HIGHNESS PROPERTIES CLOSE TO PA-COMPLETENESS

NOAM GREENBERG, JOSEPH S. MILLER, AND ANDRE NIES

ABSTRACT. We identify properties of oracles bringing them close to having PA
degree. These properties are based on relativizing concepts from algorithmic
information theory, computable analysis, and algorithmic randomness.

1. INTRODUCTION

Recall Medvedev reducibility <;;, Muchnik reducibility <.

For f,g € w* we write f < g to mean that f is majorized by g. In this case, we
say that f is g-bounded. Let id* = {f € w¥: (Vn) f(n) < n}, in other words, the
identity bounded functions.
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2. SOME NEW MUCHNIK COMPLETE COMPUTABLY BOUNDED II! CLASSES

Question: can we show Medvedev incompleteness? I.e. is the non-uniformity in
the proofs necessary?

2.1. C-compression functions. A C-compression function is an injective func-
tion F': 2<¢ — 2<% guch that |F'(0)| < C(0) for all 0.

Lemma 2.1. FEvery C-compression function has PA degree.

Proof. Let F: 2<% — 2<% be a C-compression function. Let § € (0,1]. Say that
o € 2<% is §-heavy (for F) if |{7 € 2/°I: F({(o,7)) < |o|}| = [62/°!|. Note that at

e ot many strings are delta heavy 0

2.2. Martingale domination. Code martingales by Path on II9 class on 2v.

Proposition 2.2. There is an atomless c.e. martingale M such that every mar-
tingale dominating M has PA degree.

Proof. Define M as follows. If n enters @' at stage s, push 27" capital up to some
string of length s that looks DNCy at stage s.

Let N be a martingale majorizing M.

Case 1. N has a DNCs atom. A martingale computes all of its atoms, so in this
case, N has PA degree.

Case 2. N has no DNC; atoms. Then for each n there is a stage f(n) = s such
that all strings of length s that still look DNCy at stage s have value less than
257" (hence less than 27" of the initial capital). By construction, f dominates the
settling time function for @f’. So N has PA degree. (]

2.3. Jordan decomposition on the rationals. Let us say that

f <srope 9 1= Vo <y [f(y) — f(2) < g(y) — g(2)].

That is, the slopes of g are at least as large as the slopes of f. Clearly, this is
equivalent to saying that h := g — f is nondecreasing. Thus, the problem of finding
a Jordan decomposition of a function f of bounded variation is equivalent to finding
a nondecreasing function g with f <g10pe g. This was already pointed out in [?].

We only require that g, h are defined in Ig := Q n [0,1]. An R -valued function
g defined on Iy is given by a path Z; through a binary tree. Let (p,, g») be a list
of all pairs of rationals (p, ¢) with 0 < p < 1. We let Z;(2n) = 1 iff g(pn) < ¢». We
let Zy(2n + 1) = 1iff g(pn) > gn. We often identify f and Z;. It is clear that the
nondecreasing functions form a I19 class.

Given f, via the encoding above, the functions g defined on Ig with f <giepe ¢
form a nonempty II9(f) class.

Theorem 2.3. There is a computable function f on [0,1] such that each function
g: Ip = R with f <giope g has PA degree.

Proof. Let P < 2“ be a nonempty IIJ class of sets of PA degree, such as the
(binary encoded) completions of Peano arithmetic. As usual Py is a clopen set
computable from s approximating P at stage s. So P = ()|, Ps. By standard
methods there is a computable prefix-free sequence (os)sec., of strings of length s
such that [o] NPy # & for each n.

Given o € 2<%, let I, = [0.0,0.0 +271°1] be the corresponding closed subinterval
of [0,1]. By stage s we determine f up to a precision of 275. Suppose n enters ¢’
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at stage s. Let 0 = 05. We define f on I, to be a sawtooth function of height 27°
with 2°7™ many teeth.
Now suppose g: Ig — R is a function such that f <gope g. As before for

z€[0,1] let g(x) = sup{g(q) | ¢ <z A qe€ Ig}.

Case 1. g is discontinuous at the real y = 0.Y for some Y € P. Then Y <7 g,
so g is of PA degree. (To see this, fix rational r with g(y) < r < g*(y). Then

p<y< glp) <r,and p>y < gp) >r.)

