

Effectivity condition on I bound for I Reference
Uniformly superlow generated superlow Proposition 3.1 (ii)
Uniformly low generated low Proposition 3.1 (i)
Σ0

3 low2 Theorem 4.4
Σ0

4 incomplete Theorem 2.1
Table 1. Bounds for a proper ideal I in the c.e. degrees

Definability and global properties. In earlier investigations of ideals, researchers fo-
cussed on definability, and on the global properties of ideal lattices. A few proper ideals are
known to be first-order definable without parameters in the c.e. degrees. The classic exam-
ples are: the ideal of cappable degrees (i.e. the halves of minimal pairs), and its subideal,
the non-cuppable degrees. Nies [Nie03] showed that the ideal generated by a definable set
is also definable. Applying this, Yang and Yu [YY05] found further examples, for instance,
the ideal generated by the non-bounding degrees. It is still unknown whether infinitely
many ideals are definable without parameters.

Nies [Nie03] shows that the Σ0
k ideals, for fixed k ≥ 7, are uniformly definable with

parameters in the c.e. degrees. He also proves that the single ideal of non-cuppable degrees
is definable in the ideal lattice, as well as in each lattice of Σ0

k ideals, for fixed k ≥ 6: it is
the infimum of all maximal ideals.
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Prime ideals. Let U be an usl with least element 0. An ideal I ⊆ U is called a prime
ideal if below any two elements of U − I there is a further element of U − I.

Calhoun [Cal93] constructed a uniformly ∆0
5 sequence of incomparable prime ideals in

the c.e. Turing degrees. There is no easy way to decrease the complexity in his construction.
On the other hand, by [ASJSS84] the cappable degrees form a prime ideal in the c.e. degrees.
Schwarz [Sch89] showed that this ideal is Π0

4 complete. Prompted by this, Calhoun [Cal93]
asked whether there is a Σ0

4 prime ideal in the c.e. degrees. Using Theorem 2.1 that every
proper Σ0

4 ideal I in the c.e. degrees has an incomplete upper bound, we answer this question
in the negative: by Welch [Wel81], for every c.e. degree b < 0′ there is a minimal pair of
c.e. degrees a0,a1 such that ai 6≤ b. So, I cannot be a prime ideal.

By Welch’s result the Π0
4 ideal of cappable degrees does not have an incomplete upper

bound. So Theorem 2.1 is optimal in terms of quantifier complexity. In this context, it is
unknown whether the ideal generated by the cappable degrees and the K trivial c.e. degrees
(or the strongly jump traceables) is prime. This ideal is proper because no cappable degree
is low cuppable. We also do not know a further proper Π0

4 prime ideal.

Ideals and randomness. Recent interest in ideals of the c.e. degrees, or of the ∆0
2 degrees,

stems from the discovery of natural ideals for these degree structures. They often arise via
concepts related to randomness, a field full of surprising coincidence results for degree
classes. Frequently, such results state in fact the coincidence of ideals.

In the following, we refer to [Nie09a] for definitions. The K-trivial sets were intro-
duced by Chaitin [Cha76]. He proved that each K-trivial set is ∆0

2, while Solovay [Sol75]
constructed a K-trivial set that is not computable. The K-trivial sets coincide with the
sets that are low for ML-randomness, the sets that are low for K, and the bases for ML-
randomness [Nie05, HNS07]. In [DHNS03, Nie05] it is shown that the K-trivial sets induce
an ideal K in the ∆0

2 degrees. Each K-trivial set is Turing (even truth-table) below a c.e.
K-trivial [Nie05]. Thus, K is fully determined by its intersection with the c.e. degrees.
K-trivial sets are computationally weak. This intuition leads to several results on upper

bounds of the ideal K. For example, Nies [Nie06] showed that K does not have a low c.e.
upper bound. On the other hand, Theorem 4.4 implies that K has a low2 upper bound.
Miller and Nies [MN06] asked whether there is a low upper bound at all for the K-trivial
degrees. Kučera and Slaman [KS09] answered this question in the affirmative. They also
gave a characterization of the ideals in the Turing degrees which have a low upper bound.

