
Lowness for computable and partial computable randomness

André Nies

Abstract. Ambos-Spies and Kucera [ASK00, Problem 4.8] asked whether

there is a non-computable set which is low for the computably random sets.

We show that no such set exists. The same result holds for partial computable
randomness. Each tally language that is low for polynomial randomness is on

a polynomial time tree of bounded width.

This research was mostly done in 2003 but has not been published so far.
Part of this paper will appear in [DHxx].

1. Introduction

Consider a (relativizable) class C of sets. An oracle set A is called low for C if
CA = C. For instance, if C is the class of ∆0

2 sets, then lowness for C coincides with
the usual lowness A′ ≤T ∅′.

The case where C is a randomness property is in the focus of current interest.
A martingale is a function M : 2<ω 7→ R+

0 such that M(λ) ≤ 1, and M has the
martingale property M(x0) + M(x1) = 2M(x).

We first study lowness for the computably random sets, namely

CR = {X : no computable martingale succeeds on X}.
We refer to [ASK00, Nie09] for motivation and terminology. Using A-computable

martingales gives a generally smaller class CRA. A is low for computably random
(Low(CR)) if CRA is as large as possible, namely CRA = CR.

All martingales can be assumed Q-valued, which is no restriction as far as the
randomness notions are concerned.

Theorem 1.1. Each low for computably random set is computable.

Now we consider time bounded martingales. Consider a time class D which is
closed downward under polynomial time Turing reducibility ≤p

T . Then D−Rand
is the randomness notion given by martingales in D. Note that Low(D−Rand) is
closed downward as well.

A language A is called tally if A ⊆ {0∗}.

Theorem 1.2. Let D =
⋃

j DTIME(gj), where (gj)j∈N is a family of time bounds
containing the polynomials and closed under composition and multiplication (for
instance, D = PTIME). If the language A is tally and low for D-random, then A

c©0000 (copyright holder)

1

2 ANDRÉ NIES

(viewed as a subset of N) is a path of a tree T ⊆ 2<ω such that T ∈ D and for each
level of T the number of elements is bounded by a constant.

This does not imply that A is itself in D. For instance, the construction of a
supersparse set A puts A on a polynomial time tree of size at each level bounded
by 2, but A is only in DEXT. However, we have:

Corollary 1.3. If B is in Low(D−Rand) then B is computable.

Proof. Let B̂ = {0n : n ∈ B}. Then B̂ ≤p
T B. Hence B̂ is in Low(D−Rand)

as well. Therefore, by Theorem 1.2, B̂ is computable as an isolated path on a
computable tree. Since B ≤T B̂, the language B is also computable. �

We don’t know whether, say, a language in Low(PTIME−Rand) is already in
PTIME, even when the language is tally.

2. Preliminaries

Given v, let

M̂(y) = M̂(y) = max{M(y′) : v � y′ � y & M(y′)defined}.
Kolmogorov: for M(v) < b,

(1) µ{z � v : M̂(v) ≥ b} ≤M(v)/b2−|v|

The following is fairly trivial but very useful.

Lemma 2.1 (Non-ascending path trick, NAPT). Suppose M is a martingale which
is computable in running time τ . Then, for each string z and each u > |z| we can
compute in time uτ(u) a string w � z, |w| = u, such that M(w � q +1) ≤M(w � q)
for each q, |z| ≤ q < u.

We say that a martingale B has the “savings property” if

(2) x ≺ y ⇒ B(y) ≥ B(x)− 2.

It is known (see [Nie09]) that the relevant randomness notions may be defined in
terms of Q-valued martingales with the savings property.

A martingale operator is a Turing functional L such that, for each oracle X, LX

is a total martingale. For a string γ, we write Lγ(x) = p if this oracle computation
converges with all oracle questions less than γ. To prove Theorems 1.1 and 1.2 we
will define a martingale operator L (which can be computed in quadratic time). We
will apply the following purely combinatorial Lemma to N = LA and the family
(Bi) of martingales with the savings property characterizing the randomness notion
in question. It says that for some positive linear combination M of the martingales
Bi, and for some d, N(w) ≥ 2d implies M(w) ≥ 2 in an interval [v], while M(v) < 2.