Case 2. Otherwise. Then ¢’ < ¢: given n, using g compute stage s such that for
each o of length s with [0] n Ps # &, we have g(max I,) — g(minI,) < 27™. This
s exists by case assumption using compactness of Cantor space. Then as before we
have ne ' & ne .. O

3. A K-COMPRESSION FUNCTIONS CAN FAIL TO HAVE PA DEGREE

Let K: w — w be prefix-free Kolmogorov complexity on natural numbers. We
show that the computably bounded I1{ class of K -compression functions has in-
complete Muchnik degree.

For f e wSs¥, let

Wt(f) = Znedomf 27f(n)
We say that f € w* has finite weight if wt(f) < co. If P € w* and g € Q, then we let
Po, = {f € P: wt(f) < ¢}. Define P, similarly. Note that if P is a (computably
bounded) I1{ class, then Pg, is too. (This is not usually true of P-,.)

Let PK = {f €id”: f < K}. Note that P¥X is a computably bounded II{ class.
We claim that P¥ contains a finite weight function; this follows easily from the fact
that 3, 275 < 1. In particular, let K*(n) = min{K (n),n}. Then wt(K*) <
wt(K) + >),.,2"" < 3 and K* € PK. Therefore, PJ is a computably bounded
and nonempty I19 class containing only bounded weight K-bounded functions. This
proves:

Proposition 3.1. Every PA degree computes a K -bounded function of finite weight.

[[But in fact we’ll show the covering properties imply this too]] This into INTRO
Our goal is to prove that it is strictly easier to compute K-bounded functions
of finite weight.

Theorem 3.2. There is a K-bounded function f: w — w of finite weight that does
not have PA degree.

We build f using a forcing argument.
The forcing conditions are triples of the form (o, P, q) where
e 0 cid™;
e Pc PK isallY class such that:
— Every h € P extends o;
— If he P, g < h and g extends o, then g € P;
e geQand P, # J.
The condition (o, P, ¢) should be thought of as saying that f € P<,. We say that
(1,R,s) extends (o,P,q) if o < 7, R € P and s < ¢. Note that (), PX 3) is a
condition, so the set of conditions is nonempty.
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For a filter G of forcing conditions, we let
fa = UO’ [(c, P,q) € G for some P and q].

Then fg € idS¥. If (0, P, q) is a condition, then we can find 7 properly extending
such that (7, P, q) is also a condition (take 7 to be an initial segment of a function
witnessing that P<, is nonempty). This shows that if G is only mildly generic, then
fG €id”.

Lemma 3.3. Suppose that (o, P,q) € G. Then fg € Pgy.

Proof. Let 7 < fg. There is some condition (7,Q,s) € G, and by extending the
condition (and 7) if necessary we may assume that the condition (7,Q, s) extends
the condition (o, P,q). Since Q< is nonempty and Q<s S P<q, we have that
[7] N P<q4 is nonempty. Since this is true for all 7 < fg and P, is closed, we see
that fg € qu. |

Since P < PX for any condition (o, P, q), we conclude that fg is K-bounded.
Lemma 3.3 also implies that wt(fg) is finite.

There is not much difference between P<, and P,.
Lemma 3.4. Let (0, P, q) be a condition. Then P, is nonempty.

Proof. Suppose not. Then Py, is nonempty and every element of P<, has weight
exactly ¢, i.e. P<g = P—4. This gives us an algorithm for computing ¢’. Note that
if m enters ¢’ at stage s then K(s) <* m. Hence it suffices, given any m < w to
find some n < w such that K (z) = m for all > n. This we can do.

