
Separating classes of groups by first–order sentences

André Nies

Abstract. For various proper inclusions of classes of groups C ⊂ D, we obtain

a group H ∈ D and a first–order sentence ϕ such that H |= ϕ but no G ∈ C
satisfies ϕ. The classes we consider include the finite, finitely presented, finitely

generated with and without solvable word problem, and all countable groups.

For one separation, we give an example of a f.g. group, namely Zp o Z for
some prime p, which is the only f.g. group satisfying an appropriate first–order
sentence. A further example of such a group, the free step-2 nilpotent group

of rank 2, is used to show that true arithmetic Th(N, +,×) can be interpreted
in the theory of the class of finitely presented groups and other classes of f.g.
groups.

1. Introduction

To what extent are properties of a group expressible by a sentence in the first–order
language for groups? While some properties, like being abelian or nilpotent of step
2, are first–order by their very definition, most properties cannot even be described
by an axiom system (including noneffective ones). Examples of properties of the
second kind are: being a torsion group, being finitely generated and being free.
Throughout this paper we restrict our attention to countable groups. The latter
three properties are easily seen to be non-axiomatizable (even within the countable
groups) using the compactness theorem from mathematical logic. However, the
following problem could still have a solution: given a “natural” class of groups C
and a particular group H 6∈ C, find a first–order sentence ϕ such that H |= ϕ, but
no group in C satisfies ϕ. (If this is possible for each countable H 6∈ C, then C is
axiomatizable within the countable groups.) In our results, H will be a member
of a larger natural class of groups D, so the existence of ϕ implies that first–order
logic can distinguish between C and D, i.e. Th(D) is a proper subtheory of Th(C).
(Recall that the theory Th(E) of a class E of groups is the set of first–order sentences
which hold in all the members of E .) We illustrate this by giving an example of
such a separation, where C is the class of finite groups, and D is the class of finitely
presented (f.p.) groups with solvable word problem.
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Proposition 1.1. There is an existential sentence ϕ1 which holds in a finitely
presented group H1 with solvable word problem, but fails in all finite groups.

Proof. Higman (see [17, Prop. I.6]) found an example of an infinite f.p. group
which has no nontrivial finite quotients: let H1 = 〈a0, a1, a2, a3 | r0, r1, r2, r3〉,
where ri = a

ai+1
i a−2

i (i = 0, 1, 2, 3), and i+ 1 is computed modulo 4. It is easy to
show that H has solvable word problem. Let ϕ1 be the existential sentence

∃x0 . . .∃x3(x0 6= 1 &
∧

i=0,1,2,3 ri(x0, . . . , x3) = 1).
Then H |= ϕ0. If G |= ϕ0, choose witnesses b0, . . . , b3 for ϕ0 in G (so that b0 6= 1).
Then ai 7→ bi describes a nontrivial homomorphism H → G, whence G embeds a
nontrivial quotient of H. Thus G is infinite. ♦

In this article we show such separation results for most natural classes of countable
groups which have been considered in group theoretical investigations related to
logic. This is part of a more general endeavor to understand the expressive power
of first–order logic in group theory. Here are some results in this direction. Let
us say a f.g. group H is quasi-axiomatizable if, whenever G is a f.g. group which
has the same theory as H, then G ∼= H. The restriction to finitely generated G
is essential, since the theory of any infinite n–generated group H has a countable
model not isomorphic to H (i.e., the theory of H is not ω–categorical). This follows
from the the fact the theory has infinitely many n + 1–types, using a basic result
of model theory [5, Thm 7.3.1],
It can be verified that all f.g. abelian groups are quasi-axiomatizable. Moreover,
Szmielew [18] characterized pairs of (not necessarily f.g.) abelian groups which
have the same theory. Oger [13] proved that two f.g. nilpotent groups G,H have
the same theory iff G×Z ∼= H×Z. Earlier, Hirshon [3] had considered the question
for which groups A Z can be cancelled from a direct product A × Z in the sense
that if A×Z ∼= B×Z, then A ∼= B. He proved that this is the case for any group A
which is f.g. torsion free step-2 nilpotent, but gave a counterexample where A is f.g.
torsion free step-3 nilpotent. Then, by Oger’s result, torsion free step-2 nilpotent
groups are quasi-axiomatizable, but there exists a f.g. torsion free step-3 nilpotent
group which is not.
Kharlampovich and Myasnikov [9] proved that all nonabelian free groups have the
same first–order theory, thereby answering a long–open question of Tarski. (Thus,
f.g. free groups are not quasi-axiomatizable). While these results, especially the
last one, expose a weakness in the expressiveness of first–order logic, our separation
and quasi-axiomatizability results go in the other direction.
We introduce the classes to be separated. Recall that a group is recursively pre-
sented if it has a presentation 〈x0, x1, . . . |R〉 where R is a recursively enumerable
set of relators (and x1, x2, . . . is a finite or infinite list of generators). The word
problem for such presentation is the normal closure of R in F (x0, x1, . . .), which is
also recursively enumerable. If the set of generators is finite, then the word problem
is independent of the particular presentation (up to recursive isomorphism).
In the following list, for 0 ≤ i < j ≤ 5 a class included under (i) is a proper subclass
of a class under (j). Moreover the classes C2a, C2b are incomparable.