A further natural ideal in the c.e. degrees is the ideal S induced by the strongly jump
traceable c.e. sets, introduced in [FNS08]. The ideal S is a proper subideal of K by [CDG08].
By [Ng08] S is Π0

4 complete. S coincides with the degrees of c.e. sets below all superlow
ML-random sets, and also with the degrees of c.e. sets below all superhigh ML-random sets
[Nie09b, GHN].

Some Σ0
3 ideals lie strictly between S and K. For instance, let Y be a superlow Martin-

Loef random set, and let B be a c.e. K-trivial set such that B 6≤T Y (see [Nie09a, Ex.
8.5.25]). Then the c.e. sets Turing below Y induce an ideal as desired. However, currently
no “natural ” ideal is known to lie properly between S and K. A promising candidate is
the ideal induced by the c.e. sets Turing below each a.e. dominating Martin-Loef random
sets. This ideal is contained in K, and known to differ from S by [GN11].

Some open questions on ideals.
The following questions are currently open, but not necessarily hard. A few further

questions relating to particular results are scattered through the text.
1. Is every Σ0

4 ideal the intersection of the principal ideals it is contained in? (This would
strengthen Theorem 4.4.) Is every Π0

4 ideal the intersection of the Σ0
3 ideals containing it?

2. Study the quotient usls of the c.e. degrees modulo the ideals K and S. Are they dense?
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3. Given k ≥ 4, is the class of principal ideals definable in the lattice of Σ0
k ideals?

4. Is the ideal of capable degrees definable in the lattices of Σ0
k ideals, for k ≥ 5?

5. [MN06] Are there c.e. degrees a,b such that K = [0,a] ∩ [0,b]?

2. Bounds for Σ0
4 ideals

Theorem 2.1. Every proper Σ0
4 ideal I of the c.e. degrees has an incomplete upper bound.

Proof. We build a Turing incomplete c.e. set B such that the degree of B is an upper
bound for I.

A c.e. degree h is called non-cuppable if h ∨ w < 0′ for all c.e. w < 0′. By a result
of Harrington and Miller [Mil81] there is a high non-cuppable c.e. degree h. The ideal
generated by I∪{h} is proper. Hence, replacing I by this ideal if necessary, we may assume
that I already contains the high degree h.

Our proof combines techniques reminiscent of the Thickness Lemma [Soa87] with the idea
to use such a high member of the given ideal to reduce the relative arithmetical complexity
of its index set. Let I be the set of representatives of the degrees in I. Also, let (We) be
an effective list of all the c.e. sets. Since I is Σ0

4, there exists a Π0
3 relation P such that

We ∈ I ⇐⇒ ∃nP (e, n). Let H be a set in h. Since H ′ ≥T ∅′′, we have Σ0
1(∅′) ⊆ ∆0

2(H)
and therefore Σ0

4 ⊆ Σ0
3(H). Hence there exists a uniformly c.e. sequence of operators (Ve,n)

such that
We ∈ I ⇐⇒ ∃n V He,n = N

and for all sets X and e, n ∈ N the set V Xe,n is an initial segment of N. Let 〈·, ·〉 : N×N→ N
be a computable bijection such that 〈e, n〉 ≥ e, n for all e, n ∈ N.

In order to build B as desired, it suffices to meet the requirements

C〈e,n〉 : V He,n = N ⇒ We ≤T B ⊕H.

To make B Turing incomplete, it suffices to meet the requirements

Nm : ∅′ = ΦBm ⇒ ∃k∃e0, . . . , ek−1[∅′ ≤T ⊕i<kWei ⊕H ∧ ∀i Wei ∈ I].

This condition says that, if B is complete, then the ideal given by I is not proper. The
sets Wei , i < k, will be the members of I that are coded into B through higher priority
requirements. Here the priority ordering of the requirements is C0, N0, C1, N1, . . ..
Strategies. To satisfy a requirement C〈e,n〉, we explicitly define a family of codes (ce,n(i)).
Let N[〈e,n,i〉] = {〈e, 〈n, 〈i, x〉〉〉 | x ∈ N}. For each i, s ∈ N, if i ∈ V He,n[s] let ce,n(i)[s] be the
least number in N[〈e,n,i〉] which is larger than the H-use of ‘i ∈ V He,n[s]’ and larger than the
stage t < s where this computation converged. If i 6∈ V He,n[s] let ce,n(i)[s] be undefined. In
the construction, if i is enumerated in We at stage s and ce,n(i)[s] ↓, we will enumerate
ce,n(i)[s] into B. If V He,n = N this coding gives a reduction of We to B ⊕ H: to decide
whether i ∈We we compute a stage s such that i ∈ V He,n where H has the final value up to
the use, and output ‘yes’ iff ce,n(i)[s] is in B or i ∈We[s].