Let T be a computable subtree of id~* such that [T'] = P—,. For r < g, let O,
be the set of finite strings o € id~* with wt(c) > 7; so id¥,. is the open subset of
id” generated by O,. (Note however that it is possible that [o] < idY, for strings
o ¢ O,; [0] cid¥,. if and only if wt(o) + 27171+ > 1) Let T}, be the set of strings
on T of length n. Since P—, < id~, and id” is compact, for every r < ¢ there is
some n < w such that T,, < O,; such n can be of course found effectively from
r. If T, © Osy_9-m then K(x) > m for all > n. For we know that there is
some o € T,, which is extendible ([o] N P_, # &); if h € [o] n P—y, © > |o| and
wt(h) — wt(o) < 27™ then h(z) > m. Since (o, P,q) is a condition, we know that
h< K. O

Remark 3.5. Thus, if (p, R,t) is a condition then there is some ¢’ < ¢ such that
(p,R,t) is a condition as well. Thus, by genericity, if (o, P,q) € G, then there is
some ¢’ < ¢ such that (o, P,¢') € G. By Lemma 3.3, fg € P<y, and so fg € P,.

It remains to show that fo does not have PA degree. This will follow from
genericity (and Lemma 3.3), once we show that for any Turing functional T', the
collection of conditions

Er = {(0, P,q) : for all h e P<,,T(h) ¢ DNCy}

is dense below the base condition (), PX3).

Let (o, P,q) be a condition. We want to find an extension of this condition in
Er. First, we find an extension (o*, P*, q) of (o, P, q) and some rational € > 0 such
that letting r = wt(c™®) we have:

e r+ 3¢ < g; and
e PX . _ is nonempty.
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Note however that even though this means that (¢*, P*,r + ) is a condition, we
will find, in Fr, an extension of (¢*, P*, q) rather than (o*, P* r + ¢).

Finding ¢*, P* and ¢ is easy. By Lemma 3.4, let h* € P.,. Pick ¢ small
enough that wt(h*) + 3¢ < ¢. Take 0* < h* such that wt(h*) — wt(c*) < e. Let
P* = P n[o*].

We now define a partial computable process which may either output 0 or 1.
The output of this process will be J(e) for some e, and by the recursion theorem,
we may assume we know e in the definition of this process. Consider the II) class
Q obtained from P* by removing not only all the strings 7 of weight below r + 2¢
for which T'(7,e)|, but also all strings dominating such strings o:

Q=1{heP*: =(3r =0™)[ 7 < hand wt(7) <r+ 2 and I'(r,e) | |}.

The point is of course that if h € Q, g < h and ¢* < g then g € Q. Note, however,
that @ is not quite the same as the class obtained by removing h for which there
is some g € P*, g < h, wt(g) < r + 2¢ and I'(g,e)|. The class @ is smaller, since 7
may not be extended to some h-dominated g of weight at most r + 2¢.

If Q<ri2: # & then our computable process does not terminate. Suppose that
Q<r12: = . This of course is eventually effectively recognised, as Q<, 2. is a II{
class, effectively obtained from e. By compactness, we can find some n < w and a
finite subset C' of id™ such that:

(1) Every o € C extends ¢* and wt(o) < r + 2e.

(2) For every o € C there is some 7 < o (in particular |7| < |o|) such that
wt(T) <7 +2¢, 7 > 0* and I'(7,€)].

(3) If o e C, 0’ < o and wt(o’) <r + 2¢ then ¢’ € C.

(4) There is some o € C such that [o] n PX._ _ # &.

Let C be the set of strings in C' whose weight is smaller than r 4+ €. Condition
(4) says that C' is nonempty, indeed some o € C is extendible in P*,,_. Now an
important point is that if 0,0’ € C then the pointwise minimum min o, o’ is in C,
as both o and ¢’ extend o* and so wt(o) — wt(c*) < e, and similarly for ¢’. For
any pair o, ¢’ of strings from C find some 7 < min(c, ') of weight less than r + 2¢,
extending o*, such that I'(, e)|; let ¢({o,0’}) = T'(r,e) (which we assume is either
0or1).

There is some colour i € {0, 1} such that for all o € C there is some o’ € C' such
that ¢({o,0’}) = 4 (if this fails say for 0, then a single ¢’ witnesses it for 1). This
colour is the output of the computable process just described.