List 1.2.
0. C0 = finite groups
1. C1 = finitely presented groups with solvable word problem
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2. C2a = finitely presented groups
C2b = finitely generated groups with solvable word problem

3. C3 = f.g. and recursively presented groups
4. C4 = finitely generated groups
5. C5 = countable groups.

For each class Cx, x 6= 3, we will explicitly describe a sentence ϕx and a group
Hx |= ϕx such that no group in a class from List 1.2 not containing Cx satisfies ϕx.
The groups H1, H2b and H5 are natural groups. H1 was already obtained in
Proposition 1.1. H2a is a group described by Miller [6]. His group is f.p. and none
of its nontrivial quotients have a solvable word problem.
For H2b we use the restricted wreath product H = Zp o Z, where p is a prime. We
follow a mostly algebraic approach, but we use the notion of first–order definability
with parameters.
We obtain H4 using some effective model theory. H4 is a f.g. group encoding
via equations with constants a graph which enjoys a first–order property (in the
language of graphs without equality) shared by no recursive graph.
H5 is Hall’s universal locally finite group [2], the unique countable locally finite
group which embeds every finite group and has the further property that any two
isomorphic finite subgroups are conjugate. The proof makes use of definability with
parameters of finite subsets in this group.
When we consider C2b, we give in fact a sentence ϕ2b which, together with the
(non–first order) information that the group is f.g., describes H2b completely! Thus,
H = H2b has the following property.

Definition 1.3. A f.g. group H is quasi-finitely axiomatizable if there is a first–
order sentence ϕ such that H |= ϕ, and whenever G is a f.g. group such that G |= ϕ,
then G ∼= H.

This refines the concept of quasi-axiomatizability introduced above. Clearly, all
finite groups are quasi-finitely axiomatizable. To our knowledge, H2b is the first
known example of an infinite quasi-finitely axiomatizable group. In Section 5, we
provide a further example, the free step-2 nilpotent group of rank 2, which coincides
with the subgroup UT3

3(Z) of GL3(Z) consisting of upper triangular matrices with
1’s on the main diagonal.
No infinite finitely generated abelian group A is quasi-finitely axiomatizable. To
see this, in the terminology of Hodges [5, Thm A.2.7.], each sentence ϕ is equivalent
(over the axioms of abelian groups) to a Boolean combination of Szmielew invariant
sentences ψi which involve primes pi. Let q be a prime greater than those primes.
Then A |= ψi ⇔ A× Zq |= ψi for each i, but A 6∼= A× Zq.
Recall that one way to measure the complexity of formulas in first order logic is
to look at the number of quantifier alternations. A Σn+1–formula has the form
∃ . . .∃∀ . . .∀ . . . ψ, with n alternations of quantifiers and ψ quantifier free. For
Πn+1–formulas, exchange ∃,∀ in the definition. Unless otherwise stated, we work
in the first–order language for groups with symbols for multiplication and inverse
and a constant symbol 1 for the neutral element. The sentences ϕx used to separate
the classes in List 1.2 up to and including C4 are all in Σ3. Thus we have proved
that the theories of those classes have distinct Π3–fragments.
The computational complexity of theories in the language of group theory is com-
pared via many–one reductions: T ≤m S if there is a computable function F on
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sentences such that ϕ ∈ T ⇔ F (ϕ) ∈ S. We work towards classifying the computa-
tional complexity of the theories Th(C), where C is a class from List 1.2. All theories
are known to be undecidable, as a consequence of results in [11]. An obvious up-
per bound for theories of the classes under items (1)–(3) is the complexity of true
arithmetic Th(N,+,×). Using the fact that UT3

3(Z) is quasi-finitely axiomatizable
and encodes a copy of the ring of integers, we will show in Section 5 that this upper
bound is the actual complexity.
Th(C0) is co–recursively enumerable, and Th(C5) is recursively enumerable. From
the usual undecidability proofs, one can derive that the complexity of the first
theory is the same as the complexity of the complement of halting problem from
recursion theory, and the complexity of the second theory is the same as the one of
the halting problem.
We conclude the introduction by describing a further relatively easy example, the
group H2a. The argument generalizes the one used in the proof of Proposition 1.1.

Proposition 1.4. There is an existential sentence ϕ2a which holds in some finitely
presented group M = H2a, but fails in all groups which have a presentation with a
solvable word problem.

Proof. Using the Higman Embedding Theorem, Miller [6] constructed a finite
presentation 〈a0, . . . , an|r0, . . . , rk〉 of a groupM such that every nontrivial quotient
of M has an unsolvable word problem. Let ϕ2a be the sentence

∃x0 . . .∃xn(x0 6= 1 &
∧

0≤i≤k ri(x0, . . . , xn) = 1).
Then M |= ϕ1. If G is a group such that G |= ϕ1, then, by the same argument as
in the proof of Proposition 1.1, G embeds a nontrivial quotient of M . Therefore
any presentation of G has an unsolvable word problem. ♦

We write ab for b−1ab. The commutator [a, b] is defined to be a−1b−1ab.

