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Abstract. We identify properties of oracles bringing them close to having PA

degree. These properties are based on relativizing concepts from algorithmic
information theory, computable analysis, and algorithmic randomness.

1. Introduction

Recall Medvedev reducibility ďM , Muchnik reducibility ďw.
For f, g P ωω we write f ď g to mean that f is majorized by g. In this case, we

say that f is g-bounded. Let idω “ tf P ωω : p@nq fpnq ď nu, in other words, the
identity bounded functions.
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2. Some new Muchnik complete computably bounded Π0
1 classes

Question: can we show Medvedev incompleteness? I.e. is the non-uniformity in
the proofs necessary?

2.1. C-compression functions. A C-compression function is an injective func-
tion F : 2ăω Ñ 2ăω such that |F pσq| ď Cpσq for all σ.

Lemma 2.1. Every C-compression function has PA degree.

Proof. Let F : 2ăω Ñ 2ăω be a C-compression function. Let δ P p0, 1s. Say that
σ P 2ăω is δ-heavy (for F ) if |tτ P 2|σ| : F pxσ, τyq ď |σ|u| ě tδ2|σ|u. Note that at
most not many strings are delta heavy �

2.2. Martingale domination. Code martingales by Path on Π0
1 class on 2ω.

Proposition 2.2. There is an atomless c.e. martingale M such that every mar-
tingale dominating M has PA degree.

Proof. Define M as follows. If n enters H1 at stage s, push 2´n capital up to some
string of length s that looks DNC2 at stage s.

Let N be a martingale majorizing M .
Case 1. N has a DNC2 atom. A martingale computes all of its atoms, so in this

case, N has PA degree.
Case 2. N has no DNC2 atoms. Then for each n there is a stage fpnq “ s such

that all strings of length s that still look DNC2 at stage s have value less than
2s´n (hence less than 2´n of the initial capital). By construction, f dominates the
settling time function for H1. So N has PA degree. �

2.3. Jordan decomposition on the rationals. Let us say that

f ďslope g :ô @x ă y rfpyq ´ fpxq ď gpyq ´ gpxqs.

That is, the slopes of g are at least as large as the slopes of f . Clearly, this is
equivalent to saying that h :“ g´ f is nondecreasing. Thus, the problem of finding
a Jordan decomposition of a function f of bounded variation is equivalent to finding
a nondecreasing function g with f ďslope g. This was already pointed out in [?].

We only require that g, h are defined in IQ :“ QX r0, 1s. An R -valued function
g defined on IQ is given by a path Zf through a binary tree. Let xpn, qny be a list
of all pairs of rationals xp, qy with 0 ď p ď 1. We let Zf p2nq “ 1 iff gppnq ă qn. We
let Zf p2n` 1q “ 1 iff gppnq ą qn. We often identify f and Zf . It is clear that the
nondecreasing functions form a Π0

1 class.
Given f , via the encoding above, the functions g defined on IQ with f ďslope g

form a nonempty Π0
1pfq class.

Theorem 2.3. There is a computable function f on r0, 1s such that each function
g : IQ Ñ R with f ďslope g has PA degree.

Proof. Let P Ď 2ω be a nonempty Π0
1 class of sets of PA degree, such as the

(binary encoded) completions of Peano arithmetic. As usual Ps is a clopen set
computable from s approximating P at stage s. So P “

Ş

s Ps. By standard
methods there is a computable prefix-free sequence xσsysPω of strings of length s
such that rσss X Ps ‰ H for each n.

Given σ P 2ăω, let Iσ “ r0.σ, 0.σ`2´|σ|s be the corresponding closed subinterval
of r0, 1s. By stage s we determine f up to a precision of 2´s. Suppose n enters H1
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at stage s. Let σ “ σs. We define f on Iσ to be a sawtooth function of height 2´s

with 2s´n many teeth.
Now suppose g : IQ Ñ R is a function such that f ďslope g. As before for

x P r0, 1s let pgpxq “ suptgpqq | q ď x ^ q P IQu.