We now describe the extension of (¢*, P* q) in Epr. Of course, there are two
cases. If Q<42 is nonempty, then (o*, Q, r+2¢) is a condition, and T'(h, €)1 for all
h € Q<ri2:- We assume, then, that Q<o is empty. Let ¢ be the outcome of the
computable process described above. Let o € C be “correct”, i.e., [0] N P%, .. # &;
fix some h* € P* with wt(h*) < r + ¢ and ¢ < h. There is some o’ € C' such that
c({o,0'}) =1; so let T < 0,0’ extend o* with wt(r) < r + 2¢ and I'(7,e) = 4. Let
R = P* n[r]. We claim that R<, 3. is nonempty. For we can let g = 7°h* [{j;| o).
Note that ¢ < h*, so g€ P*. And

wt(g) = wt(7) + (wt(h™) — wt(0)) < wt(7) + (Wt(h*) — wt(c™)) < (r + 2¢) + &.

Thus (7, R, r + 3¢) is a condition and it extends (¢*, P*, q) since r + 3¢ < q. Every
h € R extends 7 and so I'(h,e) = i = J(e), and so I'(h) ¢ DNC,.
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4. DISCRETE MEASURE PROPERTY

For a sequence A = (A,,) of subsets of w, we let wt(4) =Y, 27"|A,]|. Le., every
element of A,, receives weight 27". Write A € B to mean A, < B, for all n; we
say that B covers A. We say that an oracle D has the discrete covering property
if every uniformly c.e. sequence of finite weight is covered by some D-uniformly
computable sequence of finite weight.

Proposition 4.1. An oracle D computes a K-compression function if and only if
it has the discrete covering property.

Proof. In one direction, let A, be the set of strings whose prefix-free complexity is
at most n. If B covers A then we can let f(o) be the least n such that o € B,,. O

Proposition 4.2. Let D be an oracle which has the discrete covering property. For
every order function h, D computes an h-DNR function.

Proof. MISSING O

5. THE CONTINUOUS COVERING PROPERTY

For an open subset U of 2, let Ay be the set of strings o such that [o] < U.
We say that an oracle D has the continuous covering property if for every c.e.
open subset U of 2“ of measure smaller than 1, there is an open subset V of 2¢
containing U such that A\(V) < 1 and Ay is computable from D. Equivalently, if
for any computable tree T' such that A([T]) > 0, there is a D-computable tree S
with no dead ends such that S < T and A([S]) > 0.

Proposition 5.1. Fvery oracle which has the continuous covering property also
has the discrete covering property.

Proof. Let {C, 1) be an array of clopen sets (given canonically) which is indepen-
dent, such that A(Cy ) = 27" for all k. For an array E = (E,,) of subsets of w,
let

Uz =|JCni [keEn].

Then E has finite weight if and only if A\(Uz) < 1. O

Lemma 5.2. Let P be the complement of the first component of a standard univer-
sal Martin-Lof test. For any tree T with no dead ends, if \([T]) >0, [T] < P and
further, for all o € T, A([T] n [o]) > 0, then degp(T) has the continuous covering
property.

Proof. We dually work with effectively open sets. Let U be the first component
of a standard universal Martin-Lof test, that is, obtained by gluing together all
Martin-Lof tests. So A(U) < 1 and for any Martin-Lof test (V},) there is some n
such that V,, c U.

Let T be a tree as described for P. We get an open set W such that

{ce2~ :[o]cW}={oce2~¥ : \(W|s) =1}

is T-computable, A\(W) <1 and U € W.

Let V be an effectively open set with A(V') < 1, given by c.e. antichain of strings
which we also call V. Recall that V™! is the set of concatenations 0”7 for o € V"
and 7 € V (and VO = {{)}). The sequence (V") can be refined to a Martin-L&f
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test, and so there is some n such that V* < W. Let n be the least such; n > 0
since A(W) < 1. Let o be a string witnessing that V"1 & W, i.e. 0 € V"~ ! and
[0] &€ W. Now consider W|o = {X €2¥ : ¢"X € W}. Then [o] € W implies that
AW]o) < 1; V™ < W implies that V < W|o; and

{r:[r]csWlo}={r: [o°'7] € W}
is T-computable. ([l

We wish to separate the continuous covering property from PA. We will work
with 19 classes of trees with no dead ends. Note that there is a 1-1 correspondence
between closed subsets of 2¢ and subtrees of 2<% with no dead ends. For brevity,
we let T be the set of nonempty trees with no dead ends. Coded by characteristic
functions, T itself is an effectively closed subset of Cantor space.