2. F.g. with solvable word problem versus f.p.

In this section we describe H2b and ϕ2b, which depend on a fixed prime p. The
restricted wreath product Zp o Z has the presentation

(1) H = H2b = 〈a, d | ap, [vr, vs] (r, s ∈ Z, r < s)〉,

where vr = ad
r
. The following is well-known.

Proposition 2.1. Zp o Z is not finitely presented.

Proof. If H is f.p., then the relators in (1) are in the normal closure of a finite
subset. However, if m,n ∈ Z and m < n, then [vm, vn] is not in the normal closure
of

(2) {ap, [vr, vs] (m ≤ r < s ≤ n)}.
For, after conjugating this set of relators with a power of d, we can assume hat
m = 0. Let G = Zn+1

p be generated by {a0, . . . , an}, and consider the HNN ex-

tension G̃ = 〈G, d | adi = ai+1 (0 ≤ i < n)〉. Then the map F (a, d) → G̃ given
by a 7→ a0, d 7→ d sends all relators in (2) to 1, but, by Britton’s Lemma (see [16,
Lemma 12.4]), it maps [v0, vn] to a non-identity element. ♦
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We need a simple lemma. Recall that for groups G,B,E one writes G = B o E if
BE = G, B / G and E ∩B = {1}.

Lemma 2.2. If B,E are abelian and G = B o E, then G′ = [B,E].

Proof. Suppose u, v ∈ B and x, y ∈ E. Then [ux, by] = [ux, y][x, vy ] by the usual
commutator rules and since E,B are abelian. Both commutators on the right hand
side are in [B,E]. ♦

Theorem 2.3. Let H = H2b = Zp o Z, where p is a prime number. Then H is
quasi-finitely axiomatizable via a Σ3–sentence.

Corollary 2.4. There is a Σ3–sentence ϕ2b which holds in H2b, a finitely gen-
erated group with solvable word problem, but fails in all finitely presented groups.
♦

Proof of Theorem 2.3 We begin by analyzing H. Denote the base group of the
wreath product by A. Thus H = AoC, where A =

⊕
z∈Z Z(z)

p , Z(z)
p is a copy of Zp,

C = 〈d〉 with d of infinite order, and d acts on A by shifting, i.e. (Z(z)
p )d = Z(z+1)

p .
Let a be a generator of Z(0)

p .
In the following, u, v denote elements of A and x, y elements of C. We use additive
notation in A. In particular, [u, x] = ux − u. The first statement of the following
Lemma is a special case of [15, Lemma 2].

Lemma 2.5. (i) The set of commutators of H forms a subgroup. (In fact,
H ′ = {[u, d] : u ∈ A}. In particular H ′ ≤ A and thus, H is metabelian
and each element of H ′ has order p.)

(ii) The element a has order p. A is the (internal) direct product of H ′ and
〈a〉. In particular, |A : H ′| = p.

(iii) C is abelian, H = A o C, and C − {1} acts on A − {1} without fixed
points.

(iv) C = CH(d), the centralizer of d in H.

Proof. (i) By Lemma 2.2, H ′ = [A,C]. Now [u, d][v, d] = [u + v, d] and [−u, d] =
−[u, d], so that {[u, d] : u ∈ A} is a subgroup. Moreover, [u, dn+1] = [ud

n
+ . . . +

ud + u, d] and [u, x−1] = [−ux
(−1)

, x] for all x ∈ C, so that this subgroup contains
all commutators [u, x].
(ii) We first show H ′ 6= A. Let a be a generator of a cyclic group P of order p. The
map f : F (a, d) → P × C given by a 7→ a, d 7→ d maps all relators in (1) to 1, and
therefore induces a map f : H → P × C. Since the kernel of this map is properly
included in A and P × C is abelian, H ′ is properly included in A.
Recall that vz = ad

z
. Let wz = vz − a = [a, dz], and let W = 〈{wz : z 6= 0}〉. Then

W + (a) = A. Since W ≤ H ′, a has order p and H ′ is a proper subgroup of A, this
proves (ii).
(iii) Immediate.
(iv) We only need to show CH(d) ⊆ C. Suppose [ux, d] = 1, where u ∈ A, x ∈ C.
Since [ux, d] = [u, d]x[x, d] = [u, d]x, this implies [u, d] = 1 and hence u = 1, be-
cause d acts fix point free. ♦
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We refer to the situation H = Zp o Z = Ao C as the standard case. We formulate
sufficiently many first–order properties of H such that H is the only f.g. group with
these properties. The main statements of Lemma 2.5 can be expressed in first-order
logic, using a, d as parameters. Let µ be a sentence asserting about a group G that
the product of any two commutators is again a commutator, and that the subgroup
formed by the commutators is an abelian group all whose non-identity elements
have order p. Then G′ is definable in G by the existential formula ∃v, w x = [v, w].
The desired sentence is

(3) ϕ2b ≡ µ & ∃a∃d [β1(a, d) & . . . & β4(a, d)],

where the formulas βi will be determined next (think of the variables a, d playing
the same role as the parameters a, d ∈ H in the standard case). The formulas βi

are boolean combinations of Π2 formulas, so that ϕ2b is Σ3.
(1) β1(a, d) asserts that a 6= 1, ap = 1 (so that 〈a〉 is definable from a) and

the subgroups G′, 〈a〉 generate their direct product (i.e, G′ ∩ 〈a〉 = {1}
and [G′, a] = {1}). As in the standard case, write A = G′〈a〉. Then A is
an abelian group of exponent p, i.e. a Zp–vector space, and |A : G′| = p.
Moreover A is definable from a via a Σ1–formula.