Case 1. pg is discontinuous at the real y “ 0.Y for some Y P P. Then Y ďT g,
so g is of PA degree. (To see this, fix rational r with pgpyq ă r ă g`pyq. Then
p ă y Ø gppq ă r, and p ą y Ø gppq ą r. )

Case 2. Otherwise. Then H1 ďT g: given n, using g compute stage s such that for
each σ of length s with rσs X Ps ‰ H, we have gpmax Iσq ´ gpmin Iσq ă 2´n. This
s exists by case assumption using compactness of Cantor space. Then as before we
have n P H1 Ø n P H1s. �

3. A K-compression functions can fail to have PA degree

Let K : ω Ñ ω be prefix-free Kolmogorov complexity on natural numbers. We
show that the computably bounded Π0

1 class of K -compression functions has in-
complete Muchnik degree.

For f P ωďω, let

wtpfq “
ř

nPdom f 2´fpnq.

We say that f P ωω has finite weight if wtpfq ă 8. If P Ď ωω and q P Q, then we let
Pďq “ tf P P : wtpfq ď qu. Define Păq similarly. Note that if P is a (computably
bounded) Π0

1 class, then Pďq is too. (This is not usually true of Păq.)
Let PK “ tf P idω : f ď Ku. Note that PK is a computably bounded Π0

1 class.
We claim that PK contains a finite weight function; this follows easily from the fact
that

ř

nPω 2´Kpnq ă 1. In particular, let K˚pnq “ mintKpnq, nu. Then wtpK˚q ď
wtpKq `

ř

nPω 2´n ă 3 and K˚ P PK . Therefore, PK3 is a computably bounded
and nonempty Π0

1 class containing only bounded weight K-bounded functions. This
proves:

Proposition 3.1. Every PA degree computes a K-bounded function of finite weight.

[[But in fact we’ll show the covering properties imply this too]] This into INTRO
Our goal is to prove that it is strictly easier to compute K-bounded functions

of finite weight.

Theorem 3.2. There is a K-bounded function f : ω Ñ ω of finite weight that does
not have PA degree.

We build f using a forcing argument.
The forcing conditions are triples of the form pσ, P, qq where

‚ σ P idăω;
‚ P Ď PK is a Π0

1 class such that:
– Every h P P extends σ;
– If h P P , g ď h and g extends σ, then g P P ;

‚ q P Q and Pďq ‰ H.

The condition pσ, P, qq should be thought of as saying that f P Pďq. We say that
pτ,R, sq extends pσ, P, qq if σ ď τ , R Ď P and s ď q. Note that pxy, PK , 3q is a
condition, so the set of conditions is nonempty.



4 NOAM GREENBERG, JOSEPH S. MILLER, AND ANDRÉ NIES

For a filter G of forcing conditions, we let

fG “
ď

σ Jpσ, P, qq P G for some P and qK.

Then fG P idďω. If pσ, P, qq is a condition, then we can find τ properly extending σ
such that pτ, P, qq is also a condition (take τ to be an initial segment of a function
witnessing that Pďq is nonempty). This shows that if G is only mildly generic, then
fG P idω.

Lemma 3.3. Suppose that pσ, P, qq P G. Then fG P Pďq.

Proof. Let τ ă fG. There is some condition pτ,Q, sq P G, and by extending the
condition (and τ) if necessary we may assume that the condition pτ,Q, sq extends
the condition pσ, P, qq. Since Qďs is nonempty and Qďs Ď Pďq, we have that
rτ s X Pďq is nonempty. Since this is true for all τ ă fG and Pďq is closed, we see
that fG P Pďq. �

Since P Ď PK for any condition pσ, P, qq, we conclude that fG is K-bounded.
Lemma 3.3 also implies that wtpfGq is finite.

There is not much difference between Pďq and Păq.

Lemma 3.4. Let pσ, P, qq be a condition. Then Păq is nonempty.

Proof. Suppose not. Then Pďq is nonempty and every element of Pďq has weight
exactly q, i.e. Pďq “ P“q. This gives us an algorithm for computing H1. Note that
if m enters H1 at stage s then Kpsq ď` m. Hence it suffices, given any m ă ω to
find some n ă ω such that Kpxq ě m for all x ě n. This we can do.