Below we ignore the difference between [T] and T (for T' € T') and write T for
both. Note that for 7,5 € 7, T < S iff [T] < [S]. The operation of intersection
is well defined; for S,T € T we let S n'T be the unique element R of T such that
[R] = [S]  [T].

Infinite trees are built up of finite ones. Let 7., be the collection of all nonempty
finite subtrees of 2<*. For T € T and J € T_, we say that T extends ¢ (and
sometimes write ¥ < T) if 9 < T and every o € T is comparable with a leaf of 9.
For each ¢ € T, we let [¢] be the collection of T' € T which extend 9. This is a
clopen subset of 7, and the collection of these sets generates the topology on T.
We often restrict ourselves to trees of a fixed height; for n < w, let 7, be the set of
finite trees all of whose leaves have length n. For 9 € 7, and n greater than the
height of ¥ we let [¢],, be the set of trees w € T,, which extend ¥, again in the sense
that each 7 € w extends some o € ¥ and each o € ¥ is extended by some 7 € w; we
write ¥ < w. Note that for ¥, w € T, ¥ < w if and only if [@] < [J].

We also implicitly use the bijection between T, and the collection of finite
antichains of strings (a tree is mapped to its leaves). For example, for a finite
antichain of strings u we let [u] be [¢] where w is the set of leaves of 9. A tree ¥ € T,
and its set of leaves are both identified with the clopen subset of 2* determined by
. Thus for example, for a finite antichain u of strings we let A(u) = > ., 2719\,
Similarly, for T e T and 7€ 2<“ welet TnT={ceT : o £ 7}.

Fix the II{ class P from Lemma 5.2. Our forcing conditions are triples (u, P, )
such that:
e 1 is a nonempty finite antichain of strings;
e P T isallf subset of [u] such that:
— for all T € P we have T' € P;
—ifTeP,Se[u]l and S < T then S € P.
o 7 = {(,)seu is a sequence of positive rational numbers indexed by u, and

Po;={TeP:forallceu,AN(T no)=>q,}
is nonempty.
If we let P be the set of trees T' € T such that T' € P and g be any rational

number smaller than A(P), then ({()}, P,{g)) is a condition, so the set of conditions
is nonempty.

A condition (v, R,7) extends a condition (u, P, q) if:
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(1) u=<w;
(2) R C P; and
(3) for all o € u,

ZTT [rev & 7= 0].

Note that if u < v then condition (3) is equivalent to [v]>

>7 C [u]>g. In particular,
we see that if a condition (v, R, 7) extends a condition (u, P,

) then R>7 € Psj.
Lemma 5.3. Let (u, P,q) be a condition. Then

={TeP: foralloeu,NT no)>q,}
18 nonempty.

Proof. Suppose not. Let v be a &-maximal subset of u for which there is some
T € P>; with A(T'n o) > g, for all 0 € v. Let ¢ > 0 be rational smaller than
MT no)—gq, for all o € v, and let ¢, = g, + € for o € v and ¢, = g, for 0 € v — w.
Thus, P>y is nonempty, and for all S € P>z, for all o € v—u we have A(Sno) = ¢,.
Choose any 0 e v —u, and let Q@ = {Sno : Se P>z} Let g =¢,. SoQisa
nonempty I1{ subclass of 7 and for all T € Q, T < P and \(T) = q.

Let V,, = & if n ¢ &', and otherwise let V,, = {¢"0™ : |o| = s} where s is the
stage at which n enters @¥’. Since A(V,,) < 27" and (V,,) is uniformly c.e., for all
sufficiently large n we have V,, n P = (7.

Let m < w. By compactness, we can effectively find some ¢t < w and some C < T;
such that @ < (Jyeo[?] and such that g/A(¢) > 1 —27™ for all ¥ € C. We then
claim that provided that m is large enough, m € ¢’ if and only if m € ¢f}. For
fix some ¢ € C such that [#] n Q # J, and fix some T € [¥] n Q. If m enters
&' at stage s > t then for every leaf o of ¥, A(T'|o) < A(P|]o) < 1—27" and so
q = MT) < (1—2"™)A(¢) which is not the case. This algorithm for computing &’
gives the desired contradiction. ([l

For a filter G of forcing conditions, we let Tz be the downward closure of
Uu [(u, P,q) € G for some P and §].
We assume from now that G is fairly generic.
Lemma 5.4. Tg e 7.