If We 6∈ I then merely a computable set is coded into B. Indeed, in this case V He,n will
be a finite set (an initial segment of N) so almost all markers will either be eventually
permanently undefined or infinitely often defined on values that tend to infinity. By the
rules that govern the movement and definition of the values of the markers ce,n(i), for
each n ∈ N we can calculate a stage by which either n has been enumerated in B or no
marker will ever take a value ≤ n at any later stage. This shows that if We 6∈ I then the
corresponding strategy enumerates a computable set in B. This feature will be crucial in
meeting the Nm requirements.

The length-of-agreement function for ΦBm = ∅′ is
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`m[s] = max{k : ΦBm[s] � k = ∅′s � k}.

The strategy for Nm at stage s is to restrain B up to the use of the computations ΦBm(x)
for x < `m[s]. Thus the restraint of Nm at stage s is

rm[s] = max{use ΦBm(x)[s] : x < `m[s]}.

We use the Lachlan hat trick (see [Soa87]) for the functionals ΦBm, m ∈ N. Thus ΦB(n)[s] ↓=
k with use u only if 〈Bs � u, k〉 ∈ Φs and u is no larger than the number entering B at
stage s. In particular, if ΦB(n)[s] ↓ with use u and Bs+1 � u 6= Bs � u then ΦB(n)[s+ 1] ↑.
This will ensure that for each m0, the combined restraint maxm≤m0 rm[s] has finite lim inf
taken over all stages s.
Construction. At stage s+1, for each e, n, t < s do the following. If t ∈We[s+1]−We[s]
put ce,n(t)[s+ 1] into B, unless one of the following holds:

• ce,n(t)[s+ 1] ↑
• Bs ∩ N[〈e,n,t〉] 6= ∅
• ce,n(t)[s+ 1] ≤ rm[s] for some m < 〈e, n〉.

Claim 1. Each requirement Nm is met.
Only the finitely many coding strategies C〈e,n〉 of higher priority than Nm can enumerate
into B and destroy computations ΦBm on arguments that are less than the current value of
`m. We say that a strategy C〈e,n〉 is active if V He,n = N. For the C〈e,n〉 of higher priority
than Nm which are not active let t〈e,n〉 ∈ N be least such that t〈e,n〉 6∈ V He,n. For these
coding strategies C〈e,n〉 and all t ≥ t〈e,n〉 we have that either ce,n(t) is redefined infinitely
often (to larger and larger values) or that at some point it remains permanently undefined.
Let s0 be a stage where We � t〈e,n〉 has settled for each non-active higher priority coding
strategy. Suppose that ΦBm = ∅′. To compute ∅′(n) for each n ∈ N from the finitely many
sets We in the active strategies of higher priority, find a stage s > s0 where ΦBm(n)[s] ↓ and
for any ce,n(t), below the use of this computation such that 〈e, n〉 ≤ m, one of the following
holds:

• it belongs to an active coding strategy C〈e,n〉 and ce,n(t)[s] ∈ B[s]↔ t ∈We

• it belongs to a non-active coding strategy C〈e,n〉 and t ≤ t〈e,n〉.

Notice that such a stage s has to exist. According to the strategies ΦBm(n) will be preserved
after s, thus giving the correct value of ∅′(n). This shows Claim 1.

Since I is a proper ideal it follows that for each m there is a least km ∈ N such that
ΦBm(km) 6= ∅′(km).
Claim 2. Each requirement C〈e,n〉 is met.
Suppose that V He,n = N. For each m < 〈e, n〉 let um be the use of ΦBm � km. Let u be the
maximum of all um for m < 〈e, n〉. There are infinitely many true stages in the enumeration
of B (namely, stages s such that for the least number n enumerated into B at s we have
B[s] � n = B � n). By the hat trick we have rm[s] = um for each true stage s and each
m < 〈e, n〉.