Let T be a computable subtree of idăω such that rT s “ P“q. For r ă q, let Or
be the set of finite strings σ P idăω with wtpσq ą r; so idωąr is the open subset of
idω generated by Or. (Note however that it is possible that rσs Ă idωąr for strings
σ R Or; rσs Ă idωąr if and only if wtpσq ` 2´|σ|`1 ą r.) Let Tn be the set of strings
on T of length n. Since P“q Ă idąr and idω is compact, for every r ă q there is
some n ă ω such that Tn Ă Or; such n can be of course found effectively from
r. If Tn Ă Oąq´2´m then Kpxq ą m for all x ě n. For we know that there is
some σ P Tn which is extendible (rσs X P“q ‰ H); if h P rσs X P“q, x ě |σ| and
wtphq ´ wtpσq ă 2´m then hpxq ą m. Since pσ, P, qq is a condition, we know that
h ď K. �

Remark 3.5. Thus, if pρ,R, tq is a condition then there is some t1 ă t such that
pρ,R, tq is a condition as well. Thus, by genericity, if pσ, P, qq P G, then there is
some q1 ă q such that pσ, P, q1q P G. By Lemma 3.3, fG P Pďq1 , and so fG P Păq.

It remains to show that fG does not have PA degree. This will follow from
genericity (and Lemma 3.3), once we show that for any Turing functional Γ, the
collection of conditions

EΓ “ tpσ, P, qq : for all h P Pďq,Γphq R DNC2u

is dense below the base condition pxy, PK , 3q.
Let pσ, P, qq be a condition. We want to find an extension of this condition in

EΓ. First, we find an extension pσ˚, P˚, qq of pσ, P, qq and some rational ε ą 0 such
that letting r “ wtpσ˚q we have:

‚ r ` 3ε ă q; and
‚ P˚ăr`ε is nonempty.
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Note however that even though this means that pσ˚, P˚, r ` εq is a condition, we
will find, in EΓ, an extension of pσ˚, P˚, qq rather than pσ˚, P˚, r ` εq.

Finding σ˚, P˚ and ε is easy. By Lemma 3.4, let h˚ P Păq. Pick ε small
enough that wtph˚q ` 3ε ă q. Take σ˚ ă h˚ such that wtph˚q ´ wtpσ˚q ă ε. Let
P˚ “ P X rσ˚s.

We now define a partial computable process which may either output 0 or 1.
The output of this process will be Jpeq for some e, and by the recursion theorem,
we may assume we know e in the definition of this process. Consider the Π0

1 class
Q obtained from P˚ by removing not only all the strings τ of weight below r ` 2ε
for which Γpτ, eqÓ, but also all strings dominating such strings σ:

Q “ th P P˚ :  pDτ ě σ˚qr τ ď h and wtpτq ă r ` 2ε and Γpτ, eq Ó su.

The point is of course that if h P Q, g ď h and σ˚ ă g then g P Q. Note, however,
that Q is not quite the same as the class obtained by removing h for which there
is some g P P˚, g ď h, wtpgq ď r ` 2ε and Γpg, eqÓ. The class Q is smaller, since τ
may not be extended to some h-dominated g of weight at most r ` 2ε.

If Qďr`2ε ‰ H then our computable process does not terminate. Suppose that
Qďr`2ε “ H. This of course is eventually effectively recognised, as Qďr`2ε is a Π0

1

class, effectively obtained from e. By compactness, we can find some n ă ω and a
finite subset C of idn such that:

(1) Every σ P C extends σ˚ and wtpσq ă r ` 2ε.
(2) For every σ P C there is some τ ď σ (in particular |τ | ď |σ|) such that

wtpτq ă r ` 2ε, τ ě σ˚ and Γpτ, eqÓ.
(3) If σ P C, σ1 ď σ and wtpσ1q ă r ` 2ε then σ1 P C.
(4) There is some σ P C such that rσs X P˚ăr`ε ‰ H.