Lemma 2.2. Let N be any martingale such that N(λ) ≤ 1. Let (Bi)i∈N be some
family of martingales with the savings property (2). Assume that

S(N) ⊆
⋃

i S(Bi).
Then there are v ∈ 2<ω and d ∈ N and a martingale M which is a finite linear

combination
∑n

i=0 qiBi with rational positive coefficients such that M(v) < 2 and

(3) ∀x � v[N(x) ≥ 2d ⇒M(x) ≥ 2].

LOWNESS FOR COMPUTABLE AND PARTIAL COMPUTABLE RANDOMNESS 3

Proof. If the Lemma fails, then for each linear combination M =
∑n

i=0 qiBi,
qi ∈ Q+

(4) ∀v∀d [M(v) < 2⇒ ∃w � v (N(w) ≥ 2d & M(w) < 2)].

We define a sequence of strings v0 ≺ v1 ≺ . . . and rationals qi > 0 such that

(5) N(vn) ≥ 2n − 1 &
n∑

i=0

qiBi(vn) < 2.

Let v0 = λ and q0 = 1, so that (5) holds for n = 0. Now suppose that n > 0 and
vn−1, qn−1 have been defined. Let

pn = 1
22−|vn−1|(2−

∑n−1
i=0 qiBi(vn−1)),

so that M(vn−1) < 2 where M =
∑n

i=0 qiBi (note that 0 < qn ≤ 1). Applying
(4) to v = vn−1, d = n there is vn = w � v such that N(w) ≥ 2n and M(w) < 2.

If Z =
⋃

n vn, then N succeeds on Z (interestingly, not necessarily in the effective
sense of Schnorr). On the other hand, for each n ≥ i, qiBi(vn) < 2. Since Bi has the
savings property (2), lim supn Bi(Z � n) ≤ 2+2/qi, so Bi does not succeed on Z. �

A partial computable martingale is a partial computable function M : 2<ω 7→ Q
such that dom(M) is 2<ω, or 2≤n for some n, M(λ) ≤ 1, and M has the martingale
property M(x0) + M(x1) = 2M(x) whenever x0, x1 are in the domain. Clearly
there is an effective listing (Me)e∈N of partial computable martingales with range
included in [1/2,∞). We let τe be the partial computable function such that τe(n) ∼
the maximum running time of Me(w) for any w of length n (includes the linear slow
down since we need an effective listing).

3. Proof of Theorem 1.1

Remarks in brackets [. . .] refer to later adaptation of the proof to the time-bounded
case, and can be ignored at first reading. Fix an effective listing (ηm)m≥1 of all
triples

(6) ηm = 〈e, v, d〉
where v is a string, and e, d ∈ N (e is an index for a partial computable martingale
Me). We think of ηm as a witness as in Lemma 2.2, where (Bi) is the family of all
(total) computable martingales with the savings property (not an effective listing).

We will independently build martingale operators Lm for each m ≥ 1 which have
value 2−m on any input of length ≤ m. Lm is computable in linear time, for a fixed
constant. Then L =

∑
m≥1 Lm is a martingale operator (L is Q-valued since the

contributions of Lm, m > |w|, add up to 2−|w|), and L is computable in quadratic
time.

We define L in order to ensure that for each A, if N = LA and S(N) ⊆
⋃

i S(Bi)
(which is the case if A is low for computably random), then we can compute A. The
computation procedure for A is based on a witness ηm = 〈e, v, d〉 given by Lemma
2.2, so Me is total. Since we cannot determine the witness effectively, to make L
a martingale operator we need to consider all ηm together, including those where
Me is partial.

The idea how to compute A is this. Once L is defined, if ηm is a witness for
Lemma 2.2 where N = LA, let M = Me and consider the tree

Tm = {γ : ∀w � v(Lγ
m(w) ≥ 2d ⇒M(w) ≥ 2)}.