(2) β2(a, d) expresses that d 6= 1 and (iii) of Lemma 2.5 holds. Write C =
CG(d). Then C is definable from d by the formula [x, d] = 1. The formula
β2(a, d) expresses as well that C is abelian, A ∩ C = {1} and AC = G
(note that A / G since G′ ≤ A). We have ensured that G = A o C.
Moreover, β2(a, d) asserts that C−{1} acts on A−{1} without fix points.

(3) β3(a, d) asserts that no element in C − {1} has order < p.
(4) β4(a, d) asserts that C/2C ∼= Z2, which can be formulated as follows:

∃x ∈ C∀y ∈ C ¬y2 = x & ∀x0, x1, x2 ∈ C∃y ∈ C
∨

0≤i<j≤2 xiy
2 = xj

In the following we assume G is a f.g. group satisfying ϕ2b via witnesses a, d ∈ G,
and we write A = G′〈a〉 and C = CG(d). We refer to this situation as the general
case.

Lemma 2.6. C is infinite cyclic.

Proof. We first prove that C is torsion free. If t ∈ C − 1 has order r, then all the
orbits in A under the action of t have size r, for if some orbit has size s < r, then
ts ∈ C − {1} has a fix point.
Let U be the (finite) t-invariant subspace of A generated by a. Then U 6⊆ G′. Since
|A : G′| = p, this implies |U : U ∩ G′| = |UG′ : G′| = p. Let n be the dimension
of U as a Zp-vector space. Under the action of t on U , U − {0} is partitioned
into orbits of the same length r, so r|pn − 1. We show r < p. We can assume
n > 1. Since G′ ∩ U is T–invariant and has dimension n − 1, r|pn−1 − 1. But
p(pn−1 − 1) + (p− 1) = pn − 1, and therefore(pn − 1, pn−1 − 1) = (pn−1 − 1, p− 1),
so r < p. Since we assume that G |= β3(a, d), this implies t = 1, contradiction.
Since G is f.g., so is C. For a f.g. torsion free abelian group C, the rank of C is
the dimension of C/2C as a Z2– vector space. Since G |= β4(a, d) we may conclude
that C is infinite cyclic. ♦

In the general case, d may fail to generate C. So choose a generator c ∈ C. Recall
that the group ring ZpC consists of expressions P =

∑s
i=r αic

i, where αi ∈ Zp and
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r, s ∈ Z, r ≤ s. Because this ring is the ring of fractions of the usual polynomial
ring Zp[c] by the multiplicative subset {cn : n ≥ 0}, it is a principal entire ring
(see Lang [10, Section II.3 and Exercise 4]). The action of C on A turns A into
a ZpC–module (C–module for short), where the scalar multiplication is given by

uP =
∑s

i=r αiu
ci . We will show that this C–module is f.g. free. By Lang [10, Thm

XV.2.2], for modules over principal entire rings, the following suffices (the first part
is well–known).

Lemma 2.7. (i) A is finitely generated as a C–module.
(ii) The C–module A is torsion free, i.e. for each nonzero P ∈ ZpC and u ∈ A,

uP = 0 implies u = 0.

Proof. (i) Let b1, . . . , bm be a finite generating set for G. Each element of G is of
the form ucz, where u ∈ A, z ∈ Z. Then, after adding c to this generating set, we
can assume that bi ∈ A. If u ∈ A, then u = 1 in G/A, so that u is a sum of terms of

the form bc
z

i . Collecting the terms with the same i, we obtain u =
∑m

i=1 b
Pi
i with

appropriate Pi ∈ ZpC. Thus b1, . . . , bm generate the C–module A.
(ii) Suppose u ∈ A−{0}, P =

∑s
i=r αic

i ∈ ZpC−{0} and uP = 0. Then r < s. We
can assume that the leading coefficient in P is −1, so that, for some s ∈ Z, r ≤ s,
uc

s
=

∑s−1
j=r αju

cj , where αj ∈ Zp. But then, by induction over all w ≥ s, uc
w

is

in the finite subspace generated by uc
r
, . . . , uc

s−1
, contrary to the fact that each

power of c acts fix point free on A− {0}. ♦
Clearly in the standard case the C–module A is generated by a and hence has
rank 1. To establish G ∼= H, it then suffices to prove that the free C–module A
has rank 1 in the general case. Let A = B1 ⊕ . . . ⊕ Bn be a decomposition of
A into a direct sum of free C–modules of rank 1. Then BiC = Bi o C ∼= H,
so that |Bi : [Bi, C]| = p by Lemma 2.5. By Lemma 2.2, G′ = [A,C] so that
G′ =

⊕
i[Bi, C]. Thus |A : G′| = |

⊕
iBi :

⊕
i[Bi, C]| > p unless n = 1. Hence A

has rank 1 and G ∼= H. ♦

3. F.g. versus recursively presented

In this section we obtain H4 and ϕ4. We use notions from effective model theory.
H4 turns out to have a ∆0

2–copy.