Let Ĉ be the set of strings in C whose weight is smaller than r ` ε. Condition
(4) says that Ĉ is nonempty, indeed some σ P Ĉ is extendible in P˚ăr`ε. Now an

important point is that if σ, σ1 P Ĉ then the pointwise minimum minσ, σ1 is in C,
as both σ and σ1 extend σ˚ and so wtpσq ´ wtpσ˚q ă ε, and similarly for σ1. For

any pair σ, σ1 of strings from Ĉ find some τ ď minpσ, σ1q of weight less than r` 2ε,
extending σ˚, such that Γpτ, eqÓ; let cptσ, σ1uq “ Γpτ, eq (which we assume is either
0 or 1).

There is some colour i P t0, 1u such that for all σ P Ĉ there is some σ1 P Ĉ such
that cptσ, σ1uq “ i (if this fails say for 0, then a single σ1 witnesses it for 1). This
colour is the output of the computable process just described.

We now describe the extension of pσ˚, P˚, qq in EΓ. Of course, there are two
cases. If Qďr`2ε is nonempty, then pσ˚, Q, r`2εq is a condition, and Γph, eqÒ for all
h P Qďr`2ε. We assume, then, that Qďr`2ε is empty. Let i be the outcome of the

computable process described above. Let σ P Ĉ be “correct”, i.e., rσsXP˚ăr`ε ‰ H;

fix some h˚ P P˚ with wtph˚q ă r ` ε and σ ă h. There is some σ1 P Ĉ such that
cptσ, σ1uq “ i; so let τ ď σ, σ1 extend σ˚ with wtpτq ă r ` 2ε and Γpτ, eq “ i. Let
R “ P˚Xrτ s. We claim that Rďr`3ε is nonempty. For we can let g “ τˆh˚ ær|τ |,8q.
Note that g ď h˚, so g P P˚. And

wtpgq “ wtpτq ` pwtph˚q ´ wtpσqq ď wtpτq ` pwtph˚q ´ wtpσ˚qq ă pr ` 2εq ` ε.

Thus pτ,R, r` 3εq is a condition and it extends pσ˚, P˚, qq since r` 3ε ď q. Every
h P R extends τ and so Γph, eq “ i “ Jpeq, and so Γphq R DNC2.
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4. Discrete measure property

rewrite in terms of discrete measures
For a sequence Ā “ xAny of subsets of ω, we let wtpĀq “

ř

n 2´n|An|. I.e., every
element of An receives weight 2´n. Write Ā Ď B̄ to mean An Ď Bn for all n; we
say that B̄ covers Ā. We say that an oracle D has the discrete covering property
if every uniformly c.e. sequence of finite weight is covered by some D-uniformly
computable sequence of finite weight.

Proposition 4.1. An oracle D computes a K-compression function if and only if
it has the discrete covering property.

Proof. In one direction, let An be the set of strings whose prefix-free complexity is
at most n. If B̄ covers Ā then we can let fpσq be the least n such that σ P Bn. �

Proposition 4.2. Let D be an oracle which has the discrete covering property. For
every order function h, D computes an h-DNR function.

Proof. MISSING �

5. The continuous covering property

For an open subset U of 2ω, let AU be the set of strings σ such that rσs Ď U .
We say that an oracle D has the continuous covering property if for every c.e.
open subset U of 2ω of measure smaller than 1, there is an open subset V of 2ω

containing U such that λpV q ă 1 and AV is computable from D. Equivalently, if
for any computable tree T such that λprT sq ą 0, there is a D-computable tree S
with no dead ends such that S Ď T and λprSsq ą 0.

Proposition 5.1. Every oracle which has the continuous covering property also
has the discrete covering property.

Proof. Let xCn,ky be an array of clopen sets (given canonically) which is indepen-
dent, such that λpCn,kq “ 2´n for all k. For an array Ē “ xEny of subsets of ω,
let

UĒ “
ď

Cn,k Jk P EnK.