We give a procedure which computes We(i) for i > u using B ⊕H as an oracle. Notice
that ce,n(i), i > u take values > u. Given i > u find a stage s0 such that i ∈ V He,n[s] with
H correct up to the use. Notice that ce,n(i)[s0] ↓ and this parameter has reached its final
value. Note that i ∈ We iff i ∈ We[s0] or ce,n(i)[s0] ∈ B. For, we have ce,n(i)[s0] > u, and
if i enters We at some stage s1 > s0 then we enumerate ce,n(i)[s0] into B by the first true
stage after s1. �
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3. Bounds for uniformly low computably enumerable sequences

This section applies a technique of Robinson to exploit lowness of a c.e. set. In Defini-
tion 1.1 we defined uniformly (super)low c.e. sequences.

Proposition 3.1. (i) Every uniformly low c.e. sequence of degrees has a low upper bound.
(ii) Every uniformly superlow c.e. sequence of degrees has a superlow upper bound.

As the methods are standard, we only sketch the proof of Proposition 3.1(i). Let (Ai) be
a uniformly low sequence of c.e. sets. We wish to construct a c.e. set A such that A′ ≤T ∅′
and Ai ≤T A for each i. For the coding of Ae into A we use the eth column of N: we ensure
that

Pe : n ∈ Ae ⇐⇒ 〈e, n〉 ∈ A for almost all n.

To make A low we define a {0, 1}-valued computable function g such that lims g(e, s) exists
for each e and

Le : ΦAe (e) ↓ ⇐⇒ lim
s
g(e, s) = 1.

Recall that (Φe) is an effective enumeration of all Turing functionals. We assume the hat
trick for these functionals, as in Section 2. If g(e, s) = 1 at some stage s, the computation
ΦAe (e)[s] halts with some use u. In this case the strategy Le imposes a restraint u on A.
This restraint has to be respected by all Pj , j > e. The priority ordering of the strategies
is P0, L0, P1, L1, . . . .

In the construction we enumerate a uniformly c.e. sequence Ue of sets of strings. The
strings in Ue can be thought of as guesses for prefixes of ⊕j≤eAj . Since the sequence (Ai) is
uniformly low, there is a computable {0, 1}-valued function h̃ such that lims h̃(e, t, s) exists
for each e, t ∈ N and is 1 iff there exists a prefix of ⊕j≤eAj in Wt. By the recursion theorem
the construction can use an index of a computable function f such that Wf(i) = Ui for
all i ∈ N. Let h(e, s) = h̃(e, f(e), s). Then lims h(e, s) equals 1 iff there exists a prefix of
⊕j≤eAj in Ue. The objects h, (Ue) are used in the definition of g.

Construction. At stage s we attend to Pj , Lj for j < s in the order of priority.
When we attend Pj , we enumerate into A the codes 〈e, n〉 for all n ∈ As − As−1 such

that 〈e, n〉 is larger than the restraints of Lk, k < j.
When we attend Lj , we define g(e, s) as follows. If ΦAe (e) is currently undefined, we let

g(e, s) = 0. If it is defined with use u, we put the string σ := ⊕j≤eAj [s] � u into Ue. Then
we look for a stage s′ > s such that either h(e, s′) = 1 or σ is not a prefix of ⊕j≤eAj [s′]
and h(e, s′) = 0. In the first case we define g(e, s) = 1 (and let Le impose restraint u). In
the second case we define g(e, s) = 0.

When we finish attending Pj , Lj for j < s, we proceed to the least stage s′′ which is
greater than all stages s′ used while attending Lj , j < s. During the stages in between s
and s′′, the parameters of the construction remain frozen.

Verification. By the recursion theorem and the properties of h, it is not hard to see that
lims g(e, s) exists for all e, and Le is satisfied. In particular, the restraint imposed by Le
reaches a finite limit. Therefore, each Pe is satisfied.
(ii) Suppose the sequence (Ai) is uniformly superlow. Then there is a computable function
d such that, for all e, d(e) bounds the number of stages s such that h(e, s) 6= h(e, s + 1).
Notice that the number of stages s such that g(e, s) 6= g(e, s+1) is bounded by the number
of stages s such that h(e, s) 6= h(e, s+ 1). Therefore this number is now bounded by d(e).
Hence A is superlow.
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4. Every proper Σ0
3 ideal has a low2 upper bound

Besides proving the upper bound result for proper Σ0
3 ideals in Theorem 4.4, in Propo-

sition 4.2 we will separate the classes of Σ0
3, uniformly generated, and Σ0

4 ideals from the
introduction.