Theorem 3.1. There is a Σ3–sentence ϕ4 which holds in some finitely generated
group H4 but fails in all recursively presented groups.

Proof. We make use of undirected irreflexive graphs, simply called graphs here.
Usually the structures encountered in this proof have the integers Z or a finite
interval [0, . . . , n] as their domains. Such a structure in a finite relational language
is recursive if those relations are computable.
We first describe a sentence α which holds in some graph (Z, E), but fails in all
recursive graphs. Thereafter we encode (Z, E) in a f.g. group H4, using for the
coding only equations with constants in H4, but coding both the edge relation
and its complement. The sentence ϕ4 expresses that, via some list of constants, a
graph satisfying α is coded. This sentence holds in H4, but fails in all recursively
presented groups. It will matter that the sentence α does not contain the equality
symbol.



8 ANDRÉ NIES

Lemma 3.2. There is a Σ3–sentence α in the language of graphs without equality
which holds in some graph (Z, E) but fails in all recursive graphs.

Proof. We obtain α in two steps.
1. Let τ be the signature consisting of a ternary relation symbol R and an equality
symbol ≈. We obtain a τ–structure satisfying a Σ3–sentence β which fails in each
recursive τ–structure. We could work with Tennenbaum’s Theorem (see [8]). How-
ever, we prefer to reconsider Miller’s group M from Proposition 1.4, now viewed
as a τ–structure, where R is interpreted as the graph of the group operation (and
≈ is the usual equality). Sentences in the restricted first–order language with only
one binary function symbol for the group operation can directly be translated into
sentences in the first–order language over τ . For instance, associativity becomes

∀x∀y∀z∀w∃u(Rxyu & Ruzw) ↔ ∃u(Ryzu & Rxuw),
and the existence of neutral element and right inverse is now

∃z[∀uRuzu & ∀x∃yRxyz].
Clearly the function symbol for inverse and the constant symbol 1 can be eliminated
from a formula in the full group language. Then, the sentence ϕ2a from Proposition
1.4 can be expressed in L(τ) and becomes a Σ2-sentence ϕ̃2a.
Let β ∈ L(τ) be the Σ3–sentence which is the conjunction of ∀x∀y∃=1z Rxyz (R
is the graph of a binary function), the group axioms as sentences in L(τ) and ϕ̃2a.
Then M |= β, but no recursive structure (Z, R) is a model of β: otherwise it would
be a group G, and we would obtain a presentation of G with computable word
problem, contrary to Proposition 1.4.
2. We use the coding by Σ1–formulas of a structure A in a finite relational language
with equality in a graph (V,E) given in the proof of Nies [12, Thm 4.2]. (There,
the coding is used to show that the Σ2–theory of the class of finite undirected
graphs in the language without equality is undecidable.) Here, the finite relational
language is L(τ). The coding in [12] uses Σ1 formulas in the language L−(E) with
a binary relation symbol E, but without equality. The domain of A is represented
by all elements satisfying a formula Cyc3,4(x) (saying that x is in the intersection
of a 3-cycle and a 4-cycle), which we will denote here by Cyc(x). For each n–
ary relation symbol S in τ (i.e. R and ≈), there are Σ1–formulas ϕS(x1, . . . , xn)
and ϕ¬S(x1, . . . xn) intended to code the relation SA and its complement on {x :
Cyc(x)}. A “correctness condition” γ expresses that

– the formulas ϕS , ϕ¬S define complementary relations on the nonempty
set {x : Cyc(x)}, for S ∈ {R,≈}

– ϕ≈ defines an equivalence relation compatible with the relation defined
by ϕR

If Q = (Z, E) |= γ, then a τ–structure is encoded on D/P , where
D = {a : Q |= Cyc(a)} and P = {〈a, b〉 : a, b ∈ D & Q |= ϕ≈(a, b)}.

Moreover, if Q is recursive, then this structure has a recursive copy: since all the
coding formulas are Σ1, all the relevant sets and relations are recursively enumer-
able. Let X be Z or an initial segment of N, and choose a computable f : X → D
whose image is a system of representatives for P . Since Q |= γ, the preimage under
f of {〈a, b〉 : a, b ∈ D & Q |= ϕR(a, b)} is computable.
Now let α be the conjunction of γ and the sentence saying that the τ–structure
encoded on D/P via ϕR satisfies β. Let Q = (Z, E) encode M , viewed as a τ–
structure. Then Q |= α, but no recursive graph satisfies β. Moreover, translating
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β the same way as in [12, Thm 4.2], i.e. using phiS or ¬ϕ¬S when appropriate to
replace occurences of Sxy, α is Σ3. ♦

We code an arbitrary undirected graph Q = (Z, E) into an appropriate group LQ,
using for the coding only equations with constants in LQ. The group will be an
HNN–extension of F (a, b, c, d) by two stable letters r, s.
We think of az as representing z ∈ Z. Let vz = ba

z
(z ∈ Z), and write

t(u, v) = ucvducv.