Then Ē has finite weight if and only if λpUĒq ă 1. �

Lemma 5.2. Let P be the complement of the first component of a standard univer-
sal Martin-Löf test. For any tree T with no dead ends, if λprT sq ą 0, rT s Ď P and
further, for all σ P T , λprT s X rσsq ą 0, then degTpT q has the continuous covering
property.

Proof. We dually work with effectively open sets. Let U be the first component
of a standard universal Martin-Löf test, that is, obtained by gluing together all
Martin-Löf tests. So λpUq ă 1 and for any Martin-Löf test xVny there is some n
such that Vn Ă U .

Let T be a tree as described for P. We get an open set W such that

tσ P 2ăω : rσs ĎW u “ tσ P 2ăω : λpW |σq “ 1u

is T -computable, λpW q ă 1 and U ĎW .
Let V be an effectively open set with λpV q ă 1, given by c.e. antichain of strings

which we also call V . Recall that V n`1 is the set of concatenations σ τ̂ for σ P V n

and τ P V (and V 0 “ txyu). The sequence xV ny can be refined to a Martin-Löf
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test, and so there is some n such that V n Ď W . Let n be the least such; n ą 0
since λpW q ă 1. Let σ be a string witnessing that V n´1 Ę W , i.e. σ P V n´1 and
rσs Ę W . Now consider W |σ “ tX P 2ω : σˆX P W u. Then rσs Ę W implies that
λpW |σq ă 1; V n ĎW implies that V ĎW |σ; and

tτ : rτ s ĎW |σu “ tτ : rσ τ̂ s ĎW u

is T -computable. �

We wish to separate the continuous covering property from PA. We will work
with Π0

1 classes of trees with no dead ends. Note that there is a 1-1 correspondence
between closed subsets of 2ω and subtrees of 2ăω with no dead ends. For brevity,
we let T be the set of nonempty trees with no dead ends. Coded by characteristic
functions, T itself is an effectively closed subset of Cantor space.

Below we ignore the difference between rT s and T (for T P T ) and write T for
both. Note that for T, S P T , T Ď S iff rT s Ď rSs. The operation of intersection
is well defined; for S, T P T we let S X T be the unique element R of T such that
rRs “ rSs X rT s.

Infinite trees are built up of finite ones. Let Tăω be the collection of all nonempty
finite subtrees of 2ăw. For T P T and ϑ P Tăω we say that T extends ϑ (and
sometimes write ϑ ă T ) if ϑ Ă T and every σ P T is comparable with a leaf of ϑ.
For each ϑ P Tăω we let rϑs be the collection of T P T which extend ϑ. This is a
clopen subset of T , and the collection of these sets generates the topology on T .
We often restrict ourselves to trees of a fixed height; for n ă ω, let Tn be the set of
finite trees all of whose leaves have length n. For ϑ P Tăω and n greater than the
height of ϑ we let rϑsn be the set of trees $ P Tn which extend ϑ, again in the sense
that each τ P $ extends some σ P ϑ and each σ P ϑ is extended by some τ P $; we
write ϑ ď $. Note that for ϑ,$ P Tăω, ϑ ď $ if and only if r$s Ď rϑs.

We also implicitly use the bijection between Tăω and the collection of finite
antichains of strings (a tree is mapped to its leaves). For example, for a finite
antichain of strings u we let rus be rϑs where u is the set of leaves of ϑ. A tree ϑ P Tăω
and its set of leaves are both identified with the clopen subset of 2ω determined by
ϑ. Thus for example, for a finite antichain u of strings we let λpuq “

ř

σPu 2´|σ|.
Similarly, for T P T and τ P 2ăω we let T X τ “ tσ P T : σ M τu.

Fix the Π0
1 class P from Lemma 5.2. Our forcing conditions are triples pu, P, q̄q

such that:

‚ u is a nonempty finite antichain of strings;
‚ P Ď T is a Π0

1 subset of rus such that:
– for all T P P we have T Ď P;
– if T P P , S P rus and S Ď T then S P P .

‚ q̄ “ xqσyσPu is a sequence of positive rational numbers indexed by u, and

Pěq̄ “ tT P P : for all σ P u, λpT X σq ě qσu

is nonempty.