We say that a uniformly c.e. sequence (Yk)k∈N is uniformly low2 if, given input e, one
can compute an index for a Turing reduction showing (⊕k≤eYk)′′ ≤T ∅′′. The results in
this section rely on the crucial lemma that a uniformly c.e. subsequence of a proper Σ0

3

ideal is uniformly low2. Let the set TotB consist of the indices for Turing functionals which
yield total functions with oracle B. Note that TotB is Π0

2(B) complete.

Lemma 4.1. Let I be a proper Σ0
3 ideal in the c.e. Turing degrees. If (Yk) is a uniformly

c.e. sequence such that deg(Yk) ∈ I for each k, then (Yk) is uniformly low2.

Proof. Without loss of generality, we may assume that Yk+1∩2N = Yk for each k. Indeed,
from the given uniformly c.e. sequence of sets we can effectively obtain the new one. Clearly
any set in the given sequence is computable from a finite number of sets in the new sequence
and vice-versa. Hence the two sequences generate the same ideal. Then it is sufficient to
show that TotYk is Σ0

3 uniformly in k.
Without changing TotYk , for the functionals (Φe) we may assume that ΦXe (v) ↓ implies

ΦXe (i) ↓ for all i < v. Also, we may assume the hat trick as in Section 2. Since I is a proper
Σ0

3 ideal, it suffices to define a uniformly c.e. sequence (Uk,n) such that for each k, n we
have

• if n ∈ TotYk then deg(Uk,n) ∈ I
• if n 6∈ TotYk then Uk,n =∗ ∅′.

At stage s, for each n, k < s if v ∈ ∅′s and ΦYk
n (v)[s] ↑, enumerate v into Uk,n.

If n ∈ TotYk then Uk,n ≤T Yk, so deg(Uk,n) ∈ I. On the other hand, by the conventions
on (Φn), if n 6∈ TotYk then for almost every argument m the computation ΦYk

n (m)[s] is
undefined for infinitely many stages s. Hence Uk,n =∗ ∅′. �

Recall that every Σ0
3 ideal in the c.e. Turing degrees is uniformly generated by [Yat69].

Proposition 4.2.

(i) Some uniformly generated ideal in the c.e. Turing degrees is not Σ0
3.

(ii) Some Σ4 ideal in the c.e. Turing degrees is not uniformly generated.
(iii) Some Σ4 ideal in the c.e. Turing degrees is not the join of two Σ3 ideals.

Proof. Part (i) follows from the result [Yat69] that the principal ideal below a c.e. degree is
Σ0

3 iff the degree is low2. Thus, the principal ideal below a non-low2 c.e. degree is uniformly
generated, but not Σ0

3.
For part (ii), consider a low2 non-computable set A and an independent uniformly c.e.

and uniformly low sequence (Bi) of sets such that Bi ≤T A. (To be independent means
that no member of the sequence is Turing reducible to a finite join of other members of
the sequence. Such a sequence exists by a basic result in the theory of c.e. degrees; see
Exercise 4.8 in [Soa87].) Also, let I be a properly Σ0

4 set of numbers. Now consider the
ideal I generated by {bi | i ∈ I}, where bi is the degree of Bi. The uniform lowness of the
sequence (Bi) implies that I is Σ0

4. On the other hand, since the sequence is independent,
we have i ∈ I ⇐⇒ bi ∈ I. If I is uniformly generated, there is a uniformly c.e. sequence
generating it. Notice that the ideal I is contained in the Σ0

3 ideal of the c.e. sets that
are computable in A. By Lemma 4.1 the uniformly c.e. sequence generating I has to be
uniformly low2. But then I is Σ0

3, a contradiction.
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Part (iii) is now an immediate consequence of the facts that each Σ0
3 ideal is uniformly

generated , and that the uniformly generated ideals are closed under join. �

We say that (Yk)k∈N is uniformly monotonic if Yk ≤T Yk+1 for all k ∈ N and the indices
for these reductions are given by a computable function. As it is explained in Lemma 4.1,
given a uniformly c.e. sequence of sets one can effectively obtain a uniformly monotonic
and c.e. sequence of sets which generates the same ideal. Notice that a uniformly c.e. and
uniformly monotonic sequence (Yk)k∈N is uniformly low2 iff, given e, we can compute an
index for a reduction showing Y ′′e ≤T ∅′′. The main work is to prove the following variant
of Proposition 3.1.