4 ANDRÉ NIES

Since ηm is a witness and LA ≥ LA
m, A is a path of Tm. Let k = 2d+m, and let

Sk denote the set of k-element sets of strings of the same length. Let α, β range
over elements of Sk. We write αr for the r-th element in lexicographical order
(0 ≤ r < k), and identify α with the string α0α1 . . . αk−1. For each α, we ensure
that α 6⊆ Tm, in an effective way: given α, we are able to find s < k such that
αs 6∈ Tm. This will allow us to determine a tree R ⊇ Tm such that for each j, the
j-th level R(j) has size < k and we can compute that level Then we can compute
A: fix j0 sufficiently large so that only one extension of A � j0 exists in R(j), for
each j ≥ j0. This extension must be A � j since A is a path of Tm and Tm ⊆ R.
So, given input p ≥ j0 to compute A(p) we output the last bit of that extension for
j = p + 1.

Let z0, . . . , zk−1 be the strings of length d+m in lexicographical order. We describe
in more detail the strategy which, given α, produces an s such that αs 6∈ Tm.
Suppose w � v is a string such that M(w) < 2, and no value Lγ(w′) has been
declared for any w′ � w (we call w an α-destroyer). In this case we may define
Lm(w) = 2−m regardless of the oracle. For each s < k, we ensure Lαs

m (wzs) = 2d,
by betting all the capital along zs from the end of w on. Since M(w) < 2, by
the NAPT (2.1) we can compute s such that M(wzs) < 2. So x = wzs is a
counterexample to (3), so that αs 6∈ Tm.

We want to carry out this strategy independently for different α. To do so we
assign to each α a string yα. Given ηm, let

M̂(y) = max{M(y′) : v � y′ � y}.
The assignment function Gm : Sk 7→ {0, 1}∗ mapping α to yα (which only is

defined when Me(v) < 2) will satisfy the following.

(G1) The range of Gm is an antichain of strings y such that M̂(y) < 2
(G2) Gm and G−1

m are computable in the sense that there is an algorithm to
decide if the function is defined and in that case returns the correct value.

We cannot apply the strategy above with w = yα, since we first would need to
recover α from w, which may take long or even forever (depending on Me which
may be partial), but also we want Lm to be total, and in fact to be computable
in quadratic time. Instead we use the “looking-back” technique. Let hm(α) be the
number of steps required to check that Me(v) < 2, G−1

m (yα � p) is undefined for
p = 0, . . . , |yα| − 1, and to compute α = G−1

m (yα). Each w � yα of length hm(α)
is a potential α-destroyer. Now we can recover α from w in linear time, and then
define Lαr

m above w according to the strategy above.
Given α, to find the actual α-destroyer w, first compute yα, then hm(α), and now

use the NAPT to find w � yα of length h(α) such that M(w) < 2. As explained
above, use w to determine which αr is not on Tm.

The actual choice of the Gm is irrelevant so long as (G1) and (G2) hold. So we
defer defining the Gm. Note that the time to compute Gm and G−1

m will be closely
related to the running time τM of M , since we need to find strings y such that
M̂(y) < 2. The following procedure will be used to define Lm and to compute
hm(α).

Procedure Pm (ηm = 〈e, v, d〉)
Input x

1. Let p = 0

LOWNESS FOR COMPUTABLE AND PARTIAL COMPUTABLE RANDOMNESS 5

2. y = x � p
3. Attempt to compute α = G−1(y). If defined, output α and h = the number

of steps used so far.
4. p← p + 1. If p < |x| Goto 2.

Construction of Lm. We define Lm by declaring axioms of the form Lγ
m(w) = p,

in such a way that
(a) |γ| ≤ |w| and one can determine in time O(|w|) whether an axiom Lγ(w) =

p has been declared, and
(b) whenever distinct axioms Lγ(w) = p and Lδ(w) = q are declared then γ, δ

are incompatible.
Then we let LX

m(w) = p if some axiom Lγ
m(w) = p has been declared for γ ⊆ X,

or else if p is the “default value” 2−m. Clearly LX
m(w) can be determined in time

