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A New Spectrum of Recursive Models
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Abstract We describe a strongly minimal theo8jin an effective language
such that, in the chain of countable modelsSpbnly the second model has a
computable presentation. Thus there is a spectrum ef,ezategorical theory
which is neither upward nor downward closed. We also give an upper bound
on the complexity of spectra.

1 Introduction  Our main purpose is to find a strongly minimal theory in an effec-
tive language whose spectrum of recursive models is thElsetWWe rely on some
concepts in Khoussainov, Nies, and Shore [3], reviewed here briefly. Baldwin and
Lachlan [1] showed that the countable models ofvarcategorical theory form an

w + 1-chainMg(T) < M1(T) < --- < M, (T) under elementary embeddings. In [3],
we defined the spectrum of computable model¥ of

SRM(T) = {i < w: M;j(T) has a computable presentation

We gave an example of am-categorical (in fact, strongly minimal) theofly such
that SRMT) = (w — {0}) U {w}. Kudeiberganov [4], extending a result of Gon-
charov, proved that, for eache w, n > 1, there is anw;-categorical theory such
that SRMT) = {0, ..., n—1}. Here, in a priority construction, we combine the tech-
nigues used to prove the two results and obtain a strongly minimal tiiesugh that
SRM(T) = {1}. Thus, onlyM;(T) has a computable presentation (which we build
in the priority construction).

The ultimate goal of these investigations is to describe all possible speatra of
categorical theories. In a sense, our example is the most complicated one found so
far, since all the previous spectra were upward closed or downward closed if.
Before we proceed to the main result, we give an upper bound on the complexity of
spectra. Manyw;-categorical theories are model complete (for instance, AGFE
more generally, eaclh,-categorical theory axiomatizable bi,-formulas, by Lind-
strom'’s test), so we also give a tighter upper bound for such theories.
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Proposition 1.1  Suppose T isw-categorical theoryin an effectivelanguage. Then

(i) SRM(T) € Y-3(2);
(i) if T ismodel complete, then SRM(T) e 9.

Proof: Supposeg(x) is a strongly minimal formula fof in the sense of [1]. Choose
an effective numbering of the s& of atomic relations and negations of atomic re-
lations in the given effective language over the domaiftypical elements oD are
fn= fgmand—Rnm, wheren, me I, f, gare unary function symbols arilis a bi-
nary relation symbol in our language). If we view a computably enumerabW¥ ast
a subset oD, thenW gives rise to a presentation of a computable model, provided
that exactly one of an atomic relation or its negation is\ihand, if the language
contains an equality symbet, then{n, m: n ~ m e W} is an equivalence relation
compatible withW. The number® such thatW; determines a presentation form a
Hg-setP. Fore € P, this computable presentation is denotedy

In the following, “a.i.” stands for “algebraically independent” and, for a struc-
tureA in our languageB(A) denotega € A : A = B(a)}. Let § be the group of
permutations of1l, ..., k}.

To prove (i), we can suppose that<t @*, otherwise SRMT) = @. Nown €
SRM(T) <= 3Jeec P

Ac =T (thisisTI(2%)) & (1)
Jay,...,an € B(A)[(ag,...,an) a.i] & (2)
=3ay,...,an1 € B(A)[ay, ..., an 1 ] (3)
Also, inAg, Cq, ..., ¢ are a.i. if and only if for all formulag (x4, ..., X),
Vi € S[Ae = ¢(Cr(1y, - - -5 Cry) = I°CAe = 9(Cr(a), - - -, Cak1)s O)]

whichisT1(2). Therefore, (2)i£3(2?), (3) isI13(2*), and the whole expression
is £9(2), as desired.

For (ii), if T is model complete, then by ([2], 8.3.3),is equivalent tol N Iy,
the set ofl1,-sentences id. If T has a recursive model, th@nN I, is 1‘[8. Now,
in the expression abové, = T becomed13. Moreover, since we can assume that
all formulas involved ar&q, “cq, ..., ca. i.” becomesl‘lg, 2) become&?, and 3)
mns. O

2 {1} isa spectrum

Theorem 2.1 Thereisa strongly minimal (and hence w;-categorical) theory T in
an effective language such that M; (T) (i < w) has a computable presentation if and
onlyifi =1.