Lemma 4.3. Suppose that the uniformly c.e. sequence (Yk)k∈N is uniformly low2 and
uniformly monotonic. Then there is a low2 c.e. set B such that Yk ≤T B for each k.

Combining Lemmas 4.1, 4.3 yields the main result of this section.

Theorem 4.4. Every proper Σ0
3 ideal I in the c.e. Turing degrees has a low2 upper bound.

Proof. There is a Σ0
3 set I ⊆ N such that I = {degT (Wi) | i ∈ I}. (Here degT (W ) denotes

the Turing degree of W .) By Yates [Yat69] there is a uniformly c.e. sequence of sets
(Yk) whose degrees generate I. By Lemma 4.1 this sequence is uniformly low2. Moreover as
explained in the proof of Lemma 4.1 we can assume that it is uniformly monotonic, without
loss of generality. Now we apply Lemma 4.3. �

We prove Lemma 4.3 by building an appropriate c.e. set B. We meet the coding require-
ments

Ri : there is a Turing functional Γ such that Yi = ΓB

We also meet requirements Le which together ensure that TotB is ∆0
3. For each e,

requirement Le will uniformly give a procedure to compute whether e is in TotB from ∅′′.
We have a tree of strategies. The true path is ∆0

3, and computes TotB . At stage s we
have an approximation δs to the true path. Let � denote the prefix relation amongst nodes
on the tree. Given a node η, stage s is an η stage if s = 0 or η � δs.

Consider an Le strategy α and an Ri strategy µ on the tree, such that α � µ. Let Γµ
be the Turing functional built by µ and let the use function of a functional be denoted by
the corresponding lower case Greek letter. As usual, (Φe) denotes an effective sequence of
all Turing functionals. If ΦYe (x)[s] ↓ then by convention e, x < s.

The basic idea is to ensure that γBµ (x) ≥ φBe (x), for each x. For, in this case we can
expect the destructions of computations ΦBe (x) due to µ’s coding into B to be controlable.
However, if ΦBe (x) ↑, this would make ΓBµ (x) undefined. So µ needs a guess at whether ΦBe
is total. This will depend on the coding into B of the Rj strategies υ ≺ α.

Let σ∗τ denote the concatenation of strings σ, τ . Since the Yk are uniformly low2, we are
able to express totality of ΦBe as a Σ0

3 statement. The strategy µ has a guess at a witness
n for this statement. Thus µ only has to respect α when α ∗ n � µ for such a witness n.

We give some more detail. We write µ : Rj to indicate that µ is an Rj-strategy. Similarly
for Le. The priority ordering of the requirements is R0, L0, R1, L1, . . . . The strategies µ : Rj
have only one outcome, namely 0. The strategies α : Le have outcomes

0 < 0′ < 1 < 1′ < · · · < fin.

Outcome fin indicates that the size of the domain of ΦBe only increases finitely often. An
α-stage s such that α ∗ fin 6� δs is called an α ∗ ∞ stage. Outcome n′ indicates that
ΦBe (n) ↑. Outcome n indicates that n is a witness for the Σ0

3 statement related to the
totality of ΦBe . The main technical definition is the following.
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Definition 4.1. Let α : Le. We say that x is α-good at an α ∗∞ stage s > 0 if

B � φBe (x)[t] = B � φBe (x)[s]

where t is the greatest α ∗∞ stage less than s, and for all υ where υ : Rj and υ � α

(4.1) ∀z [γυ(z)[s] < φe(x)⇒ Yj(z) = Yj(z)[s]].

Informally, this means that the φBe (x) computations remain the same between stages t, s
and thus we decide to preserve them. Note that, by the choice of (Yk), if j is the largest
index occurring in (4.1), Yj can decide which arguments x are α-good.

By the recursion theorem applied to an index for the construction and the fact that the
Yk are uniformly low2, there is a uniformly c.e. sequence (Sα,n), where α ranges over the
L strategies of the tree and n ∈ N, of initial segments of N such that

(4.2) ∃n Sα,n = N ⇐⇒ ∀x∃s > x [x is α-good at s].