If we let P be the set of trees T P T such that T Ď P and q be any rational
number smaller than λpPq, then ptxyu, P, xqyq is a condition, so the set of conditions
is nonempty.

A condition pv,R, r̄q extends a condition pu, P, q̄q if:
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(1) u ď v;
(2) R Ď P ; and
(3) for all σ P u,

qσ ď
ÿ

rτ Jτ P v & τ ě σK.

Note that if u ď v then condition (3) is equivalent to rvsěr̄ Ď rusěq̄. In particular,
we see that if a condition pv,R, r̄q extends a condition pu, P, q̄q then Rěr̄ Ď Pěq̄.

Lemma 5.3. Let pu, P, q̄q be a condition. Then

Pąq̄ “ tT P P : for all σ P u, λpT X σq ą qσu

is nonempty.

Proof. Suppose not. Let v be a Ď-maximal subset of u for which there is some
T P Pěq̄ with λpT X σq ą qσ for all σ P v. Let ε ą 0 be rational smaller than
λpT X σq ´ qσ for all σ P v, and let q1σ “ qσ ` ε for σ P v and q1σ “ qσ for σ P v´ u.
Thus, Pěq̄1 is nonempty, and for all S P Pěq̄1 , for all σ P v´u we have λpSXσq “ qσ.
Choose any σ P v ´ u, and let Q “ tS X σ : S P Pěq̄1u. Let q “ qσ. So Q is a
nonempty Π0

1 subclass of T and for all T P Q, T Ď P and λpT q “ q.
Let Vn “ H if n R H1, and otherwise let Vn “ tσ 0̂n : |σ| “ su where s is the

stage at which n enters H1. Since λpVnq ď 2´n and xVny is uniformly c.e., for all
sufficiently large n we have Vn XP “ H.

Let m ă ω. By compactness, we can effectively find some t ă ω and some C Ď Tt
such that Q Ď

Ť

ϑPCrϑs and such that q{λpϑq ą 1 ´ 2´m for all ϑ P C. We then
claim that provided that m is large enough, m P H1 if and only if m P H1t. For
fix some ϑ P C such that rϑs X Q ‰ H, and fix some T P rϑs X Q. If m enters
H1 at stage s ą t then for every leaf σ of ϑ, λpT |σq ď λpP|σq ď 1 ´ 2´m and so
q “ λpT q ď p1´ 2´mqλpϑq which is not the case. This algorithm for computing H1

gives the desired contradiction. �

For a filter G of forcing conditions, we let TG be the downward closure of
ď

u Jpu, P, q̄q P G for some P and q̄K.

We assume from now that G is fairly generic.

Lemma 5.4. TG P T .

Proof. We need to show that every σ P TG has a proper extension in TG.
Let pu, P, q̄q be a condition, and let σ P u. By Lemma 5.3, let T˚ P Pąq̄. Let

I “ ti ă 2 : σ î P T˚u which is nonempty. Let

u1 “ pu´ tσuq Y tσ î : i P Iu.

Define q̄1 by extending q̄ but replacing qσ by qσ î for i P I, so that qσ î ď λpT˚Xpσ îqq
and

ř

iPI qσ î ě qσ. Then pu1, P X ru1s, q̄1q is a condition extending pu, P, q̄q and σ
has a proper extension in u1. �

Lemma 5.5. Let pu, P, q̄q P G. Then T P Pěq̄.

Proof. �

Let Γ: T Ñ 2ω be a Turing functional. Let EΓ be the set of conditions pu, P, q̄q
such that ΓpT q R DNC2 for all T P Pěq̄. We show that EΓ is dense.

First we prepare.
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Lemma 5.6. Let pu, P, q̄q be a condition. There are u˚ ě u and rational numbers
ετ ă 1{2 ¨ 2´|τ | for τ P u˚ such that letting P˚ “ P X ru˚s and rτ “ 2´|τ | we have:

(1) For all σ P u,

qσ ď
ÿ

prτ ´ 3ετ q Jτ P u˚ & τ ě σK;

and so ru˚sěr̄´3ε̄ Ď rusěq̄; and
(2) P˚ąr̄´ε̄ is nonempty.