Proof: We use a language consisting of binary relati®pgk > 0) callededge re-

lations and further relationge (e > 0). T contains axioms saying that the relations

do not depend on the order of the elements and can hold only for distinct elements.
Let Lp be first-order language ovéPy : k > 0}. The models off restricted to

L are, with a small notational change, as in [3]. They consist of a disjoint union

of component<;, D. Cy is a singleton, an€,, 1 is the union of two copies ot,,
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where elements in different subcomponents are connectedRiidge. We call the
modelsC; complexes of dimension i, or for short,i-complexes, which replace the-
cubes in [3] to simplify notation. There are natural embeddings éfamplex into
ani 4+ 1-complex. Thexo-complexD is the union of a chain of ancomplex for each
finitei.

We determin€l by describing a recursive presentationf(T). However, as
in [3], TN Lp can be axiomatized by saying for whiche w an n-complex exists
and that there is at most one for eathAs in [3], for an infinite seSC w, letAg=
UnesCn be thel p-structure consisting of exactly omecomplex wheneven € S,
ThenT NL, =Th(Ag) is wi-categorical, wherd/; (T NLp) (i < ) consists ofAg
and anco-complex for each < i. d

An axiomatization for the theory in the full language is obtained by specifying, in
addition, first-order definitions for the relatiohs. This is needed to show that the
full theory is w;-categorical. ActuallyT N Lp, and hencd, are strongly minimal,

as the following proposition shows.

Proposition 2.2  For each infinite SC w, Th(As) is strongly minimal.

Proof: SupposeM is a countable model of Ts) andD < M is definable from
parametersy, ..., a,_1 € M using edge relations amory, ..., P, k € Swith the
intent of showing thaD is finite or cofinite. NowM = M [ {Po, ..., P} consists of
at mostk complexes of dimensior k and infinitely manyk-complexes. Lef be
the union of the complexes of dimensienk and all complexes containing sorag
ThenF is finite, and ifc, d € M — F, there is an automorphism o takingcto d
and fixing each parameter used to defineThus, ifD £ F,thenDUF =M. O

We now describe the construction of a computable presentatiavi{6F). The co-
complex will be the complex containing 0 in this particular representation.

The construction is in stages. Each stagas finitely many substages, denoted
by the letterse, o, which are numbered,Q, 2, . .. through the whole construction,
independently of s. M1 .(T) is the model obtained by the end of stagand has as
a domain an initial segment [Q) C |N, u > 7. At the end of any substage D will
denote the current complex containing 0xlis already in the domain, dipix) de-
notes the dimension of the complgxs in at stager (so that dim(0) is the current
dimension ofD). The distance betweepandy in the domain ofM ,(T) is defined
as follows:

d.(x,y) = 0Qifx=y
d.(x,y) = Kkif P1xy (kis unique)
d.(X,y) = ooifthereis no suclk.

A complexC; which exists at substagewill be isomorphic to the “ball’{x € D :
d. (0, x) <r}.

During the construction, we may do one of the following: (a) add a mew
complex (whose domain consists of the least numbers not used before) or (b) merge
an existing complex; into D, using a proceduri®lerge(C;) which choosek large,
first expand<C,, D to complexesD’, D” of dimensionk — 1, and then connects all
elements oD’ with all elements oD” via P_;. Thus, dim(x) can change at most
once from a constant value to “unbounded” wiulé€x, y) may change once fromo
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to a finite value. We denote the limit value of ditw) by dim(x) and the limit value
of d: (X, y) by d(x, y).
We recall a further definition from [3].

Definition 2.3 A function f is limitwise monotonic if there exists a recursive func-
tion (X, t) such thatp(x,t) < o(x,t+ 1) forall x,t € w, lim; (X, t) exists for every
x e wand f(x) = limyp(x, t).

Let Sbe the set of dimensions of finite complexes in any moddl.dh [3], Lemma
2.2 we show that, if the prime modAk is recursive, then the s&is the range of a
limitwise monotonic function.