If α is an Le node, then an α-stage s is called α-expansionary if the largest initial segment
of N where ΦBe is defined has increased since the last α-stage. A number is called large at
stage s of the construction if it is larger than any number that was mentioned in stages < s
of the construction.

4.1. Construction. At stage s > 0 determine δs. At the end of this stage, initialize all
strategies β which lie to the left of δs (i.e. erase any computations they have created).
Suppose that we have determined η = δs � k, where k < s.

Case η : Le. Let α = η. Let t be the greatest α ∗ ∞ stage less than s. If s is not
expansionary, let δs(n) = fin. Otherwise let σ be the least possible outcome of α such that
one of the following holds:

• σ = n and |Sα,n,s| > |Sα,n,t|
• σ = m′ and there exists v ∈ N such that t < v < s and ΦBe (m)[v] ↑.

Let δs(k) = σ.

Case η : Ri. Let µ = η. Let t < s be the greatest µ-stage. Also let kµ be the natural
number coding the string µ.

1. (Correcting) If ΓBµ (x)[t] ↓ and ΦBe (x+ kµ)[t] was destroyed, then declare ΓBµ (x)[s] unde-
fined.
2. (Coding into B) If ΓBµ (x)[t] is defined and x ∈ Yi,s − Yi,t, put γµ(x)− 1 into B.
3. (Defining Γ) For each x < s such that ΓBµ (x) is undefined, if ΦBe (x + kµ)[s] ↓ define
ΓBµ (x) with large use.

4.2. Verification. Notice that by the definition of large use in Step 3 of the construction,
only undefined computations are declared undefined in Step 1.

First, we show that there is a true path, namely a leftmost path TP such that δs � TP
for infinitely many stages s. Suppose that α : Le and, inductively, there exist infinitely
many s such that α � δs. Also suppose that α is the leftmost node with this property.
We may suppose there are infinitely many α ∗∞ stages. Given two nodes ζ, η on the tree,
we say that ζ ≤L η if ζ is either to the left of η or extended by η. If there is z such that
ΦBe (z) ↑ then there exist infinitely many s such that α ≤L δs ∗ z′. Otherwise ΦBe is total.
Then for each x there is s > x such that x is α-good at s. Thus, if n is a witness for (4.2),
we have α ≤L δs ∗ n for infinitely many stages s.

Next we look at the disturbance of ΦBe due to coding into B.
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Lemma 4.5. Suppose α : Le for some α on TP such that there are infinitely many α ∗∞
stages. For each x, the computation ΦBe (x) is destroyed only finitely often by the coding
strategies µ such that ∃n α ∗ n � µ.

Proof. A computation ΦBe (x) existing at a stage can only be destroyed by the finitely
many µ with code number kµ < x. Fix such µ : Ri. Each time it destroys ΦBe (x) at some
µ-stage s, some y ≤ x must enter Yi by stage s and after the last stage µ was accessible. �

Now we verify that B is low2.

Lemma 4.6. Suppose α : Le and α ∗m � TP for some m ∈ N. Then ΦBe is total. Since
∃nα ∗ n′ � TP implies that ΦBe is partial, we have B′′ ≤T TP ≤T ∅′′.

Proof. Let s∗ be the least stage such that α ∗m is no longer initialized after s∗. Given x,
we want to show that ΦBe (x) ↓. By Lemma 4.5, pick s0 ≥ s∗ such that ΦBe (x) is no longer
destroyed at stages ≥ s0 by any strategy µ such that α ∗ n � µ for some n. By (4.2) there
is an α ∗∞ stage s ≥ s0 such that

• ΦBe (x)[t] = ΦBe (x)[s]
• x is α-good at t,

where t is the greatest α∗∞ stage less than s. We claim that α∗z′ 6� δu for each z ≤ x and
each u > s, whence ΦBe (x)[s] is stable. Otherwise, let u be the least such, and let v < u be
the previous α ∗ ∞ stage. Then for some z ≤ x the computation ΦBe (z) was destroyed by
the action of some µ : Ri at a stage between v and u. However note that

• α 6<L µ by initialization of Ri at s
• µ 6� α by definition of α-goodness
• ¬∃n α ∗ n � µ by Lemma 4.5.
• ¬∃m α ∗m′ � µ by the minimality of u.