O(|w|) using oracle X.
Given a string x, we declare no axiom for x unless in |x| steps we can determine

that ηm = 〈e, v, d〉, and that Me(v) converges in < |x| steps with value < 2. If
so, run at most |x| steps of procedure Pm(x). If there is an output α, h, then
let w = x � h and declare axioms as follows (implementing the strategy outlined
above): Let x = wz. For each s < k, let Lαs

m (x) = 0 unless z is compatible with zs.
In that case, declare Lαs

m (x) = 2−m+|z| if z � zs, and Lαs
m (x) = 2d if zs � z. End

of construction.
Clearly (a) holds. Moreover (b) is satisfied since the strings (yα) form an antichain,

we only declare axioms Lγ
m(x) = p, yα � x if γ ∈ α, and the individual strings

within α are incompatible. Finally LX is a martingale for each oracle X.
Suppose (Bi) is the family of all (total) computable martingales with the savings

property (2). If A is Low(CR), then S(LA) ⊆
⋃

i S(Bi). The linear combination M
obtained in Lemma 2.2 is computable. So the following lemma suffices to compute
A, since, as explained above, the existence of R implies that A is computable.

Lemma 3.1. [Computing a thin tree] Suppose ηm = 〈e, v, d〉, where M = Me is
total and M,v, d is a witness for (3) in Lemma 2.2 where N = LA. Then there is
a tree R ⊇ Tm such that for each j, the j-th level R(j) has size < k = 2d+m and we
can compute that level from j [here j is given in unary].

Proof. Let R(0)) = {λ}. Suppose j > 0 and we have determined R(j−1). Carry out
the following to determine R(j):

1. Let F be the set of strings of length j that extend strings in R(j−1) (so
|F | = 2|R(j−1)|) .

2. While |F | ≥ k: Let α be the lexicographically leftmost size k subset of F .
(a) Compute y = G(α).
(b) Apply procedure Pm to y to compute h = h(α).
(c) By NAPT find w � yα of length h such that M̂(w) < 2.
(d) Search for r < k such that M̂(wzr) < 2. Remove αr from F .

3. Let R(j) = F .
�

To conclude the recursion theoretic case it remains to define the Gm. We prove
a lemma which will be useful in the time-bounded case as well. Recall that
M̂(y) = max{M(y′) : v � y′ � y}. We use the following instance of Kolmogorov’s

6 ANDRÉ NIES

inequality: for M(v) < b,

(7) µ({z � v : M̂(z) ≥ b}|v) ≤M(v)/b,

where µ(X|v) stands

Lemma 3.2 (The assignment function, recursion theoretic case). Given ηm, sup-
pose that M(v) < b, b ∈ Q. Let

P = {y � v : M̂(y) < b},
and let r ∈ N be such that 2−r ≤ 1−Me(v)/b. Then given i we can compute y(i)

of length i+r+1 such that y(i) ∈ P and the strings y(i) form an antichain. If M is
partial, we can compute y(i) for each i such that M is defined for strings of length
up to i + r + 1. [The computation takes time O(i2)τM (|v|+ i + r) where i is given
in unary.]

Proof. Suppose inductively y(q) has been computed for q < i. Since
∑

q<i 2−|y
(q)| =

2−r(1−2−i) and 2−r ≤ µ(P |v) by Kolmogorov’s inequality, one can compute y ∈ P
such that |y| = i + r + 1 and yq 6≺ y for all q < i. Let yi = y. [To compute such
a y efficiently, search for the least u < i + 1 such that some z = y(q) � u, q < i,
has an extension z ĥ ∈ P (h ∈ {0, 1} which is not on any yl (l < i). This needs
at most O(i2) many computations M(w), for strings w of length < i + r + 1. Now
extend z ĥ to a string y of length i+r+1 such that M(y) < 2, using the NAPT.] �

In the recursion theoretic case, let b = 2, and let nα be a number greater than the
length of each string in α, assigned to α in an effective 1-1 way. Let Gm(α) = y(nα).
Clearly (G1) and (G2) hold.

4. Proof of Theorem 1.2

A tally language A can be viewed as the set {n : 0n ∈ A}. So to prove Theorem
1.2 we can adapt the previous proof. All relevant oracle queries in the definition
of Lm are now in {0}∗. We will modify the definition of the assignment functions
Gm. Recall that the martingale operator L is in quadratic time no matter how we
specify Gm as long as (G1) and (G2) hold. Let {Bi} be some list of all martingales
in D with the savings property. Then a set which fails to be D-random is already in
S(Bi) for some i. So if A is Low(D-random) then S(LA) ⊆

⋃
i S(Bi), and Lemma

2.2 yields a martingale M = Me and v, d such that (3) holds and M ∈ D, since M
is a linear combination of martingales in D. Thus the running time τM is bounded
by a function gj from the list of time bounds determining D.