Let ¢e(X, 1), € € w, be a uniform enumeration of all partial recursive functions
@ such that for alt’ > tif ¢(x,t") is defined, themp(x, t) is defined andp(x, t) <
(X, t"). To ensureMqy(T) | Lp (and henceMq(T)) has no computable presentation,
we satisfy requirements; which imply thatSis not the range of a limitwise mono-
tonic function given byy;.

N;i : 3x, t ¢i (X, t) undefinedv 3x qun oi(x, 1) €S

The last disjunct may be achieved by ensuring nix, t) = oo.

An N;-strategy has a parameter= m(N;), whose values are chosen in a de-
creasing way in the intervag[i), g(i + 1)), whereg(i) = Zj<i h(j) andh(j) is a
computable function bounding the possible number of injuries to the requirédpent
(see Lemma 2.5 below). It has also parametetsAll parameters may be undefined.

The N;-strategy is as in the proof of the recursion theoretic lemma [3], Lemma
2.1, but here it is incorporated into the priority construction of a presentation for
M1(T). First add am-complex, for an appropriate. The “opponent” now has to
providex, t such thap;(x, t) = m. Asaresponse, useo drive the limitlimy ¢; (x, t)
to infinity. To do so, remove am'-complex whenevep; (x,t") = m' fort’ > t. (The
m’-complex was created LY; itself, in which casen’ = m, or by a lower priorityN-
strategy still waiting for the opponent’s first move, which is now injured.) In some
more detail, the\;-strategy is the following. If any of the cases below applies, take
the corresponding action.

(N1) All parameters are undefined, agd + 1) <s.
Action. Let m be the largest unused number o)), g(i + 1)). Perform the
procedureexpand(2, m), which creates a new complex of dimension

(N2) mis defined, buk, t are undefined, and nogy s(x, t) = mfor somex, t < s.
Action. Choosex, t as values for the parameters. Call the procedure
Merge(Cr), which putsCr, into D and thereby removes from the list of pos-
sible values for lim ¢; (x, t).

(N3) x,tare defined and now; (x,t") = m' for somet’ > t, where currently am-
complexs# D exists.
Action. PerformMerge(Cyy).

The requirementR. codeK into any presentation of a model (T), i > 2. By meet-
ing the following requirements, we ensure thae # K, Le is empty in each model
of T, and ife € K thenLeuv holds for any two algebraically independent elements
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of a model ofT.
Re: ee K = 3In

VX, y[dim(x) < g(e+ 1) vdim(y) < ge+ 1) vdx, y) <nvVv Lexy]l. (4)

Since (4) can be expressed in a first-order way and only the last alternative can occur
for algebraically independent v, meeting all the requirement; is sufficient for
the coding ofK.

The Re-strategy has a single paramatgrwhich is defined first at a stagevhen
e € Ksand may be made undefined finitely often by higher pridityype strategies.
The limit value will provide the witnesa for (4). The Re-strategy tries to ensure
Leuv wheneveme is defined, dingu), dim(v) > g(e) andd(u, v) > ne. The priority
ordering of the requirementsiy < Ry < N; < Ry < - - -. Both types of requirements
arereset by making all their parameters undefined.

Suppose alN-strategy wants to merge a compléy created by aiN’-strategy
into D, so thatN < N’. This conflicts with theRe-strategy in case we did not de-
clare Lexy for all x € Cy, y € D, since we will use an edge relatid®y, u > ne to
connecl, y. Itis too late now to add.exy, since we want a computable presentation
of M1(T). This conflict is solved as follows: for all the requiremehissuch that
Re < N andCpy Ny exists, whereis enumerated int&, Re first mergeCm - into
D. Only then doe®. define the first value dfi,, larger than all indices of edge rela-
tions used so far. IN’ < Re, before mergindCimn) into D we makene undefined,
and Rg redefines it with large value after the merging takes place.

The effect ofRe on the theory is described by a $gtwhich is cofinite ife € K
and empty otherwise. Lét. o = @ andFe; =

Fer—1U{k: ne defined at substage& k > ne & P_; firstused at}.  (5)
Let Fe = U, Fer. We will verify that
M; = Lexy <= dim(x), dim(y) > g(e+1) & d(x,y) € FeU{oo},  (6)

which gives the desired first-order definitionlof from finitely many edge relations.
During a substage of the construction, we adHexy to the presentation iy is a
new elementg € Kgs_1, and (6) holds at that stage. Thus the presentation is com-
putable. We need to verify thaﬁ"lm actually satisfies (6) despite possible changes
of dim(x), dim(y), andd(x, y) afterz.