Proof. We need to show that every o € T has a proper extension in Tg.
Let (u, P,q) be a condition, and let o € u. By Lemma 5.3, let T* € P.;. Let
I ={i<2: 0%eT*} which is nonempty. Let
=(u—{c})u{chi:iel}.
Define ¢’ by extending g but replacing q, by ¢,~; for i € I, so that g, <

A(T™
and Y}, ; ¢o"i = ¢o- Then (v, P n [u'],7’) is a condition extending (u, P, ) and o
has a proper extension in ' O

Lemma 5.5. Let (u, P,§) € G. Then T € Ps;.
Proof. |

Let T': T — 2¢ be a Turing functional. Let Er be the set of conditions (u, P, q)
such that I'(T") ¢ DNC,, for all T' € P~5. We show that Er is dense.
First we prepare.
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Lemma 5.6. Let (u, P,q) be a condition. There are u* > u and rational numbers
e < 1/2-2717 for 1 € u* such that letting P* = P ~ [u*] and r, = 27! we have:
(1) For all o € u,
¢o < Z(TT —3¢;) [reu® & 7= 0];
and so [u*]sr—3z S [u]>q; and
(2) PX*._: is nonempty.

Proof. By Lemma 5.3, let T' € P~ 5. Fix some o € u. Take a positive rational number
0y such that 50, < A(T N o) — q,. Find some finite antichain v, of extensions of o
such that T'n o € [vy] and further A(v,) — AM(T " o) < &, (where we again identify
v, with the clopen subset of Cantor space it determines).
Let w, = {7 € v, : A(T|r) < 1/2}. We first show that AMw,) < 2d,. Let
= v, — W,. We have

Mwy) + Auk) = Mvg) K MT N o) + d,.
Because T' n o extends v,,

MT no)=MNT nvs) =MNT nwg) + MT nuk).
The definition of w, means that A(T' nw,) < A(w,)/2. Together with A(T' nu¥) <
A(u¥), putting everything together yields
Mwy) + Aud) < Mwe)/2 + AM(uk) + 6,

from which we get the desired conclusion. In particular,

*
Ug

(5.1) Au¥) =2 AT nu¥) 2 MNT no)— 20, > g, + 305,
so uX is nonempty.
Let v* = |J,c, us and let T* = T n u*. Note that T extends u*. Because

T* < T, T* € P* = P n[u*].
Again fix 0 € u. We know that

D= AT* 7)< D (e = MT 7)) = M) = AT 0 o) < 5.

Teuf TEVs

Hence we can choose, for 7 € u¥, rational numbers e, just a little greater than
rr — AMT* n 1) (so that A\(T* n7) > r; — e, and so T* witnesses that P¥.__ is
nonempty) but such that
2 er < dg.
*

reu¥
By Equation (5.1),

Z rr —38r > o + 305 — 30,
*

TEUS

as required. O

Let S,T € [u*]ss_c. For all 7 € u* we have A(S " T n7) > 27171 =22, > 0. Tt
follows that S N T € [u*]s7_2s. We can then run the proof from above.

Given e, we let @ be the set of T' € P* which are not removed by finding some
Ve Te, with d < T, 9 > u*, \(¥ no)>r, — 2, for all 0 € u*, and such that
(9, e)l. Note that here by ¥ < T we do mean the sets of strings, not the associated
closed sets. If Q>r_oz is nonempty then (u*,Q,7 — 2€) is an extension of (u, P, q)
in Eﬁn
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Blah blah blah do the same. For the final step, suppose that I'(d, e)|= 4, with
V€ Tew, ¥ € [u¥]ssos and S < T for some T € P¥._ .. Then T n S € P* and
TnSe [U*]>f735.

6. THE MYSTERY CLASS: High(CR, MLR)

Proposition 6.1. Every oracle in High(CR,MLR) has the continuous covering
property.