Proof. By Lemma 5.3, let T P Pąq̄. Fix some σ P u. Take a positive rational number
δσ such that 5δσ ă λpT X σq ´ qσ. Find some finite antichain vσ of extensions of σ
such that T X σ P rvσs and further λpvσq ´ λpT X σq ă δσ (where we again identify
vσ with the clopen subset of Cantor space it determines).

Let wσ “ tτ P vσ : λpT |τq ď 1{2u. We first show that λpwσq ď 2δσ. Let
u˚σ “ vσ ´ wσ. We have

λpwσq ` λpu
˚
σq “ λpvσq ď λpT X σq ` δσ.

Because T X σ extends vσ,

λpT X σq “ λpT X vσq “ λpT X wσq ` λpT X u
˚
σq.

The definition of wσ means that λpT Xwσq ď λpwσq{2. Together with λpT Xu˚σq ď
λpu˚σq, putting everything together yields

λpwσq ` λpu
˚
σq ď λpwσq{2` λpu

˚
σq ` δσ

from which we get the desired conclusion. In particular,

(5.1) λpu˚σq ě λpT X u˚σq ě λpT X σq ´ 2δσ ą qσ ` 3δσ,

so u˚σ is nonempty.
Let u˚ “

Ť

σPu u
˚
σ and let T˚ “ T X u˚. Note that T˚ extends u˚. Because

T˚ Ď T , T˚ P P˚ “ P X ru˚s.
Again fix σ P u. We know that

ÿ

τPu˚σ

prτ ´ λpT
˚ X τqq ď

ÿ

τPvσ

prτ ´ λpT X τqq “ λpvσq ´ λpT X σq ă δσ.

Hence we can choose, for τ P u˚σ, rational numbers ετ just a little greater than
rτ ´ λpT˚ X τq (so that λpT˚ X τq ą rτ ´ ετ and so T˚ witnesses that P˚ěr̄´ε̄ is
nonempty) but such that

ÿ

τPu˚σ

ετ ă δσ.

By Equation (5.1),
ÿ

τPu˚σ

rτ ´ 3ετ ą qσ ` 3δσ ´ 3δσ

as required. �

Let S, T P ru˚sąr̄´ε̄. For all τ P u˚ we have λpS X T X τq ą 2´|τ | ´ 2ετ ą 0. It
follows that S X T P ru˚sąr̄´2ε̄. We can then run the proof from above.

Given e, we let Q be the set of T P P˚ which are not removed by finding some
ϑ P Tăω with ϑ Ă T , ϑ ě u˚, λpϑ X σq ą rσ ´ 2εσ for all σ P u˚, and such that
Γpϑ, eqÓ. Note that here by ϑ Ă T we do mean the sets of strings, not the associated
closed sets. If Qěr̄´2ε̄ is nonempty then pu˚, Q, r̄ ´ 2ε̄q is an extension of pu, P, q̄q
in EΓ.
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Blah blah blah do the same. For the final step, suppose that Γpϑ, eqÓ“ i, with
ϑ P Tăω, ϑ P ru˚sąr̄´2ε̄ and S Ă T for some T P P˚ąr̄´ε̄. Then T X S P P˚ and
T X S P ru˚sąr̄´3ε̄.

6. The mystery class: HighpCR,MLRq

High(CR,MLR) is the continuous measure property

Proposition 6.1. Every oracle in HighpCR,MLRq has the continuous covering
property.

Proof. Let M be a D-computable martingale which succeeds on all non-randoms.
Assuming the M -capital of the root is bounded by 1, let V be the set of minimal
strings withMpσq ě 2. By “failed forcing”, V contains a component of the universal
ML test. Note that V has the property that λpV |σq “ 1 implies rσs Ď V . This
makes it universal for continuous coverings. �

If X is HighpCR,MLRq, we know that all X-computable martingales together
succeed on the non-ML-random sequences. But in fact, a previously unpublished
proof of Kastermans, Lempp, Miller shows that one X-computable martingale is
enough.