For distinct integers x, y ∈ Z, let wx,y = t(vx, vy). Then the words wx,y freely
generate a subgroup of F , since d never cancels in a product of two distinct such
words or there inverses. The word wx,y will be used to represent the ordered pair
ax, ay. Consider the HNN-extension

LQ = 〈F, r, s|wrx,y = wx,y (if Exy);wsx,y = wx,y (if Exy)〉,

where E is the complement of the edge relation. Let c = (a, b, c, d, r, s). We intend
to use the equations

ϕU (u; c) ≡ [u, a] = e, ϕE(u0, u1; c) ≡ t(u0, u1)r = t(u0, u1), and
ϕE(u0, u1; c) ≡ t(u0, u1)s = t(u0, u1)

to code the domain of Q, E, and the complement of E, respectively (the last will
ensure that Q is recursive if LQ is recursively presented).
We need to show that we did not extend the centralizer of a when passing from
F (a, b, c, d) to LQ, so that ϕU encodes the intended domain.

Lemma 3.3. The centralizer of a in LQ is 〈a〉.

Proof. Let UE be the subgroup generated by the set {wx,y : Exy}, and let UE be
the subgroup generated by {wx,y : Exy}. By a special case of Britton’s Lemma
(see [16, Lemma 12.6]), if a word in the generating symbols for LQ represents 1
in LQ, then it contains a subword t−εutε, u ∈ UE ∪ UE , ε ∈ {1,−1}, t ∈ {r, s},
called a pinch (the words might fail to be reduced as written). Suppose that in
LQ, a−1w−1aw = e, where w is a word in the generators for LQ. We can assume
w does not contain a pinch. Then there must be a pinch “across” the displayed
occurrence of a. So w has the spelling ptεv and w−1 has the spelling ut−εq where
q, p are words in F (a, b, c, d) and t ∈ {r, s} (so that the pinch is t−εqaptε). Then
q−1 = p. But in F (a, b, c, d), no conjugate of a is in UE or UE , since the sum of all
exponents of occurrences of a in a word describing an element of these subgroups
is 0. ♦
For any list of constants c = (a, b, c, d, r, s) in a group G, a graph (CG(a), E) is
encoded via the formulas ϕU , ϕE , where CG(a) is the centralizer {u : ϕU (u, c)} and
E = {u, v : u, v ∈ CG(a) & ϕE(u, v; c)}. Let δ(c) be the formula expressing that on
CG(a), ϕE and ϕE define complements. Let ϕ4 be a sentence expressing that, for
some list c = (a, b, c, d, r, s), δ(c) holds and the graph encoded on the centralizer of
a satisfies the sentence α. Since the encoding is via equations, ϕ4 is Σ3.
First let Q = (Z, E) be the graph described above which encodes Miller’s group
M , and let H4 = LQ. Then LQ |= ϕ4. For choose c as above. By Lemma
3.3, LQ |= ϕU (u, c) ⇔ u ∈ 〈a〉. Then, by the definition of LQ, for x, y ∈ Z,
(x, y) ∈ E ⇔ LQ |= ϕE(vx, vy; c). So the encoded graph is a copy of Q.
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Now assume for a contradiction that G is a group with a recursive presentation
〈F |R〉, F an effectively given countable free group, and G |= ϕ4 via a list of wit-
nesses c = (a, b, c, d, r, s). Under the natural epimorphism p : F → G, each relation
on G has a preimage on F . Moreover, if the relation is defined by an equation
with constants in G, then the preimage is recursively enumerable. Thus, taking the
preimage of the centralizer CG(a), {〈u, v〉 : ϕE(u, v; c)} and {〈u, v〉 : ϕE(u, v; c)},
we obtain a graph (Ĉ, Ê) of recursively enumerable relations on F such that also
the complement Ĉ× Ĉ− Ê is recursively enumerable. Since α does not contain the
equality symbol, this graph satisfies α. Pick a 1-1 computable map f : Z → Ĉ, and
let E = {〈x, y〉 : x, y ∈ Z & 〈f(x), f(y)〉 ∈ Ê}. Then (Z, E) is a recursive graph
satisfying α, contradiction. ♦

4. Countable groups vs. f.g. groups

We describe H5 and ϕ5. Philip Hall [2] proved there is a up to isomorphism unique
countable locally finite group H = H5 which embeds every finite group and has
the further property that any two isomorphic finite subgroups are conjugate. This
group has a saturation property: if G1 ≤ G2 are finite groups, then an embedding
of G1 into H extends to an embedding of G2 into H. The natural construction of
H gives a presentation with solvable word problem.

Theorem 4.1. There is a first–order sentence ϕ5 which holds in Hall’s universal
locally finite group H but fails in all f.g. groups.

We employ results about H from Hodges [4] to prove a lemma which enables us to
quantify over finite subsets of H in the first–order language of groups.