This is a contradiction. �

Lemma 4.7. For all i ∈ N, requirement Ri is met.

Proof. Let µ : Ri, µ � TP . We show that ΓBµ is total. Fix y. Note that γBµ (y) can only
be moved by a strategy α : Le such that ∃n ∈ N, α ∗ n � µ. But then ΦBe is total, so this
happens only finitely often. Now it is clear that ΓBµ = Yi. �

This concludes the proof of Lemma 4.3.

5. Density results for Σ3 ideals

The lattice of Σ0
4 ideals in the c.e. degrees fails to be dense: for instance, each principal

ideal [0,b], where b 6= 0, has a maximal subideal that is ∆0
4(b). If we choose b low then

this ideal is Σ0
4.

In contrast, we have the following for the partial order of Σ0
3 ideals in the c.e. degrees

under inclusion.

Theorem 5.1. The p.o. of Σ0
3 ideals in the c.e. degrees is dense.

Recall from Section 4 that a uniformly c.e. sequence (Yk)k∈N is uniformly low2 if, given
input e, we can compute an index for a Turing reduction (⊕k≤eYk)′′ ≤T ∅′′. Lemma 4.1 of
Section 4 will also be crucial in the proof of Theorem 5.1.

The join of two ideals is the ideal generated by their union. Notice that the join of two
Σ0

3 ideals is not necessarily Σ0
3. After all, by the Sacks splitting theorem every c.e. degree

is the join of two low c.e. degrees. Lemma 4.1 shows that if two Σ0
3 ideals are contained in

another Σ0
3 ideal, then their join is a Σ0

3 ideal.
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Now suppose that I ⊂ J are Σ0
3 ideals in the c.e. Turing degrees. As in Section 4, let

(Yk) be a uniformly c.e. sequence generating I. Without loss of generality we may assume
that Yk ≤T Yk+1 for all k. Also, let D be a c.e. set with degree in J − I. By Lemma 4.1
the sequence (D ⊕ Yk) is uniformly low2. We will split D into c.e. sets D0, D1 such that
the following requirements are satisfied:

Ne,k,j : Dj 6= Φe(Yk ⊕D1−j)

for e, k ∈ N and j = 0, 1. Then the ideal generated by (D0 ⊕ Yk) lies strictly in between I
and J.

Notice that the relation Dj = ΦYk⊕D1−j
e is Π0

2(D⊕Yk), uniformly on e, k, j, and the c.e.
indices of the split D0, D1. Since the sequence (D⊕Yk) is uniformly low2, there a uniformly
c.e. sequence (Ve,k,j,n) such that each of Ve,k,j,n is either N or finite and

(5.1) Dj = ΦYk⊕D1−j
e ⇐⇒ ∃n Ve,k,j,n = N.

By the recursion theorem we may use c.e. indices for D0, D1 in the construction. Therefore,
it can use the array (Ve,k,j,n) which refers to the sets D0, D1 that are being built. The
priority list is determined by Ne,k,j < Ne′,k′,j′ ⇐⇒ 〈e, k, j〉 < 〈e′, k′, j′〉. The restraint of
Ne,k,j at stage s is the greatest stage < s where |Ve,k,j | increased. Without loss of generality
we assume that at each stage s exactly one number is enumerated into D.

Construction. At stage s, if x enters D pick the least 〈e, k, j〉 such that x is less than the
restraint of Ne,k,j . Put x into Dj .

Verification. Notice that the construction ensures that D0, D1 form a c.e. splitting of D,
even before the application of the recursion theorem. This shows that when we apply
the recursion theorem to get the appropriate version of the construction, (Ve,k,j,n) has the
intended meaning, i.e. (5.1) holds. The rest of the verification refers to the construction on
the fixed point of the recursion theorem.

By (5.1) it suffice to show that each Ve,k,j,n is finite. For a contradiction, let 〈e, k, j, n〉 be
the least such that Ve,k,j,n is infinite. Then by the construction D1−j will be computable.
Indeed, a number x can only be enumerated into D1−j by the first stage where |Ve,k,j,n| > x.
By (5.1) we have D ≡T Dj ≤T Yk, which is a contradiction. This concluded the verification.
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