We describe the procedures and the construction in detail. Whenever a proce-
dure adds new numbers to the domain, they are chosen minimal in

Expand(C,, k) has as an input acomplexC, (recall thatC, is isomorphic to
{x:d(x,0) < u}). It expandsC, to ak-complex by adding new elements and the
appropriateP_1-relations between elements. We also include as a speciakEzase
pand(&, k), which creates a new complex of dimensianThis is counted as one
substage.

Merge(C;) assumes that there is a comp@&xr = m(N) for some (uniqueN.
It mergesC; andD, but in a way that the overall goal thig be definable by (6) can
be achieved. LeN’ > N be the requirement of highest priority such thatN’) is
defined. Recursively, calMerge(Cnn)), using finitely many substages (' fails
to exist, this step is vacuous). Next, in a single substagerform the following:
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1. Reset all théR-type requirements- N.

2. Choos« large and calExpand(C; ._1, k — 1), producing a comple®’, and
call Expand(D,_1, k — 1) producing a comple®”.

3. ConnectD’, D” by adding symmetric edgd%_1xy, whenevei s in one and
y in the other. This yield®,. Reset the requiremei.

The construction

Sage0: LetD ={0},r=0.

Sages > 0: Inthe following, increase by one after each substage. Declhggy
whenever an elementis added at a substageo the domairv; such thae € Kg_1,
d:(X,y) € Fer U{oo} and dim(x), dim.(y) > g(e+ 1).

1. Pick the requirement of highest priorlty(if there is any) for which one of the
following applies and carry out the corresponding action.

(@) U is N, all parameters olN; are undefined, and(i + 1) < s.
Action. (N1) above.
(b) U is Re, ne was not defined up to now amk K.
Action. Let N = R be theN-type requirement of highest priority
such tham(N) is defined. IfN exists, perfornMerge(Cmn)). Next,
pick a large number g(e+ 1) asne.
2. If someu-complex exists and sonfé-type requirement desires to merge it via
(N2) or (N3), performMerge(C,) for the minimal suchu.
3. To ensure that digD) > sat the end of stagg call
Expand(D,_1, dim;(0) + 1).
4. For all Re such thaine is now undefined but was defined before, redefine
with a large value.

Theverification We write M; instead ofM; (T).

Lemma24 Themode M, isrecursive.

Proof: We want to test whethelM; = Rxy wherex,y € N and R is a relation
symbol from our language. We can suppose that y andy € dom(M; ;) —
dom(M; ;_1) so thaty is added at a substagef a stages.

1. If Ris P, then we distinguish two cases. yfis added by a procedulex-
pand, thenM; = By <= Mj ; = BXy. Otherwise,M; = Pxxy because
we connected’, D” in a Merge procedure anc € D',y € D”, or we per-
formed (3) of the construction during a stdge s, in which casé > s(since at
each stage we introduce a new edge relation). Thus it suffices to check whether
Ml,max(k+l,s) |: PkXy-

2. Now supposer is Le. Then, by the constructiorM; = Lexy <= M1, =
Lexy (since we determine wheth&gxy holds wheny is introduced). O

Lemma?25 Thereisa computable function h such that N; is reset at most hi)
times. In particular, during the construction, there is always a sufficient supply of
candidates for the parameter m(N;), and also R; isreset only finitely many times.
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Proof: Leth(0) = 0. To determinéh(i + 1), we observe thal;, 1 can be reset at
most two times beford\; is reset as well. For, if\; is not reset, then eithe¥; 1
was reset byR;, which can only happen once, or durindv/ierge procedure for the
sake ofN;. This means that before the mergimg,has parameters t andg; (x,t) =
m(N;i;1). By the waym(N;_ ) is chosen and sineg (X, t) is nondecreasing it) this
can only happen once befoxéN;) is changed.

Now, definingh recursively byh(0) = 0, h(i + 1) = 3h(i) + 3, we obtain the
desired bound. O

Lemma?2.6 Therequirements N; are met. Hence Mq(T) has no computable pre-
sentation.