We want to argue that A ∈ D. The problem is that, with the current choice of
G, the algorithm in the proof of Lemma 3.1 takes too long. We need a function G
such that |G(α)| = O(|α|), for in that case we can compute A with running time
sufficiently close to τM so that A ∈ D.

As usual we work in the context of the witness ηm = 〈e, v, d〉, and let k = 2d+m.
Recall that Sk denotes the set of k-element sets of strings of the same length. First
we replace a string α = α0 . . . αk−1 in Sk by the pair 〈p, j〉, where j = k|α0| and
p < 2j is the lexicographical position of α. Clearly it suffices to define a map G̃
with the properties (G1) and (G2) on all pairs 〈p, j〉 where p < 2j , instead of on
Sk.

LOWNESS FOR COMPUTABLE AND PARTIAL COMPUTABLE RANDOMNESS 7

Suppose r ∈ N is such that 2−(r−1) < 1−M(v)/2. Let b = (M(v) + 2)/2, and as
in Lemma 3.2 let P = {y � v : M̂(y) < b}, so that we can compute on input j a
string yj ∈ P of length j + r + 1 such that the strings yj form an antichain. The
string G̃(p, j) will be an extension of yj . Fix j and consider the martingale D given
by

D(x) = M(vyjx).
Then 2−r < 1−D(λ)/2 since D(λ) < b. Let Q = {x : ∀z � x D(z) < 2}.
Let

β(x) = 1− D(x)
2 ,

so that β(x0) + β(x1) = 2β(x). Note that

(8) β(x) ≤ µ(Q|x),

(thus β(x) tells us how many extensions of x are suitable values G̃(p, j)).
To each x of length at most j we will assign an interval Ix of the form [p, q), where

p, q ∈ Q and 0 ≤ p ≤ q ≤ 1 (thus Ix may be empty). Write |Ix| for the length q−p.
For each i ≤ j the nonempty intervals Ix, |x| = i, partition [0, 1) and are arranged
according to the lexicographical order of x. Moreover, if Ix 6= ∅, then

(9) |Ix| ≤ β(x)2r−|x|.

Let Iλ = [0, 1) so that (9) holds for x = λ. If Ix has been defined and |x| < j,
distinguish three cases.

1.) M(x1) ≥ 2 (hence β(x1) ≤ 0). Let Ix0 = Ix and Ix1 = ∅.
2.) M(x0) ≥ 2 (hence β(x0) ≤ 0). Let Ix1 = Ix and Ix0 = ∅.
3.) Otherwise. Then split Ix in the proportion β(x0) : β(x1). That is, let

sx = β(x0)/(β(x0) + β(x1)), let Ix be the left half open subinterval of Ix

of length sx|Ix|, and let Ix1 = Ix − Ix0.
We check (9) by induction on |x|. In Case 1, β(x0) ≥ 2β(x), so (9) is true for

x0 (and trivial for x1). Case 2 is similar. In Case 3 multiply (9) by sx to obtain
the inequality for x0, and multiply (9) by 1 − sx to obtain it for x1 (using that
βx0 = βxsx and βx1 = βx(1− sx)). We are now ready to give the procedure for G̃.

To compute G̃(p, j) (p < 2j)
1. Determine the unique x (and also the end points of Ix) such that |x| = j

and p2−j ∈ Ix

2. Compute p0 ∈ N least such that p02−j ∈ Ix. Let q = p− p0

3. Let z be the q+1-st string in lexicographical order such that x ≺ z, |z| = i+r

and z ∈ Q. Let G̃(p, j) = yjz

We first verify that z in step 3. exists. By (9) and (8),
2i|Ix| ≤ 2rµ(Q|x).

The quantity on the right bounds from below the number of extension z of x as
in 3. But p − p0 < 2j |Ix|, since both p−j

0 and p2−j are in this half-open interval.
So there are at least p− p0 + 1 possible extensions z.

We check that G̃ and its inverse are computable within the allowed the time
bounds.