Lemma 4.2. There is k ∈ N and a formula γ(x; b, q) in the first–order language of
groups such that, when b, q ranges over all 1 + k–tuples in H,

Sb,q = {h ∈ H : H |= γ(h; b, q)}
ranges precisely over the nonempty finite subsets of H.

Proof. Firstly, Hodges ([4, Lemma 8] and the remark thereafter) uses the saturat-
edness property of H to prove that the cyclic subgroup 〈b〉 generated by an element
b is definable in a uniform way:

(4) 〈b〉 = {x : ∀y([y, b] = 1 ⇒ [x, y] = 1)}.
Secondly, as a consequence of Hodges [4, Theorem 1], there is a word t(x, y) ∈
F (x, y), y a k–tuple of variables, such that, for each finite group A and each map
β : A→ A, there is a finite group B, A ≤ B, and q ∈ Bk such that

(5) ∀a ∈ A β(a) = t(a, q).

Now suppose {g0, . . . , gn−1} is a finite subset of H. Pick an element b of order n in
H and let A be the (finite) subgroup generated by {g0, . . . , gn−1, b}. Let β : A→ A
be the function mapping bi to gi (0 ≤ i < n), and mapping all other elements of
A to g0. Choose a finite group B ≥ A and q ∈ Bk such that (5) holds. By the
saturation property of H, we can assume that B is a subgroup of H. Then, for
each g ∈ H, g ∈ {g0, . . . , gn−1} iff there is some c ∈ 〈b〉 such that t(c, q) = g.
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Thus, by (4), as our formula γ(h; b, q) we may choose ∃x{∀y([y, b] = 1 ⇒ [x, y] =
1) & h = t(x, q)}. Conversely, since each set 〈b〉 is finite and nonempty, all the sets
{h ∈ H : H |= γ(h; b, q)} are finite and nonempty. ♦
Proof of Theorem 4.1. Let S, S1, S2, U range over subsets of a group of the form
{x : γ(x; b, q)}. We may replace quantification over such subsets by quantification
over parameter lists b, q, so that there is a first–order sentence ϕ5 expressing the
following.

∀x∃S S = {x} &(6)
∀S1∀x∃S2 S2 = S1 ∪ {x} &

∀S∃U∃x[S ⊆ U & U is subgroup & x 6∈ U ].

Then H |= ϕ5 by Lemma 4.2 and the fact that H is infinite and locally finite. Now
suppose ϕ5 holds in an arbitrary group G. By the first two clauses in (6), the sets
{g ∈ G : G |= γ(h; b, q)}, where b, q now ranges through G1+k, include all nonempty
finite subsets of G. Then, by the third clause, G is not finitely generated. ♦

5. UT3
3(Z) is quasi-finitely axiomatizable

In this Section we give a further example of a quasi-finitely axiomatizable group,
namely UT3

3(Z). We use the result to establish that UT3
3(Z) is a prime model, and

to settle the complexity of various theories of classes of groups.
We use the terminology of [7]. By Exercise 16.1.3 the free step-2 nilpotent group
with generators a, b is isomorphic to U = UT3

3(Z), where a, b correspond to the
transvections t23(1), t12(1), respectively. The center C(U) is an infinite cyclic group
generated by c = [b, a] = t13(1). Then C(U) coincides with the set of commutators:
U ′ ⊆ C(U) since the group is nilpotent of class 2, but also cz = [bz, a] for each
z ∈ Z.
Mal’cev [11] introduced an existential formula µ(x, y, z; a, b), using the generators
a, b as parameters, which defines the graph of binary operation Ma,b on C(U) in a
way that

(7) (C(U), ◦,Ma,b) ∼= (Z,+,×)

(here ◦ is the group operation in U). The formula is µ(x, y, z; a, b) ≡ ∃u, v{[u, b] =
[v, a] = 1 & x = [a, u] & y = [b, v] & z = [u, v]}.

Theorem 5.1. UT3
3(Z), or equivalently the free step-2 nilpotent group of rank 2, is

quasi-finitely axiomatizable.

Proof. We give an axiom system consisting of sentences α1, . . . , α4. Let α1 express
that the group is step-2 nilpotent and that its center equals the set of commutators.
The main problem is to find a single sentence α2 which holds in U and implies that
the center is torsion free. Our sentence implies in fact that the center is linearly
orderable as a group. Recall Lagrange’s Theorem: an integer is nonnegative iff it is
the sum of four squares of integers. We use this fact in the definition of Pr,s below.
Since multiplication is definable in C(U) with parameters a, b, U |= γ(a, b), where
γ(r, s) is the formula expressing

• µ(x, y, z; r, s) defines a binary operation Mr,s
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• if Pr,s = {u : ∃v1 . . .∃v4 u = Mr,s(v1, v1) ◦ . . . ◦Mr,s(v4, v4)}, then x ≤
y ↔ y − x ∈ Pr,s defines a linear order which turns C(G) into an ordered
abelian group with [r, s] being the least non-negative element.