Proof: Suppose thal; is not reset from stag® on. ThenN; permanently has high-
est priority fromsy on and therefore can always fulfill its desire to create a complex.
Since a compleﬁm(Nj), Ni < N;j is merged intoD whenever; desiresN; is met.

O

LemmaZ2.7 Leisdefinablein all models of T by a ¥,-formula in the restricted
language L p, which depends only on e.

Proof: SinceT = Th(M,) by definition, it suffices to work iM;. Clearly, ife ¢ K,
thenLe = @. Now suppose € K. ThenF is cofinite by Lemma 2.5. As discussed
after (6), we want to prove that, for eaghy € I,

M1 = Lexy <= dim(x), dim(y) > g(e+ 1) & d(X, ¥) € Fe U {o0}. 7

This suffices, for dinix) > g(e+ 1) can be expressed bysa-formula inLp, and, if
N—FC{0,...,m=1},m> 1, thend(X,y) € FeU {0} <= d(X,y) > M
—Poxy & --- & =Py_oxy. In the following, we argue by induction ovenbstages
(recall that they are numbered consecutively throughout the construction). As in
Lemma 2.4, suppose that< y andy € dom(M; ;) — dom(Mj .—1) (but note that
possibly dim(y) < dim;(x)). We denote by Compl(z) the complexzis in by the

end of substage.

For the direction from left to right, iLexy, then at the end of substagethe
right-hand side in (7) holds. Thus ditx), dim,(y) > g(e+ 1) for all o > T,
since dimension is nondecreasing over substages. Moreode(xify) € Fe ; then
d(x,y) =d.(x,y) € Fe. Suppose now that, (X, y) = co (so thatx, y are in different
complexes at the end aj, butk = d(X, y) is finite. Then at some substage- r,
Compl, (x) = Compl,_; (X) = Cnn) is merged intd during a run of thévierge pro-
cedure, whiley € D,_;. (If instead,y entersD while x is in D already, we argue
similarly.) Duringo, x is in a complexD’ which is connected witld” > D,_; us-
ing Pc_1, wherek is chosen large. Note th&: < N, since din3 (x) > g(e+1). So,
during the run of thévlerge procedureng is still defined ab when we usé3_; and
K > ne, hencek € Fe.

Now suppose the right-hand side in (7) holds. We shawy.

1. If dim;(x) < dim.(y) and dim(x) < g(e+ 1), then at the end of substagge
the numbers, y are in different complexes, otherwisgx, y) = d. (X, y) <
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g(e+ 1) while min(Fe) > g(e+ 1). Suppose at the end of substagex €
Cmny, andy € D ory € Cynry, WhereN < N'. Since din{x) > g(e+ 1),
at a stager >  we mergeCpyny = Compl.(x) = Compl,_,(x) into D while
y € D,_1. By theMerge procedure and sindd < Re, Re was reset before we
merged Compl(x). So we add a relatioR,_1 Xy while ne is undefined, whence
k=d(x,y) € Fe, contradiction. If dim(y) < dim;(x) and dim(y) < g(e+
1), we argue similarly. We can henceforth assume that, @imdim, (y) >
g(e+ 1), so that by the end of stage x is in D or in someCp ) for some
N > Re, and similarly fory.

2. If d;(x, y) = oo and we do not declarkexy at 7, thenng is undefined at.
If e e Kg_; then, by the end of stage— 1, ne was defined, and we madag
undefined at substagessyfrior to . Then while performinderge, we would
have merged the complexgsndy are in intoD at a substage afprior to o,
contrary tod. (X, y) = oo.
If e ¢ Ks_1, then sincee € K, by 1(b) in the construction, we merge the dis-
tinct complexes Comp{x) and Comp](y) into D at some substage before we
defineng for the first time. So, agaid(x, y) € Fe.

3. Finally, supposé. (x, y) = k < co. Sincek € F; and P_; is used first at a
substage< 7, k € Fe ;. Sincey is added at, we declare_exy. O

Remark 2.8  Hirschfeldt and the author have recently extended Theorem 2.1: for
any ordinaly, 2 < @ < w, the sen: 1 < n < «} is a spectrum.
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