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Abstract. We study the usual notion of Scott rank for Polish metric
space. The language consists of distance relations such as, for each
rational q > 0, a relation R<q(x, y) saying that the distance of x and y
is less q. We show that compact spaces have low Scott rank, and that
there are spaces of arbitrarily high countable Scott rank.

1. Introduction

We view a metric space (X, d) as a structure for the signature

{R<q, R>q : q ∈ Q+},
where R<q and R>q are binary relation symbols. The intended meaning
of R<qxy is that d(x, y) < q. The intended meaning of R>qxy is that
d(x, y) > q. Clearly, isomorphism is isometry.

We ask to which extent do Polish metric spaces behave like countable
structures. Here is one aspect where they do: if X0

∼=p X1 then X0
∼= X1.

Here ∼=p denotes partial isomorphism: that there is a non-empty system of
back-and-forth relations (see Barwise’s article [1]).

For a tuple x ∈ Xn consider the n× n distance matrix

Dn(x) = d(xi, xj)i,j<n.

We often view this matrix as a tuple in Rn2
with the max norm ||.||max. Note

that for any matrix A ∈ Qn2
and any positive rational p, there is a quantifier

free positive first-order formula φA,n,p(x) in the signature above expressing
that ||Dn(x)−A||max < p.

For the reader’s convenience, we recall the definitions of α-equivalence
and Scott rank of a structure.

Definition 1.1. Let M be an L-structure. We define inductively what
it means for finite tuples of same length ā, b̄ from M to be α-equivalent,
denoted by ā ≡α b̄.

• ā ≡0 b̄ if and only if the quantifier-free types of the tuples are the
same.
• For a limit ordinal α, ā ≡α b̄ if and only if ā ≡β b̄ for all β < α.
• ā ≡α+1 b̄ if and only if both of the following hold:

– For all x ∈M , there is some y ∈M such that āx ≡α b̄y
– For all y ∈M , there is some x ∈M such that āx ≡α b̄y

The Scott rank sr(M) of a structure M is defined as the smallest α such
that ≡α implies ≡α+1 for all tuples of that structure. We remark that always
sr(M) < |M |+.

Using a back and forth argument, one shows that a countable structure
has Scott rank 0 iff it is ultrahomogeneous.
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A metric space X is called ultrahomogeneous if any isometry between
finite subsets of X can be extended to an automorphism of X.

Fact 1.2. A Polish space has Scott rank 0 iff it is ultrahomogeneous.

The nontrivial left-to right direction is proved via a back and forth ar-
gument where the ∀ player takes points from the countable dense set. The
resulting partial isometry can be extended to a full isometry by complete-
ness.

Question 1.3. (a) Does every Polish metric space have countable Scott
rank?

(b) Can it in fact be described within the class of Polish spaces by an Lω1,ω

sentence?

Note that (b) is stronger than (a) because even with countable Scott rank,
the canonical Scott sentence (see e.g. Barwise [1] again) contains continuum
size conjunctions/disjunctions.

We note that (a) has been answered in the affirmative by Michal Ducha,
December 2013.

By analogy with countable models, some evidence for the truth of (b)
would be obtained as follows. By Gao-Kechris, isometry of Polish spaces
(suitably encoded by a real) is ≤B the orbit equivalence relation EI obtained
by the action of Iso(U) on the Effros Space F (U). Each orbit is Borel (Luzin-
Nardzewsky). So the isometry class of a Polish space is Borel. An Lω1,ω

description of the space would provide a direct argument for this.
Can we show directly that each isometry class is Borel?
Note that the Scott rank is less than the least hyperprojective α; that is,

the least α such that Lα(R) is a model of Kripke-Platek set theory. This is
in fact true for Borel structures.

2. Compact metric spaces have Scott rank at most ω.

Let X be a compact metric space. Then for each n, the set Dn(X) ⊆ Rn
is compact. Gromov [3] showed that the space X is described up to isometry
by this sequence of compact sets Dn(X)n∈N (see [2, proof of 14.2.1], but note
that our Dn is denoted Mn−1 there). This shows that isometry of compact
spaces is smooth, i.e., Borel reducible to the identity on R.

Theorem 2.1. Let X,Y be compact metric spaces. Suppose that tuples

ã ∈ Xp, b̃ ∈ Y p satisfy the same existential positive formulas. Then there

is an isometry from X to Y mapping ã to b̃. In particular, each compact
metric space (X, d) is ∃-homogeneous.

Proof. Recall that any isometric self-embedding of a compact metric space
is onto (see [2, proof of 14.2.1]). So by the symmetry it suffices to find an

isometric embedding of X into Y mapping ã to b̃.
The following slightly extends the above-mentioned result of Gromov (see

[2, Exercise 14.2.3]).

Lemma 2.2. Suppose that for any ε > 0, for any n and tuple x ∈ Xn there
is a tuple y ∈ Y n such that∣∣∣∣∣∣D(ã, x)−D(̃b, y)

∣∣∣∣∣∣
max

< ε.
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Then there is an an isometric embedding of X to Y mapping ã to b̃.