Proposition 6.2 (Kastermans, Lempp, Miller (2009)). If X P HighpCR,MLRq,
then there is an X-computable martingale that succeeds on every non-ML-random.

Lemma 6.3. Assume that M is an X-computable martingales and let r ą Mpλq.
If there is no non-ML-random on which M is bounded by r, then there is an X-
computable martingale that succeeds on every non-ML-random.

Proof. We may assume, without loss of generality, that r is rational. We use the
notation σrn,8s to denote the tail of a string σ P 2ω with the first n P ω bits
removed. For example 01001r2,8s “ 001. Define an X-computable martingale M˚

as follows. We let M˚ simulate M until it reaches a string σ0 such that Mpσ0q ą r.
When this happens, M˚ sets aside the capital c0 “Mpσ0q´Mpλq ą r´Mpλq and
restarts its simulation of M . More precisely, let n0 “ |σ0|. Then for τ ě σ0, let
M˚pτq “ c0 `Mpτ rn0,8sq. This continues until we reach a string σ1 ą σ0 such
that Mpσ1rn0,8sq ą r. If this happens, M˚ once again sets aside the spare capital
and restarts M . The definition continues in this way, producing a (possibly finite)
sequence σ0 ă σ1 ă σ2 ă ¨ ¨ ¨ .

We claim that M˚ is the desired X-computable martingale. Let Z P 2ω be non-
ML-random. Each time M˚ restarts M , it sets aside more than r´Mpλq from its
working capital. If this happens infinitely often, then it clearly succeeds on Z. But
since Z is non-ML-random, no tail of Z is Martin-Löf random, so M˚ restarts M
infinitely often. �

Proof of Proposition 6.2. By contrapositive, suppose that there is noX-computable
martingale that succeeds on every non-ML-random. To show thatX R HighpCR,MLRq,
we construct a sequence Z P 2ω that is computably random relative to X but not
ML-random. Let tMsusPω be a list of all X-computable martingales. We build a se-
quence of strings σ0 ă σ1 ă σ2 ă ¨ ¨ ¨ and a sequence of X-computable martingales
tM˚

s usPω such that

p@n P p0, |σs|sqM
˚
s pσs ænq ď 1´ 2´s
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and M˚
s is a weighted sum of M0 through Ms´1, for each s. Start by letting M˚

0 be
the constant 0 martingale and σ0 “ λ. At stage s we have σs and M˚

s as above. By
the lemma and our assumption, there is a non-ML-random Y ą σs such that M˚

s is
bounded by 1´ 3 ¨ 2´s´2. (Note that we are applying the lemma to martingale M
defined by Mpτq “ M˚

s pσsτq, for all τ P 2ăω.) Since Y is not Martin-Löf random,
we can find a σs`1 ă Y extending σs such that Kpσs`1q ď |σs`1| ´ s. Let

εs “
2´s´2

2|σs`1|Mspλq
and define M˚

s`1 “M˚
s ` εsMs.

Note that Ms is bounded by 2|σs`1|Mspλq and M˚
s is bounded by 1´ 3 ¨ 2´s´2, on

every initial segment of σs`1, so M˚
s`1 is bounded by 1´ 2´s´1, as required.

Now let Z “
Ť

sPω σs. We have ensured that Z is not Martin=Löf random.
Furthermore, p@nq M˚pZ ænq ď 1, where M˚ “

ř

sPω εsMs (which is not X-
computable, but we do not need it to be). Therefore, p@nq MspZ ænq ď 1{εs for
every s. So Z is computably random relative to X. Hence, X R HighpCR,MLRq.

�

Corollary 6.4 (Franklin, Stephan and Yu []). If X P HighpCR,MLRq, then X
computes a Martin-Löf random.

Proof. Let M be the X-computable martingale that succeeds on every non-ML-
random, as guaranteed by the proposition. From M we can compute a Z P 2ω on
which M does not succeed. Then Z ďT X is Martin-Löf random. �
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