Claim 4.1. Let b(i) = |v|+ 2(i + r) + 1

8 ANDRÉ NIES

(i) The computation of G̃(p, i) takes time
O(i2)τM (b(i))

(ii) The computation of G̃−1, on relevant inputs w of length |w| = b(i) also
takes time O(i2)τM (b(i))

Proof. Given i, an admissible M -computation (AMC) is a computation M(w) where
|w| ≤ b(i).
(i) We show that O(i2) AMC are sufficient. Step 1 needs i evaluations D(x), |x| ≤ i,
which means i AMC. Step 2 is trivial in terms of complexity, and Step 3 requires
the constant amount of 2r AMC. Finally, by Lemma 3.2, computing yi requires i2

AMC.
(ii) Given w, reject unless |w| = b(i). Now use O(i2) AMC to compute yi. Reject
unless yi ≺ w. In that case write yiu = w, and let x = u � i. Compute Ix using i
AMC. Reject unless Ix is non-empty. In that case by (9), |Ix| ≤ 2r2−i, so we may
within our time bound compute G̃(p, i) for all p such that p2−i ∈ Ix by (i) to see if
the value is w. If not reject, else output 〈p, i〉.

To show A is in D, it suffices to prove

Claim 4.2. The function 0j 7→ R(j) in Lemma 3.1 is in D.

For in that case, can compute A as before (fix j0 sufficiently large so that only
one extension of A � j0 exists in R(j), for each j ≥ j0. This extension must be A � j
since A is a path of R. So, given input 0p, p ≥ j0 to compute A(0p) we output the
last bit of that extension for j = p + 1.)

Proof. Recall that (gl) is the list of time bounds, called admissible. Let g, g′

etc. denote admissible time bounds, and let f(i) be the admissible bound which is
the maximum of the bounds obtained in (i) and (ii) above. The highest cost is the
computation of M values of long strings in Steps 2(c) and 2(d).

1. Let F be the set of strings of length j that extend strings in R(j−1).
2. While |F | ≥ k: Let α be the lexicographically leftmost size k subset of F .

This loop is carried out for a constant number of times.
(a) Compute y = G(α). Replacing α by p, i is polynomial time. Com-

puting y = G̃(p, i) takes time f(i), where |y| = b(i).
(b) Apply procedure Pm to y to compute h = h(α). This take one compu-

tation G−1(z) for each z � y, and hence time b(i)2f(i). Thus h(α),
which is the number of steps taken, is bounded by an admissible bound
g(i). Let u = g(i).

(c) By NAPT find w � yα of length h such that M(w) < 2. This needs
u many M computations on strings of length ≤ u, hence bounded by
uτM (u)

(d) Search for r < k such that M(wzr) < 2. Remove αr from F . Takes
a constant number of M computations on strings of length u + k.

3. Let R(j) = F .

The running time to compute 0j 7→ R(j) is therefore admissible.

5. Lowness for partial computable randomness

In this section we consider lowness properties defined in terms of two randomness
notions C,D. Let Low(C,D) denote the class of oracles A such that C ⊆ DA.

LOWNESS FOR COMPUTABLE AND PARTIAL COMPUTABLE RANDOMNESS 9

Theorem 5.1. Each Low(PrecRand,CRand) set is computable.

Lemma 5.2. Let N be any total martingale such that S(N) ⊆ Non-PrecRand.
Then there are v ∈ 2<ω and d ∈ N and p.c. martingale M such that M(v) < 2 and

(a) {x � v : M̂(x) < 2} is computable,
(b) ∀x � v[N(x) ≥ 2d ⇒ M̂(x) ≥ 2],

where M̂(y) = max{M(y′) : v � y′ � y & M(y′)defined}.

We define the martingale operator L as before (the construction allowed for partial
computable martingales Me anyway). But we now must argue that A is computable
based on a witness ηm = 〈e, v, d〉 for the weaker Lemma 5.2 where M = Me.

Notice that the Kolmogorov inequality (1) is valid for partial martingales M .
Moreover, by (a) of the Lemma and that inequality, we have the following version
of the NAPT:

Lemma 5.3 (weak NAPT). Given z,m such that v � z, M̂(z) < 2 and m ≥ |z|,
one can compute w � z of length m such that M̂(w) < 2.