Proof. Let M be a D-computable martingale which succeeds on all non-randoms.
Assuming the M-capital of the root is bounded by 1, let V' be the set of minimal
strings with M (o) = 2. By “failed forcing”, V contains a component of the universal
ML test. Note that V has the property that A(V|e) = 1 implies [¢] < V. This
makes it universal for continuous coverings. ([l

If X is High(CR,MLR), we know that all X-computable martingales together
succeed on the non-ML-random sequences. But in fact, a previously unpublished
proof of Kastermans, Lempp, Miller shows that one X-computable martingale is
enough.

Proposition 6.2 (Kastermans, Lempp, Miller (2009)). If X € High(CR, MLR),
then there is an X-computable martingale that succeeds on every non-ML-random.

Lemma 6.3. Assume that M is an X-computable martingales and let r > M()).
If there is no non-ML-random on which M is bounded by r, then there is an X-
computable martingale that succeeds on every non-ML-random.

Proof. We may assume, without loss of generality, that r is rational. We use the
notation o[n, o] to denote the tail of a string o € 2 with the first n € w bits
removed. For example 01001[2, 0] = 001. Define an X-computable martingale M*
as follows. We let M* simulate M until it reaches a string o such that M (og) > r.
When this happens, M* sets aside the capital ¢ = M (o¢) — M(A) > r— M () and
restarts its simulation of M. More precisely, let ng = |og|. Then for 7 > oy, let
M*(1) = ¢o + M(7[ng,0]). This continues until we reach a string o7 > o9 such
that M (o1[ng,]) > r. If this happens, M™* once again sets aside the spare capital
and restarts M. The definition continues in this way, producing a (possibly finite)
sequence o9 < 01 < g < -+ .

We claim that M* is the desired X-computable martingale. Let Z € 2¥ be non-
ML-random. Each time M* restarts M, it sets aside more than r — M () from its
working capital. If this happens infinitely often, then it clearly succeeds on Z. But
since Z is non-ML-random, no tail of Z is Martin-Lo6f random, so M* restarts M
infinitely often. O

Proof of Proposition 6.2. By contrapositive, suppose that there is no X-computable
martingale that succeeds on every non-ML-random. To show that X ¢ High(CR, MLR),
we construct a sequence Z € 2“ that is computably random relative to X but not
ML-random. Let {M;}se, be a list of all X-computable martingales. We build a se-
quence of strings o9 < 01 < 09 < --- and a sequence of X-computable martingales
{M?*}sc. such that

(Vn € (0,|os]]) M*(oy tn) <1—27°
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and M is a weighted sum of M through M;_,, for each s. Start by letting M be
the constant 0 martingale and og = \. At stage s we have o, and M* as above. By
the lemma and our assumption, there is a non-ML-random Y > o such that M¥ is
bounded by 1 —3-27572. (Note that we are applying the lemma to martingale M
defined by M (1) = M¥*(os7), for all 7 € 2<¢.) Since Y is not Martin-Lof random,
we can find a 0,41 <Y extending o such that K(os4+1) < |os+1]| — s. Let

27572
Es = 07—~
2|Us+1|Ms()\)

Note that M, is bounded by 2/7s+1/M (\) and M* is bounded by 1 —3-27°"2 on
every initial segment of 0,11, so M¥, ;| is bounded by 1 — 27571 as required.

Now let Z = Usew os. We have ensured that Z is not Martin=Lo6f random.
Furthermore, (Yn) M*(Z |n) < 1, where M* = 3 _ ;M (which is not X-
computable, but we do not need it to be). Therefore, (Vn) My(Z I n) < 1/, for
every s. So Z is computably random relative to X. Hence, X ¢ High(CR, MLR).

O

Corollary 6.4 (Franklin, Stephan and Yu []). If X € High(CR,MLR), then X
computes a Martin-Lof random.

and define M} | = M} + e, M.

Proof. Let M be the X-computable martingale that succeeds on every non-ML-
random, as guaranteed by the proposition. From M we can compute a Z € 2% on
which M does not succeed. Then Z <t X is Martin-Lof random. O
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