Let α2 be ∃r∃s γ(r, s). Whenever G |= α2, then C(G) is linearly orderable and
hence torsion free.
Recall that a f.g. nilpotent group with torsion free center is itself torsion free (see
[7, Section 16]), and that every subgroup of a f.g. nilpotent group is f.g. Now, since
C(G) is f.g., there is a sentence α3 expressing that C(G)/2C(G) ∼= Z2 (similar to
β4 in Section 2).
Next, Gab = G/C(G) is torsion free: if u 6∈ C(G), pick v ∈ G − {1} such that
[u, v] 6= 1. Then [un, v] = [u, v]n 6= 1, so that un 6∈ C(G). Let the sentence α4

express that Gab/2Gab has 4 elements. Then α4 implies that Gab has rank 2.
We need to verify that a f.g. group G satisfying the axiom system is isomorphic to
H. We first show thatG is generated by any two elements c, d such thatG |= γ(c, d).
Since G |= α3, Z is infinite cyclic, hence C = C(G) = 〈[c, d]〉. It suffices to show
that 〈Cc,Cd〉 = Gab.
Since Gab has rank 2, we can choose g, h ∈ G such that 〈Cg,Ch〉 = Gab. Then
there are x, y, z, w ∈ Z and u, v ∈ C(G) such that c = ugxhy, d = vgzbw. Hence
[c, d] = [gxhy, gzbw] = [g, h]xw−yz. But also [c, d]r = [g, h] for some r ∈ Z. Since
C(G) is torsion free, the determinant xw − yz is 1 or −1. Thus Cc,Cd generate
Gab.
Since a, b generate U freely as a step-2 nilpotent group, there is an onto homomor-
phism h : U → G mapping a to c and b to d. It remains to be shown that h is 1-1.
Since h([a, b]) = [c, d], h induces an isomorphism C(U) → C(G). Since h induces
an isomorphism Uab → Gab as well, h is itself an isomorphism. ♦
Let α(r, s) be the formula α1 & γ(r, s) & α3 & α4. The proof shows in fact that
if G is f.g. and G |= γ(c, d), then G is free step-2 nilpotent with c, d as free gener-
ators. In particular, all such pairs of generators are automorphic. We use this to
derive a model theoretic fact on UT3

3(Z). A structure A in a countable language
is a prime model of a theory T if it is the least models of T , in the sense that A
is elementarily embedded into any other model. For instance, (N,+,×) is a prime
model of Th(N,+,×). Prime models are uniquely determined by their theory. The
following is common knowledge.

Proposition 5.2. Let A be a countable structure. Then A is a prime model of its
theory iff for each n, each orbit under the action of Aut(A) on An is first–order
definable without parameters.

Corollary 5.3. UT3
3(Z) is the prime model of its theory.

Proof. Suppose (t1(a, b), . . . , tn(a, b)) is a tuple in an orbit of Un. Then the fol-
lowing formula with free variables z1, . . . , zn defines the orbit: ∃r∃s [γ(r, s) & z1 =
t1(r, s) & . . . & zn = tn(r, s)]. ♦

Theorem 5.4. Suppose C is a class of f.g. groups containing UT3
3(Z). Then

Th(N,+,×) is many–one reducible to Th(C).

Proof. Given a sentence ψ in the language of number theory, let F (ψ) be the
sentence

∀r∀s[α(r, s) ⇒ ψ̃],
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where ψ̃ is obtained from ψ by letting the quantifiers run over the set Pr,s defined
above, and replacing + by the group operation ◦ and × by Mr,s. Then F is com-
putable, and ψ ∈ Th(N,+,×) ⇔ F (ψ) ∈ Th(C). ♦

Let (Pe)e∈N be a list of all presentations of the form 〈x0, x1, . . . |R〉, where R is
recursively enumerable. A class C of groups is arithmetically recognizable if there
is an arithmetical set S ⊆ N such that C coincides with the class of groups given
by a presentation Pe, e ∈ S. It can be checked that Th(C) is many–one reducible
to true arithmetic Th(N,+,×) for such a class C. We are now able to classify the
complexity of various theories, notably the theory of the class of f.p. groups.

Corollary 5.5. Suppose C is an arithmetically recognizable class of f.g. groups
and UT3

3(Z) ∈ C. Then Th(N,+,×) is many–one equivalent to Th(C).

Examples of such classes include: {UT3
3(Z)}, the classes C1 through C3 from List

1.2, the f.g. nilpotent groups, the f.g. step-c nilpotent groups (c ≥ 2), and the f.g.
metabelian groups. (The last class is arithmetically recognizable since the word
problem for f.g. metabelian groups is solvable [1, Thm 2.1].)
In recent work, Morozov and the author proved that the theory of the class C4 of f.g.
groups is Π1

1–complete. They also prove that the word problem of a quasi-finitely
axiomatizable group is hyperarithmetical, and give an example of such a group at
each level of the hyperarithmetical hierarchy. Finally, they show that Th(Zp o Z)
interprets true arithmetic.
In order to find more natural examples of quasi-finitely axiomatizable groups, it
would be interesting to settle the generalizations of Theorem 5.1 to other free
nilpotent groups and other groups UTn

n(Z), for n ≥ 4. A further good candidate
for a quasi-finitely axiomatizable group is Ivanov’s group for prime p (see [14, Thm
41.2]), an infinite 2-generated group of exponent p with exactly p conjugacy classes.
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