�

By (b), A is on the tree

T̂m = {γ : ∀w � v(Lγ
m(w) ≥ 2d ⇒ M̂(w) ≥ 2)}.

So as before it suffices to find a computable tree R ⊇ T̂m of width at most
k = 2d+m. The assignment function Gm defined after Lemma 3.2 is total, since the
proof only relies on the fact that P is computable. The algorithm in Lemma 3.1 to
compute R works in the new setting, by the weak NAPT and (a).

Proof of Lemma 5.2. We apply the following:

Claim 5.4. There is a sequence C0, . . . , Cn of p.c. martingales such that, if we
also define C−1 = 0, there are v, d such that M(v) < 2 and

(a∗) ∀w � v∀j ≤ n[Cj−1(w) < 2RACj(w) ↓]
(b∗) ∀x � v[N(x) ≥ 2d ⇒ ¬Cn(x) < 2].

Note that (a∗) implies C0(w) ↓ for all w � v. We first check that the Claim
suffices to prove the Lemma. Let M = Cn. Given input w � v, consider the
following procedure to decide whether M̂(w) < 2.

1. For l = |v| to |w|: let x = w � l
2. For j = 0 to n
3. If Cj(x) ≥ 2 output No; end.
4. Next j
5. Next l
6. Output Yes

By (a∗), Cj(x) is defined in line 3. Thus the procedure decides correctly, which
shows (a). For (b), note that if N(x) ≥ 2d, then by (b∗), it is not the case that
M(x) is defined and less than 2. Hence we cannot reach line 6. This proves the
Lemma.

We prove the claim. Assume for a contradiction that N is a total martingale such
that S(N) ⊆ Non-PrecRand, but the claim fails. Let (Bi)i∈N be a list of the p.c.
martingales B with the savings property

x ≺ y & B(y) ↓⇒ B(y) ≥ B(x)− 2),

10 ANDRÉ NIES

so that (as in the case of computable randomness) Non-PrecRand=
⋃

i S(Bi).
As before, we define a sequence of strings v0 ≺ v1 ≺ . . . such that N succeeds

on Z =
⋃

n vn but Z 6∈
⋃

i S(Bi). We define p.c. martingales Cn of the form∑
j≤n qjBsj

(qj ∈ Q+). For each n, (a∗) holds (so that (b∗ fails).
At step s, Bs is either included in the martingale Cn (a linear combination of

Bi’s) or Bs is made partial along Z.
We define vs and the MG Cs =

∑
j≤s qjBrj

in such a way that Cs(vs) < 2, and
Bt(vt) is undefined for each t ≤ s not of the form rj .

Let n−1 = 0, v−1 = λ and C−1 = 0.
Step s ≥ 0.

1. If there is w � vs−1 such that Cns−1(w) < 2 and Bs(w) is undefined, then
let vs = w, ns = ns−1.

2. Else let n = ns = ns−1 +1, and choose a rational qn > 0 such that, where
Cns = Cns−1 + qnBs, Cns(vs−1) < 2.

3. Now if v = vs−1, (a∗) holds (in the new case j = n, we use that case 1.
did not apply). So (b∗) fails. Thus we may choose w = vs � vs−1 so that
N(w) ≥ 2s and Cn(w) < 2.

No Bs succeeds on Z, since either Bs(w) is undefined for vs � w � Z, or
Bs(vt) < 2/qn for all t ≥ s, where qn is the rational chosen at stage s. In the
latter case Bs is bounded along Z. �

References

[ASK00] K. Ambos-Spies and A. Kučera. Randomness in computability theory. In Peter Cholak,
Steffen Lempp, Manny Lerman, and Richard Shore, editors, Computability Theory and

Its Applications: Current Trends and Open Problems. American Mathematical Society,

2000.
[DHxx] R. Downey and D. Hirschfeldt. Algorithmic randomness and complexity. Springer-Verlag,

Berlin, 20xx. To appear.

[Nie09] André Nies. Computability and randomness, volume 51 of Oxford Logic Guides. Oxford
University Press, Oxford, 2009.

Department of Computer Science, University of Auckland,, Web site http://www.cs.auckland.ac.nz/∼nies

E-mail address: andre@cs.auckland.ac.nz