Proof. For each k let yk be a tuple such that
∣∣∣∣∣∣D(ã, x)−D(̃b, y)

∣∣∣∣∣∣
max

< 1/k.

Let y be the limit of a convergent subsequence of (yk)k∈N. This shows that

for each x there is y such that D(ã, x) = D(̃b, y).
We can now proceed almost exactly as in [2, proof of 14.2.1]. Let (xi)i∈N

be a dense sequence in X. For each n ∈ N there are yn0 , . . . , y
n
n ∈ Y such

that

D(ã, x0, . . . , xn) = D(̃b, yn0 , . . . , y
n
n).

There is A0 ⊂ N with 0 6∈ A0 such that z0 := limn∈A0 y
n
0 exists. There is

A1 ⊂ A0 with minA0 6∈ A1 such that z1 := limn∈A1 y
n
1 exists. Proceeding

that way we obtain a sequence of points zn ∈ Y and a descending sequence
of sets A0 ⊃ A1 ⊃ A2 ⊃ . . . with minAk 6∈ Ak+1 such that zk = limn∈Ak

ynk .
Let A = {minAk : k ∈ N}. Then A \ Ak is finite for each k, so zk =

limn∈A y
n
k for each k. One uses this to show that d(xi, xj) = d(zi, zj) for

each i, j, and d(ar, xi) = d(br, zi) for each r, j. Hence the map xi 7→ zi can
be extended to the required isometric embedding of X into Y �

It now suffices to show that if ã ∈ Xp, b̃ ∈ Y p satisfy the same existential
positive formulas, then the hypothesis of the lemma is satisfied. Recall that
the formula φA,n,p(x) expresses that ||Dn(x)−A||max < p. Given x ∈ Xn

choose a rational (k + n)× (k + n) matrix A such that

||D(ã, x)−A||max < p = ε/2.

Thus ∃xφA,n+k,p(ã, x) holds inX. Hence there is y ∈ Y n such that φA,n+k,p(̃b, y)

holds in Y . This implies
∣∣∣∣∣∣D(ã, x)−D(̃b, y)

∣∣∣∣∣∣
max

< ε as required. �

The case ã = b̃ = ∅ yields:

Corollary 2.3. Within the class of compact metric spaces, each member is
uniquely described by its existential positive first-order theory.

Note that a complete metric space is compact iff it is totally bounded,
namely, satisfies the Lω1,ω sentence

∧
q∈Q+

∨
n∈N
∃x0 . . . xn−1∀y

∨
i<n

d(xi, y) < q.

Thus each compact spaces can be described by an Lω1,ω sentence within the
class of Polish metric spaces by.

Corollary 2.4. The Scott rank of any compact metric space is at most ω.

Note that ω is an artifact of our particular definition of Scott rank. If
we allowed extensions by an arbitrary finite number of elements, the rank
would be 1 instead.
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3. Countable Polish spaces can have arbitrary countable
Scott rank

Countable Polish spaces must have countable Scott rank. In this sec-
tion, we show that arbitrary large countable ordinal ranks are possible in
countable spaces. The examples we construct will even be discrete spaces.

We will inductively construct sub-trees of ω<ω with growing Scott ranks.
Note that we can view those trees as model theoretic structures, for example
in the language of a unary function f with the semantics “f(a) = b if and
only if b is the immediate predecessor of a”. Also, those trees can be regarded
as metric spaces with the metric induced by the usual one on ω<ω. It is easy
to see that the relations ≡α (and hence the notion of Scott rank) is the same
in both the tree structure and the metric space structure.

We denote finite sequences from ω<ω by 〈n1, n2, . . . , nk〉 and the concate-
nation of two sequences s, t by s_t. Now we proceed to the definition of
Tαn ⊂ ω<ω (n ≤ ω, α < ω1) by induction over α.

Definition 3.1. For any n ≤ ω, let T 0
n be the collection of the empty

sequence and the sequences 〈a〉 for all a < n.
Now suppose we have defined all the Tαn for some α < ω1. Let Tα+1

n be
the collection of

• the empty sequence
• all sequences of the form 〈2a〉_sa where a < ω and sa ∈ Tαa
• for any a < n, all sequences of the form 〈2a+ 1〉_s with s ∈ Tαω

Finally, suppose α is a countable limit ordinal and that the T βn are already
defined for all n ≤ ω and β < α. Fix any bijection b : α×ω → ω and define
Tαn as the collection of

• the empty sequence
• all sequences of the form 〈a〉_sa where a = b(c, d) for some c < α

and d ≤ n and sa ∈ T cω
Informally speaking, at each stage of the construction we glue infinitely

many of the already defined trees into a new one. Tα+1
n contains all Tαk for

k < ω exactly once and Tαω exactly n times. At limit stages, we amalgamate

n+ 1 copies of each T βω (β < α).
Inductively, we see that none of the constructed trees has an infinite path

and that all of them, seen as metric spaces, are discrete and complete (thus
they are Polish). The T 0

m are homogeneous, so they have Scott rank 0, and
we can verify inductively that Tαn has Scott rank α ·ω for all α < ω1 and all
n ≤ ω.
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